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Abstract

Boundary representation models reverse engineered from three-dimensional range data
suffer from various inaccuracies caused by noise in the data and the model building soft-
ware. Beautification aims to improve such models so that they exhibit exact geometric
regularities representing the original, ideal design intent. In this thesis an approach to
beautification as a post-processing step solely working with the boundary representation
is investigated. Geometric regularities approximately present in the model are detected
and a consistent subset of these regularities is imposed on the model. Only models of
engineering objects whose surfaces can be represented by planar, spherical, cylindrical,
conical and toroidal faces with sharp edges or fixed-radius rolling ball blends are con-
sidered. A large number of mechanical parts can be constructed from these surfaces and
there are robust reverse engineering methods for them.

A novel approach to approximate geometric regularities is introduced. They are handled
as approximate symmetries of discrete properties of boundary representation elements.
This leads to new efficient detection methods for different approximate regularity types
classified by the underlying symmetry type. Due to the ambiguity present in approximate
models many approximate regularities are detected, which are unlikely to be mutually
consistent. Hence, a consistent subset of regularities likely to represent the intended de-
sign has to be selected. Expressing regularities in terms of geometric constraints and
interpreting constraints in a topological context results in a new efficient solvability test
for constraint systems based on degrees-of-freedom analysis. In order to select likely, con-
sistent regularities they are added sequentially in order of a priority to a constraint system.
A regularity is selected if the expanded constraint system remains solvable. The selected
constraint set is solved numerically and an improved model is rebuilt from the solution.
Experiments show that this approach can be used to improve reconstructed models.
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Chapter 1

Introduction

Reverse engineering geometric models extracts sufficient information from a physical ob-
ject to reconstruct a CAD model for a particular purpose like redesign, reproduction or
quality control. If we say that engineering converts a concept into an artefact, then reverse
engineering converts an artefact into a concept. Ideally, for applications like redesign, the
reverse engineered model should exhibit exactly the same geometric properties present in
the original, ideal design. Rather than trying to create a very detailed and exact descrip-
tion of the physical object suitable for creating an exact copy or for inspection purposes,
we are interested in reverse engineering the shape of an engineering object such that the
description of the model represents the original design intent. For this purpose we use
a state-of-the-art reverse engineering system which can create a boundary representation
model representing the object’s natural surfaces from dense three-dimensional range data.
However, due to inaccuracies in the measured data from the object and approximation
and numerical errors during the reconstruction process, this model is approximate in the
sense that it exhibits intended geometric regularities such as symmetries only approxi-
mately. We propose to improve such models in a post-processing step, which we call
beautification.

In Section 1.1 we start with an overview of current reverse engineering techniques and ap-
plications, focused on a typical reverse engineering system which is available to us. Then
we describe the beautification problem in Section 1.2. In Section 1.3 we present previous
approaches and our approach to beautification. In Section 1.4 we give an overview of the
remaining chapters in this thesis.

1.1 Reverse Engineering Geometric Objects

There are many applications of reverse engineering. In the context of this thesis we are in-
terested in reverse engineering shape and its geometric properties related to design intent.
But note that a broader interpretation relating to functional properties and mechanisms is
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also possible. For our purposes we may loosely classify reverse engineering applications
into reproduction, inspection and redesign. By measuring a physical object, all of these
applications aim to create a description of the object covering some aspect of its shape
which is not available from other sources. The requirements for the model description
differ depending on the application type. Note that we do not claim that this classification
covers all possible applications and there may be other classification schemes. Here it is
simply used to discuss some basic requirements for the model descriptions.

We limit the discussion to reverse engineering systems which start with measurements
producing dense data sets to describe the surface of the physical object. For an overview of
optical, tactile, acoustic and magnetic measurement methods see [130]. All these methods
interact with the surface using some physical phenomenon to acquire positional data. The
type of data analysis to obtain the positional information as well as its accuracy depends
on the particular measurement method. In our particular case we use a three-dimensional
laser scanner producing dense range data by triangulating the position of a laser beam
projected onto the object. This produces data at high accuracy in relatively short time.
However, an object has to satisfy certain conditions such that it can be measured, e.g.
the object should have no deep cavities which cannot be probed by the laser scanner (see
Section 1.2).

The aim of reproduction applications is to create a description of a physical object which
allows its recreation. This is often necessary when the original drawings or CAD models
were lost or are not available. The process is expected to create an exact copy of the orig-
inal or at least a copy of the original which differs only at a relatively close tolerance. No
real analysis or modification of the data is required and thus it can be achieved with a de-
scription close to the original measurements from the object (e.g. a point set or a triangu-
lar mesh). This type of application can be seen as the origin of reverse engineering [128].
The pantograph [117] was used to copy, at any predetermined scale, arbitrary geometric
shapes over a mechanical linkage. Copy lathes and mills represent more contemporary,
automated versions of this machine. The basic principle is to follow the surface of the
source object mechanically and use this to steer the movement of a cutter device over the
relations in a parallelogram. Only low-level positional information is required for this and
no CAD model is involved.

However, the aim of reverse engineering is not simply to create a nearly exact copy of the
physical object via a digitised data set or as another physical object. Our goal is to create
a concept, i.e. a CAD model which can be analysed and modified. For this an appropriate
description of the object’s boundary has to be generated. For different types of objects
different reverse engineering techniques are required. In this thesis we consider engineer-
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ing objects rather than natural or artistic objects. We can classify engineering objects by
the types of surfaces required to describe their shape. Some objects have a shape which
can be represented by simple analytic surfaces like planes and natural quadrics. Other
objects require more geometrically complex free-form surfaces. We only consider objects
of the first type for reasons which will be laid out below (in Section 1.2 we give a detailed
description of the objects we consider).

For inspection applications, very accurate data from the physical object is required in
order to analyse the properties of the object. Depending on the properties considered, the
object may be measured in different ways. We may, for instance, be interested in quality
control and compare the measured data with an ideal data set. The main tasks involved are
analysis of the data and matching it to an existing data set in the context of the particular
application. Note that inspection also requires an existing specification of what we are
looking for. For instance, in order to test the planarity of a surface, simply fitting a plane
to it and replacing the data points by a plane would be inappropriate. Instead we require
the error between a best-fit plane and the data points. But in order to test whether two
planes are orthogonal we require an explicit representation of the planes to measure the
angle between the normals. Note that this may be done from a few measurements rather
than dense range data under certain assumptions about the quality of the surfaces involved.
In general discrete measurements are not very reliable. The above two tasks may also be
combined to a single task fitting two planes to the data sets under the constraint that they
be orthogonal. But for inspection the measured data would have to be compared to the two
fitted planes and it would have to be verified that the fitted planes are indeed orthogonal.

Similarly, in order to generate custom fits to human surfaces, for mating parts such as
prostheses or helmets, we require accurate data about these surfaces. This data then has to
be analysed appropriately to adjust the mating part. The basic requirements for this type
of applications are quite similar to inspection applications.

For redesign applications it is necessary in general to have a higher-level representation of
the object. While accuracy is still important, small variations like a scratch in a surface do
not have to be captured (unless the scratch is deliberate). A suitable representation would,
for instance, be a boundary representation solid model describing the object in terms of
its natural surfaces. It is important that this representation contains accurate, intended
geometric regularities in order for it to be useful for redesign. Applications include tasks
where clay or wood models are used to create, evaluate and improve models (e.g. in
the automobile industry). For another application an existing mechanical component is
scanned, and based on its design, a new model is created. It may also be required to change
an existing part such that it better suits its purpose. The focus of redesign applications is to
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capture the design intent of the physical object. For this, we still require high accuracy, but
the emphasis is on the object’s geometric regularities such as symmetries, aligned cylinder
axes, orthogonal or parallel planes, etc. In typical engineering objects these regularities
are not random, but are present to fulfil a functional or aesthetic purpose.

Often CAD models generated by reverse engineering software are only approximate in the
sense that they exhibit intended geometric regularities only approximately. The cause for
this may be an imperfect physical object altered by wear or the particular manufacturing
method used to make it. It may also be caused by inaccuracies in the reconstruction pro-
cess introduced by numerical and approximation errors. Such problems may be eliminated
in the model by explicitly considering design intent such that the created models are more
suitable for modification in CAD applications. In the context of redesign our ultimate
goal is to realize an intelligent three-dimensional scanner which is able to automatically
determine the design intent of a physical object with only minimal human interaction.
Such a system would provide a simple, high-level user interface for both engineers, and
inexperienced and non-engineering users to reconstruct suitable CAD models.

In the following we give an overview of a state-of-the-art reverse engineering system
upon which this thesis builds. This system was originally developed by several partners,
including Cardiff University, in the EU funded RECCAD project. It has since been fur-
ther developed by the Hungarian Academy of Sciences and CADMUS Consulting and
Development Ltd. We are grateful to them for providing it for use in this project. Due to
noise in the measured point set and noise introduced by the reconstruction algorithms, the
resulting CAD models are unlikely to show all regularities expected by an engineer. This
problem is specified in more detail in Section 1.2, and in Section 1.3 we present previous
approaches and our approach to address it.

1.1.1 Typical Reverse Engineering Systems

In the following we give an overview of the main phases of a typical reverse engineering
system. The system available to us follows these steps. See Figure 1.1 for a flowchart of
the process. For a general overview of reverse engineering see Várady et al. [129, 130].

The process starts with a data acquisition phase where raw measurement data from the
physical object is collected. Some pre-processing on this data is required in order to com-
bine multiple measurements from different viewpoints. The most crucial phase of the
process is the segmentation and surface fitting phase. Here the individual (natural) sur-
faces of the object have to be determined and surfaces of suitable geometric types have
to be fit. The method first creates a triangular mesh for the object surface. Based on this
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Figure 1.1: Main Reverse Engineering Phases.

mesh the data is segmented into subsets representing natural surfaces of the object. For
each of the subsets, one or multiple analytic surfaces are fitted individually. However, the
segmentation and surface fitting cannot be separated completely from each other, and the
methods have to be carefully chosen to work together. Already during segmentation we
have to consider the surface types to be fitted later to the subsets. Finally, after appropriate
surfaces have been found, a complete boundary representation model is created by stitch-
ing the surfaces using adjacency relationships. In the following we give a more detailed
description of the processes involved in each of these steps in the reverse engineering
system we use.

The particular approach taken starts with a data acquisition phase where multiple views of
a physical object are obtained using a commercial three-dimensional laser scanner. Note
that in order to capture data about all the surfaces of an object, we always require multiple
views. The measured data is imperfect, and in particular it is noisy and incomplete, due
to problems of precision, accessibility and occlusion which occur when measuring real
objects.

In a pre-processing phase the multiple views are merged into a single point cloud. For
this the user has to provide some approximate information about how the different views
are related. This can be done either by identifying specially attached markers like calibra-
tion balls in the various views, or by providing approximate transformations representing
the relations between the different views. In both cases we have a set of transforma-
tions telling us approximately how to combine the views into a single point set. This
approximation can be improved by using methods based on the original iterative closest
point (ICP) algorithm [12]. The iterative closest reciprocal point (ICRP) algorithm cre-
ates especially good results [70]. Both methods pair the closest points in the two views
and compute a motion that minimises the mean square error between the paired points.
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For ICRP a point pair is only considered if it represents the closest point from a point in
the first view to a point in the second view and vice versa. There are various additional
variants of the ICP method [115]. Registering multiple range views simultaneously as
opposed to pairwise registration of views also improves the data correspondence as the
sets are merged as a whole [34].

In the next step the point set is triangulated using an algorithm which merges locally
defined triangulations into a consistent global triangulation [66]. Optionally, we can add a
decimation step after the triangulation, for efficiency reasons. The aim of decimation is to
reduce the total number of triangles in the mesh without changing the topology and only
small changes to the geometry. Depending on whether a vertex lies on a boundary, on an
internal edge, a corner, etc. in the mesh a criterion based on the distance of the vertex to
a plane or an edge is used to decide whether the vertex should be removed [118]. The
triangulated data set is the basis for segmentation, which splits the point set into disjoint
subsets which mark connected regions of the points sharing some common property. The
subsets are considered to represent the natural faces of the model. There are various
approaches to segmentation, often based on region growing techniques. In this system,
direct segmentation is used, i.e. a local property of the surface like surface normals or
curvatures is approximated based on the triangulation, and the subsets comprise point
sets that are connected in the triangulation and for which the local property is consistent.
Points for which a clear decision cannot be made are not added to any subset: it is assumed
that they are close to an edge, or lie on a blend.

To each of the subsets a surface (or surfaces) of appropriate type is fitted separately [10,
89, 134, 135]. Multiple surfaces may have to be fitted to a point subset in case of smooth
edges between the surfaces, e.g. created by a tangential intersection between a cylinder
and a plane. For single surfaces a faithful least-squares fitting algorithm, which is robust in
the sense that the results become closer to simple surfaces, i.e. planes, cylinders, cones or
spheres, as the principal curvatures of the surfaces fitted decrease or become equal [89].
First simple analytic surfaces are considered for fitting the point subset. If this is not
possible, the subsets are considered to be multiple smooth regions, which have to be
subdivided further [10]. If translational or rotational symmetries are found for these cases,
a smooth sweeping profile is determined where curve segments correspond to surfaces.
To fit the sweep profile a constrained curve fitting algorithm is used. For cases where
this also fails more sophisticated segmentation has to be used and several surfaces have
to be fitted simultaneously under tangency constraints. Note that segmentation cannot be
fully separated from surface fitting: they highly interact with each other. For a successful
segmentation we would first like to know the type of surface each point subset represents,
but this is determined by the surface fitting methods, for which known point subsets are
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Figure 1.2: Reverse Engineering a Solid Model.

required.

After an appropriate surface (or surfaces) has been fitted to each of the subsets, the points
left-over from segmentation between the subsets have to be considered to determine the
adjacency information for the fitted surfaces. The left-over points can be employed to
detect whether adjacent surfaces meet at sharp edges or are connected by blends [67]. For
sharp edges the point subsets are expanded in a fattening step which assigns the left-over
points to the most likely surface. This also yields a sharp edge between the surfaces,
which can be recomputed by intersecting the fitted surfaces with each other. The resulting
faces are stitched to create an initial boundary representation model.

We ignore blends in this thesis. However, Kós et al. [67] present a method to determine the
radius of fixed-radius rolling ball blends from the left-over points. From this information
we can instruct the geometric modelling kernel to construct appropriate blends. Hence,
we can label edges between surfaces connected by blends with a blend radius and ignore
blends for beautification. Afterwards the blends can be added by the kernel.

Figure 1.2 shows the stages of reverse engineering a solid model. Point set (a) in Fig-
ure 1.2 was obtained by scanning a simple physical object and registering multiple views
of it. Figure 1.2(b) shows the triangulation created from the point set, Figure 1.2(c) shows
the segmented model, and Figure 1.2(d) shows the reconstructed model.

The system described has certain limitations with respect to object types, especially the
surfaces involved. In this thesis we only consider objects which can be handled robustly
by the reverse engineering system. This means we consider engineering parts composed
of only planar, spherical, cylindrical, conical and toroidal surfaces that either intersect at
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sharp edges or are connected by fixed radius rolling ball blends. There are reliable surface
fitting methods available for these surfaces [10, 89, 134, 135] and many realistic engineer-
ing objects can be generated using only these surface types [95, 116]. As described above
blends can be identified and represented as edge and vertex attributes and thus we ignore
them in the rest of this thesis.

Experiments with this system show that simple engineering objects of the above men-
tioned type can be successfully reconstructed. The main problems present in this system
are related to registering multiple views and finding appropriate tolerance values for the
segmentation.

As multiple views of a three-dimensional object are necessary in order to capture data
from all its surfaces (assuming that all surfaces can in principle be measured by a three-
dimensional laser scanner), we have to combine these views into a single data set. This
requires information from the user about the approximate relations between the data sets.
The registration algorithms are not perfect, and often there is still a relatively large error
left. This is especially a problem if the data set does not have sufficient distinct features,
such as sharp edges, for matching, e.g. for objects with a high degree of rotational sym-
metry as in Figure 1.2.

It is also often hard to find appropriate parameters for segmenting the model. The param-
eters indicate when to consider neighbouring geometric properties (computed from the
triangulation) as different: each control parameter applies globally to the whole data set.
Often parameter values which are appropriate for one part of the model do not work for
another part. In some cases involving smooth edges the surface fitting algorithm can fit
multiple surfaces, but this strongly depends on the tolerances used. For instance, a smooth
edge between a relatively large cylindrical surface and a small plane may be too difficult
to find and the whole surface may be fitted by a single cylinder. Problems like this show
how closely the segmentation and surface fitting steps are related. For complex models
more robust methods still have to be developed.

1.2 The Beautification Problem

State-of-the-art reverse engineering systems of the type described in Section 1.1.1 can
create valid boundary representation models approximating physical objects. More ro-
bust methods for all the steps are still required, but there is already a relatively large class
of objects which can be handled. However, the reconstructed models suffer from various
inaccuracies resulting from sensing errors arising in the data acquisition phase as well as
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approximation and numerical errors in the reconstruction process. This means that certain
intended regularities, like parallel planes or aligned cylinder axes, may only be approx-
imately present in the reverse engineered model. However, in order for such models to
have the greatest usefulness to redesign applications, these intended regularities should be
present as they are an important part of engineering designs.

We refer to this problem as the beautification problem. In this section we introduce the
beautification problem and give a detailed description of the object types we consider and
our assumptions for beautifying reverse engineered geometric models. In the following
we refer to the models created by the above type of reverse engineering system as initial
models as they still require improvement in order to represent the design intent.

Errors arising during the data acquisition phase may be reduced by improving the pre-
cision of the sensing techniques. Yet measurement will always be subject to a certain
tolerance as a perfect sensor cannot exist. Further noise is introduced to the process by
numerical methods used during reconstruction. This can be reduced by using numerically
more stable methods, but it cannot be avoided as long as we are computing with float-
ing point numbers. Furthermore, depending on the methods used for the reconstruction,
certain assumptions about the data set are made and this influences the way the data is
approximated. For instance, the error metric used to fit a surface to a point set determines
how well the surface is approximated. Different error metrics favour different surface
types and surface parameters to approximate the point sets. We refer to these types of
errors as approximation errors. In general, sensing, numerical and approximation errors
can be reduced by more stable methods. While this increases the precision, it cannot be
increased arbitrarily. Thus, the resulting models will always be subject to a tolerance.

In our reverse engineering system the main sources of noise are the registration, segmen-
tation and surface fitting steps as mentioned in Section 1.1.1. In particular, as surfaces are
fitted independently to each point subset after segmentation, any special relations between
the surfaces and other geometric entities are not preserved. While originally an orthog-
onality relationship between two planes may be well preserved in the point set, fitting
planes independently to appropriate subsets may introduce a larger error. A local error
in a planar point subset, which is relatively large compared to the error elsewhere in the
subset, may cause a relatively large global error for a plane being fitted to the subset in
order to minimise the overall error (we get many points with a small error rather than a
localised larger error).

In order to represent the design intent we also have to consider other sources of error
such as possible wear of the object and the particular manufacturing method used to make
it. For instance, when using a mould to create a part, the side faces are usually slightly
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rotated in order to ensure that the part can easily be removed from the mould.

Hence, to ensure that intended geometric regularities are present, they have to be delib-
erately enforced at some stage of the reverse engineering process. We aim to expand an
existing reverse engineering system such that it can capture the design intent properly and
improve the initial model with respect to design intent. We restrict ourselves to certain
engineering objects which can be handled by our system as described in the following.

Due to the limitations of the surface fitting methods, we only consider objects whose
surface can be represented by planes, cylinders, cones, spheres and tori. The regularities
considered here are also less likely to occur in objects which require the use of free-form
surfaces and are less useful for this type of object. Moreover, higher order analytical
surfaces are rarely used in engineering objects. The objects may also contain fixed-radius
rolling ball blends. We assume that these blends have been identified in the model and are
represented by edge attributes. They can easily be added to the model using standard blend
algorithms and we will ignore them for the rest of this thesis. Many typical mechanical
parts fulfil these restrictions. However, our approach to beautification should be designed
in a way that it can easily be expanded with respect to the surface types and the considered
regularities.

We consider objects of limited complexity, i.e. with no more than about 200 faces. This
is a reasonable limit achievable with the above reverse engineering system. The objects
have to be physically small enough to be put on a typical three-dimensional scanner, e.g.
they should fit inside a 50cm cube, and they should be light enough to be lifted onto and
positioned on the scanner bed by a human. Any features have to be large enough (bigger
than about 5mm) to provide sufficient data to be able to properly fit surfaces, and there
should be no deep cavities that cannot be probed by a three-dimensional laser scanner.
These assumptions also make it unlikely that we have to handle non-manifold models or
other models which create complicated problems for the usual boundary representation.
In general we refer to these objects as pragmatic solids.

As we consider design intent in terms of geometric regularities, the geometric properties
of the objects should be significant for their application. This means that the particular
shape of an object is important for its purpose. Often a shape that suits a certain purpose is
also regarded as beautiful due to its symmetrical properties and other similar regularities.
It also has to be possible to derive the regularities from the object alone. For instance,
the shape should not have been designed to mate with another complicated shape or to fit
in a particular space such that without access to additional information the object’s shape
would appear irregular or random. Parts designed on the same regularity principles are
also likely to work well together as long as the regularities are suitable for the functions.
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Hence, the type of regularities we consider (which were derived from a part survey; see
Section 2.4) have to be suitable for the part.

Furthermore, we assume that the design intent of the object is of limited complexity. This
is hard to specify exactly and we will only give the basic idea here. It mainly relates to
principal limitations of what can be done if we have only approximate models. Given a
certain tolerance we can only distinguish properties (e.g. cylinder radii, plane normals,
etc.) which differ by more than this tolerance. Given a large number of properties from a
complex part, we may get a sequence of properties which cannot be distinguished within
the tolerance, but form a relatively large set. For instance, consider the cylinder radii
0.1, 0.2, 0.3, 0.4, . . . , 10.0 at a tolerance 0.5. They are obviously not all equal, but we do
not have a clear criterion to decide which of them should be equal. Sets like this may be
interpreted in many ambiguous ways. For details of the kind of problems complex design
intent may cause, see Chapters 7 and 8.

A typical part will often have a major design intent like a global symmetry which is only
broken by a few features. Many typical engineering objects also only have a small number
of different “important directions” forming directional properties such as plane normals,
cylinder axis directions, etc. In particular we may have an object generated from a block
such that there are a small number of (one, two or three. . . ) major orthogonal systems of
directions, with a few additional directions present. If we have a complex object which
generates a large number of directions with only small angles between them we cannot
make decisions based upon them. Given, for instance, a regular prism with approximately
5◦ angles between the plane normals, we can detect it provided the initial model is accurate
enough. However, if the directions do not relate to a prism, but to independent sub-parts
of an object, it may be hard to decide which combinations of directions form regularities
without additional information about the structure of the object. Some may relate to a
prism, but others may be completely unrelated. The beautification system presented in
this thesis is intended for objects of medium complexity, with only a relatively small
number of independent sub-parts, and a design intent of limited complexity.

1.3 Approaches to Beautification

In this section we discuss various approaches to the beautification problem. We first con-
sider previous approaches to the problem and then present an overview of our particular
approach. In previous work machining features and geometric constraints were consid-
ered for including design intent in the reverse engineering process. Both approaches can
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in principle be used for beautification, but little has been previously done on the beautifi-
cation problem per se.

Thompson et al. [128] consider feature-based reverse engineering of mechanical parts. In
their system a human identifies features like slots and pockets in the three-dimensional
point set interactively. The system requires user identification of the type and the approxi-
mate location of each feature. This information can then be used to reconstruct the model
by fitting parametric feature models instead of simple surfaces to the three-dimensional
point set. The approach is in particular justified for engineering objects which are gener-
ated from a small number of machining operation types. Fitting feature models improves
the accuracy of the generated models and they are in particular useful for feature-based
CAD applications.

The human interaction is used because low-level information about an object’s surface in
form of point sets is often not enough to make decisions about higher-level design intent.
We try to go beyond the requirement of human interaction by first extracting a higher-level
model as a boundary representation with natural surfaces expressed as analytic surfaces.
From this representation more information about the actual design intent of the object
may be derived automatically. The feature-based reverse engineering system also only
considers a given set of machining feature types. While this is often sufficient, more
general classes of geometric regularities will provide a system which can handle more
general objects. In principle a feature model can also be regarded as a collection of faces
and other geometric entities specified further by certain constraints.

Geometric constraints are a useful tool for representing design intent in a CAD model.
The topology of a boundary representation model gives the basic structure of the model.
The geometry implicitly represents the detailed design intent by various parameter values.
Geometric constraints can be used to explicitly specify the desired relations between the
geometries in terms of the parameters. Thus, they are also an obvious choice for including
design intent in reverse engineering. There are two different ways to use geometric con-
straints when building a model. They can be used during the surface fitting phase to ensure
that surfaces are fitted to three-dimensional point subsets which satisfy necessary condi-
tions describing the geometric relations between them. Alternatively, constraints can be
used to improve the initial model without further reference to the three-dimensional point
data. Here the constraints specify the desired relations between the geometries in the
boundary representation model. A constraint system describing the design intent of the
model can be solved to adjust the parameters of the initial model directly.

Benkő et al. [9] and Werghi et al. [133, 136] consider fitting multiple surfaces to three-
dimensional point sets under geometric constraints. So, rather than fitting surfaces indi-



1.3 Approaches to Beautification 13

vidually, they are fitted simultaneously using the constraints as a set of conditions which
the surface parameters have to fulfil in addition to providing a good fit to the three-
dimensional point data. Thus, for instance, two planes might be fitted simultaneously
under the constraint that they be orthogonal. An exact formulation of the problem, usually
as a numerical minimisation problem where the constraints are either part of the objective
function or constrain the parameter space for the optimisation, together with efficient and
numerically stable algorithms for finding a solution are given in [9, 133, 136].

In order to use constraints for reverse engineering, we require some way to obtain them in
the first place. The above approaches to constraint fitting assume that the regularities are
available from some other source. One possible source is for a user to manually specify
the constraints. This is tedious and error-prone, and can often lead to inconsistent con-
straint systems. A system which can automatically detect constraints is more desirable.
For constrained fitting we could first create an initial model without constraints, then use
this model to determine appropriate approximate regularities, which could then be used to
determine the constraints for a constrained fitting phase. However, this approach requires
constraints which are consistent with the fitting conditions and the constrained optimisa-
tion methods employed are quite expensive due to the large number of data points. In gen-
eral it is hard to ensure automatically that the constraints are consistent with surface fitting
as the constraints and the fitting conditions are not on the same type of geometric entities.
The fitting conditions relate the point subsets to the surface representations, the geometric
constraints are between the surface parameters and parameters for other elements in the
boundary representation. There are efficient graph-based methods for constraints which
may yield a fast consistency test without requiring to solve any equation system.

For automated constraint detection we require a regularity detection process to find appro-
priate approximate regularities. As the regularities are only approximately present in the
initial model, the set of all detected approximate regularities is likely to contain inconsis-
tencies, i.e. unintentional or accidental regularities which conflict with the intended ones.
This means we have to select a consistent subset of the regularities found. Consistency
here has to consider two aspects. On the one hand the constraint system derived from
the regularities has to be solvable as otherwise a suitable model cannot be realised at all.
On the other hand the selected regularities should also describe a consistent, likely design
intent.

In principle constrained fitting can lead to an accurate and correct model, but it is com-
putationally very intensive. Constrained fitting is an optimisation process trying to satisfy
fitting conditions and constraints simultaneously. For each point subset describing a natu-
ral surface of the object, a distance between the fitted surface and each point in the subset
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has to be computed in the objective function. In addition the constraints limit the do-
main over which the optimisation runs by some condition. Surface fitting and constraint
satisfaction both require numerical computation with large data sets.

In this thesis we propose instead to only refer to the initial model and improve it without
further reference to the point set. This means we first detect geometric regularities in the
initial model and then impose a consistent set of them on the model to obtain an improved
model. This would only require a constraint solver and no constrained fitting, which is
much more efficient as it operates on a smaller data set. It only involves the geometric
elements of the boundary representation of the initial model, rather than the considerably
larger point set. Solving the constraint system can be done in the context of these elements
which allows us to argue about the consistency of the constraints using a graph without
solving any equation systems (see Chapter 6). If we detect sufficient regularities in the
initial model, it may be possible to select a consistent set of regularities which constrains
all parameters of the model such that only one uniquely determined model can be derived
from it. This means that using the point data is not required as no further adjustments can
be made to the model without violating at least one of the constraints. In the case that the
constraints allow for multiple models, we can still use the model which is in some sense
closest to the initial model.

Independent of how the improved model is built (by solving a constraint system on the
model or by constrained surface fitting), methods to handle geometric regularities in terms
of geometric constraints are required for an automated system. For this we require meth-
ods to determine approximate geometric regularities in the initial model and a process
to select regularities consistently. As constraint solving is less computationally intensive
than constrained fitting, we propose to reconstruct the model from the solution of the con-
straint system without further reference to the point data. We also expect to detect a large
number of regularities which are likely to over-determine the model. Thus, we have to
select an appropriate consistent subset of regularities, which is likely to completely de-
termine the model. Hence, using the point data in addition to the constraints is unlikely
to change the solution of the constraint system. Instead it will make it harder to find
a solution as it will introduce inconsistencies between the regularity constraints and the
fitting conditions. These inconsistencies are hard to determine and resolve in terms of
which set of conditions and constraints should be chosen, and algorithms for this appear
to be computationally very expensive. While the fitting conditions may be given a higher
priority it is not simple to determine which of the constraints are consistent with them as
the geometric entities they refer to are not the same.

We now give an overview of beautification as a post-processing step for the initial model,
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Figure 1.3: Beautification Strategy.

as proposed in this thesis. It can be seen as a part of the model building phase. To beau-
tify a model means to detect and enforce certain regularities which are almost or exactly
present in the initial model. We also have to take care to stay as close as possible to
the initial model and keep the modifications as small as possible such that the regulari-
ties are fulfilled without introducing unnecessarily large changes in the model. In order
to improve an initial model we may have to change the geometry of the elements of the
boundary representation and also the topology of the boundary representation. In the con-
text of this thesis we only consider changes to the geometry and assume that the topology
is correct. Some topological changes, like removing small faces which are caused by seg-
mentation problems, may be done before the beautification here. Others, like fixing holes
or adjusting blends to ensure that a valid, complete model is created, may be done after-
wards. Such topological changes are considered separately [40]. Methods developed for
healing, i.e. repairing models which are considered to be broken when imported into an-
other CAD application, e.g. due to different model representation and tolerance schemes,
may also be useful in this context. See, for instance, [8, 104].

Our proposed beautification process consists of three main steps as shown in Figure 1.3.
First we analyse the initial model to detect approximate geometric regularities expressed
by geometric constraints, e.g. we look for approximately aligned cylinder axes, approxi-
mately orthogonal planes, etc. As these regularities are only approximately present, the
detected regularity set is likely to contain inconsistencies. Hence, in a hypothesiser step
we select an appropriate consistent subset of constraints which represents the likely orig-
inal design intent. In the hypothesiser we must check whether the selected regularities
represent a solvable constraint system, which is done by the constraint solver. The regu-
larity selection method takes care of selecting regularities which are likely to represent the
original design intent. Note that these two components of the hypothesiser cannot be com-
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pletely separated from each other. Finally, the constraint solver has to compute a solution
to the selected constraint system from which an improved model can be reconstructed.

1.4 Overview

We now give an overview of the remaining chapters in this thesis. The general structure
follows quite closely the component structure of our proposed beautification system. We
first discuss regularities and their detection (Chapters 2 and 3). Then we introduce a regu-
larity selection strategy focused on the likelihood of a regularity being part of the original
design intent, under the assumption that we have a method to decide the solvability of a
constraint system (Chapter 4). In the following chapters we discuss geometric constraint
systems and methods to determine the consistency of geometric constraint systems (Chap-
ters 5 and 6). Finally we present the results of some experiments (Chapter 7) and end with
some conclusions (Chapter 8). Note that beautification has not yet been considered as
such in previous work. While related work exists, the presented concepts and algorithms
represent a novel approach to beautification. We will give references to related work in
the individual chapters as appropriate. The novel work presented in this thesis has been
published in [72, 74, 75, 76, 77, 94] or is accepted for publication [73].

In Chapter 2 we start by introducing a novel general concept for approximate geometric
regularities in the initial model. Our notion of approximate regularities has to be suitable
for improving the model in subsequent steps, and we require efficient methods to detect
them. By considering combinatorial properties together with geometric properties of the
elements involved in a boundary representation, we derive a precise concept of approxi-
mate regularities suitable for identifying regularities in engineering objects. We introduce
special properties as features (which are not machining features like slots and pockets,
but points in a property space). These features change in the property space in a similar
way to the way in which a model changes in the three-dimensional Euclidean space under
isometries. Approximate symmetries of these features form the basis for our approximate
regularities. This new concept covers a wide variety of approximate regularities. Theoret-
ically it is justified to call them regularities as they are based on symmetries and we also
have empirical evidence of their presence in typical engineering parts.

Our approach for detecting approximate regularities as a combinatorial problem of limited
complexity leads to efficient algorithms presented in Chapter 3. By combining the com-
binatorial and geometric properties of the features, we derive detection algorithms which
provide exact, non-arbitrary results indicating the presence of approximate regularities.
We derive various general methods for detection of certain regularity types which can be
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applied to detect particular regularities. New algorithms for the detection of approximate
global symmetries, special types of approximate partial symmetries, and approximate
congruences of discrete sets of points in a metric space are introduced. Furthermore, a
novel algorithm for detecting special values for scalar values based on continued fractions
is presented.

Regularity detection considers various relations between the elements used to represent a
CAD model to find potential regularities. These do not have to be mutually consistent.
In particular, as we aim to describe the whole model by constraints, we have to find
many regularities. Hence, in Chapter 4 we present a general selection strategy to select a
subset of regularities likely to be wanted for the ideal design of the model. The selected
regularities must be mutually consistent and should be likely to represent the original,
ideal design intent. The likelihood of a regularity being part of the original, ideal design
is computed as a priority. In order of priority, regularities are added to a constraint system
which is tested for solvability. Only regularities which lead to solvable constraint systems
are selected for the final set of constraints. In particular our selection strategy separates the
detection from the actual decision which regularities should be enforced. This decision
consists of two aspects, which cannot be completely separated: selection of consistent
regularities and selection of intended regularities.

One of the crucial subtasks of the regularity selection strategy discussed is the test whether
a consistent set of regularities remains consistent if an additional regularity is added. For
this we require an efficient solvability test for constraint systems. In Chapter 5 we discuss
constraint systems, and different approaches to determine their solution and their solv-
ability. We also present a numerical approach based on an optimisation method to find the
solution of a constraint system and consequently determine whether it is solvable.

A more sophisticated approach to the solvability problem based on degrees-of-freedom
analysis, interpreted in a topological context, is presented in Chapter 6. By analysing
the topological dimensions of the parameter spaces used to describe the geometry of the
model, and how constraints limit these dimensions, we can determine the solvability of a
constraint system in a generic sense without actually solving the system. By considering
the topological properties of the spaces involved we derived a novel method to determine
the solvability of a constraint system, which is closely related to degrees-of-freedom anal-
ysis. Our new topological interpretation also improves the understanding of the structures
underlying degrees-of-freedom analysis.

In Chapter 7 we present the results of experiments which beautify various models us-
ing our beautification system. We have tested the system with simulated and real three-
dimensional point sets captured from test objects, from which initial models have been
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created. Our beautification system was then used to improve these models. Certain prin-
cipal restrictions for beautifying an approximate model exist due to the ambiguity intro-
duced by accepting certain tolerance levels. But the experiments showed that we can
improve reconstructed models with respect to design intent with our approach.

In summary in this thesis we investigate a novel approach to automatically improve re-
verse engineered geometric models with respect to design intent, in a post-processing
step working solely with the boundary representation model. In particular we make the
following main contributions to the solution of the problem:

• A theoretical framework for a certain type of approximate geometric regularities in
boundary representation models based on approximate symmetries.

• Efficient algorithms for the detection of approximate regularities relating to congru-
ences, repetitions, global symmetries and special values in boundary representation
models.

• A strategy to select mutually consistent regularities described by geometric con-
straints which are likely to represent the original, ideal design intent of the reverse
engineered model.

• A topological interpretation of geometric constraints leading to an efficient test to
determine the solvability of geometric constraint systems.
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Chapter 2

Representation and Regularity of Shape

For beautification we need a concept for approximate geometric regularities in the initial
model which may be part of the original, intended design. These regularities have to be
suitable to improve the model in the subsequent steps and we require efficient methods to
detect them. In this chapter we introduce a boundary representation of geometric models.
Based on this representation we discuss in detail exact and approximate geometric regu-
larities. This leads to a precise notion of approximate regularities suitable for identifying
regularities in engineering objects. It is based on an exact definition of approximate sym-
metries as regular arrangements of subsets of discrete sets describing certain properties of
the elements (features) used to represent the model in special property spaces. We derive
a simple general concept for detecting approximate regularities. We also list the particular
regularities chosen for improvement of the models. The particular detection methods are
described in Chapter 3.

In [74, 75, 76, 77] the author developed novel concepts and methods for regularities re-
lating to subsets of all Objects used to represent the geometric model. In collaboration
with B. I. Mills an algorithm and the theory to detect global symmetries of point sets and
boundary representation models was developed in [93, 94]. Both approaches are unified
here into a single, general framework for geometric regularities of boundary representa-
tion models.

2.1 Boundary Representation

Our beautification system has to handle pragmatic bulky solids as discussed in Section 1.2.
In this section we will give a brief introduction to the representation of such solids. A solid
is a bounded subset of three-dimensional Euclidean space E3, which has a non-empty
interior and is closed. Hence, we define the term solid to refer to bounded point sets equal
to the closure of their interior, and whose topological boundary is the union of a finite
number of manifolds. Usually the manifolds should be orientable and smooth [100]. Note
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Figure 2.1: Boundary Representation of a Tetrahedron.

that many of the concepts, like the term solid, introduced in this chapter apply to more
general spaces, but we restrict the discussion to E3.

We represent the structural information about a solid by a boundary representation, also
known as a geometric realisation of an algebraic complex. It has been proven to be useful
for both practical and theoretical uses [6, 29, 30, 37, 50, 98]. Figure 2.1 illustrates the
boundary representation of a tetrahedron. It is represented as a set of vertices, edges,
faces and lumps, which we call cells, with the structural information stored in a rank and
a bound relation. Each cell has a name such as e1 or f1 and the rank relation states the
dimension of the cells. The bound relation lists which cells are contained in the boundary
of a cell. This forms the algebraic complex, which is usually referred to as the topology of
the model. The geometric realisation, r : cells → P(E3), assigns each cell a point set
in E3, i.e. each vertex is mapped to a location, each edge is mapped to a curve, each face
is mapped to a surface, and each lump is mapped to a three-dimensional subset of E3. The
realisation is usually referred to as the geometry of the model. The algebraic complex and
the geometric realisation form a geometric complex or a boundary representation.

We assume that the realisation r(c) of a cell c is path-wise connected and closed in the rel-
ative topology of an appropriate subspace, i.e. a cell is a solid in an appropriate subspace.
The rank relation classifies each cell according to some condition which essentially re-
lates to the cell’s dimension. The intersection of the realisation of two cells should always
be the realisation of one or more cells of lower rank. For an element (c, {b1, . . . , bn})
of bound the rank of c is larger than those of the bl. The geometric realisation of each
boundary cell bl is a subset of the boundary of the realisation of c, i.e. r(bl) ⊂ r(c) \ r(c)◦
for all l, and the boundary of c is created by the bl, i.e. r(c) \ r(c)◦ = ⋃n

l=1 r(bl) in the
relative topology of an appropriate subspace. We get the usual notions of a boundary loop
of a face and a boundary shell of a lump by partitioning the boundary sets in bound into



2.1 Boundary Representation 21

connected subsets. In the following we will often identify the cell c with its realisation
r(c). Note that a realisation r(c) of a cell c can also be interpreted as an embedding of an
abstract manifold c into E3.

A boundary point p of a polyhedron P may be classified by the rank relation as a ver-
tex, edge or face according to whether the minimal dimension of the intersection of P
with a plane through p is 0, 1, or 2 respectively, locally at p. The path-wise connected
components of the sets of each type of point form the natural cells of the polyhedron. By
construction it is apparent that the realisation for a face is a planar region, for an edge a
linear segment and for a vertex a point. The realisation in combination with the dimension
and the boundary relations form a boundary representation of the polyhedron.

More generally the realisations of the cells may be any continuous map from planar re-
gions, line segments, and points. In case these realisations still form well-defined faces
with proper boundary relations we will still get a proper boundary representation. How-
ever, defining the rank of a point in the solid is more complicated and not uniquely deter-
mined. For instance, consider a cone with its apex. If we define the dimension in topo-
logical terms, then the apex is of rank 2 as there is a neighbourhood of the apex which is
homeomorphic to an open disc. If we require in addition that the surface is differentiable,
then the apex is of rank 0. Thus we would have to create an additional vertex and extend
the bound and rank relations accordingly.

A stratification [120] of a set X ⊂ Rn is a partition of X into C
∞ sub-manifolds {Xl}

such that {Xl} is locally finite at each point of X . A stratification {Xl} satisfies the fron-
tier condition or weak frontier condition if (Xl \Xl)∩Xk 6= ∅ implies Xl ⊃ Xk or if the
set of the connected components of all Xl satisfies the frontier condition respectively. Our
boundary representation structure can also be interpreted as a stratification of a solid sat-
isfying one of the frontier conditions. Our cells become the manifolds (strata) Xl. Using
a local regularity criterion such as that the points of the strata are of the same topological
type (there exist two homeomorphic neighbourhoods for each point pair in a strata) or the
Whitney condition requiring the strata to be smooth can be used to generate the structure.
In particular this can generate the rank relation. Gomes et. al. [45] describe this in more
detail for geometric models. For the mathematical background see Shiota [120]. This
concept has also been used for the Djinn interface [6]. A detailed discussion of the defi-
nition for the dimensions of points for the rank relation and stratifications is beyond the
scope of this brief introduction. However, since we begin with a boundary representation,
it is not typically an issue for beautification.

Finally note that the geometry of the faces in our reconstructed models are limited to
planar, spherical, cylindrical, conical and toroidal surfaces as stated in Section 1.2. Con-
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0-dimensional cells: 2-dimensional cells:
Vertex Planar face

1-dimensional cells: Spherical face
Straight edge Cylindrical face
Circular edge Conical face
Elliptical edge Toroidal face
Intersection edge 3-dimensional cells:

Lump

1-dimensional connected boundaries: 2-dimensional connected boundaries:
Polygonal loop Shell
General loop

Table 2.1: Cell Types and Connected Boundaries for Our Solids.

sequently the edge geometries may be any intersection curve which can be generated by
these surface types. For our solids we only consider cells of the types listed in Table 2.1.
The main cells are the faces and the vertices, but we also consider the edges in certain
cases. As we always assume that we have a complete solid, each edge is an intersection
of faces, but identifying straight, circular and elliptical edges may still be useful when de-
tecting certain regularities. Lumps in this context are general path-wise connected three-
dimensional manifolds as subsets of E3. In addition to this we also handle connected
boundary cells of other cells as loops and shells. We specifically consider loops which
form a (flat) polygon in order to easily handle regularities relating to planar faces.

2.2 Geometric Features

We describe and detect regularities in terms of properties of the cells in a model (see
Section 2.3). A property is in general an attribute in some property space attached to a
single cell or a group of cells. It has a type and a cell or a group of cells can have multiple
properties of the same type. For instance, a torus has two radii as length properties, a
centre as a position and a direction for the axis. To give a property a geometric meaning
we require that it changes in a similar way to the cell under isometric transformations.
For instance, the radii of a torus are not changed by an isometry, but translations and
reflections change the centre, and rotations and reflections change the direction of the
axis.

For the purpose of regularity detection and later for detecting the solvability of constraint
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systems to improve a model (see Chapters 5 and 6) we only consider special properties
which we call features. Note that here features do not relate to machining features like
slots or pockets. They could, however, under certain conditions be used to describe ma-
chining features as well. A property is called a feature if the property space, now also
called feature space, fulfils certain conditions such that it is suitable for regularity detec-
tion as well as constraint solving. We require that features not only change in a similar
way to the cells under isometric transformations, but that the relations between features of
different cells transformed by the same isometry are also preserved. An exact definition
with examples is given below.

2.2.1 Properties and Features

A property of a cell is an element of some property space P , e.g. normals of planar cells
in S2. P represents the type of the property. We can associate a cell with its properties by
a function, f : P(C) → P(P ), where C is the set of all cells in E3. Some elements of
P(C) may be mapped to the empty set, i.e. they do not have a property of the type P . f
maps a set of cells to a set of all properties of the type P associated with the set of cells.
f can also be seen as a relation on C × P and often f in this form is actually a function
on a subset of C if each cell has exactly one property of the given type, e.g. the radii of
all spherical cells. Defining f as a function on the power-sets simplifies the notation. We
will always ignore the sets in P(C) which are mapped to the empty set in P(P ).

In order for f to be geometrically meaningful we require that a property of a cell changes
in the same way as the cell under isometric transformations. This means for each isometry
T : E3 → E3 there is a mapping T ∗ : P → P such that

f(T (C)) = T ∗(f(C)) for all C ∈ P(C) (2.1)

under the extended action of f , T and T ∗ on sets and T operating on the geometric reali-
sation of the elements of C such that it maps a cell (or a group of cells) in C to another cell
(or group of cells) in C. Note that more generally we could choose another transformation
group from which we choose the T .

For instance, for a cylinder the radius and the direction of the axis are two properties.
We can map the cylinder to the value of its radius in R+ and the direction of its axis in a
direction space. A direction can be represented as a point on the unit sphere S2. However,
in the context of regularity detection we do not consider the orientation or sidedness of
cells and thus we cannot distinguish between opposite directions for an axis. Hence,
we identify opposite directions in S2 which creates the two-dimensional real projective
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plane P2 as directional property space. P2 is also generated by taking all lines through
the origin. After transforming the cylinder by an isometry, it has the same radius as the
original cylinder. Thus T ∗ for the length space is the identity as isometries do not change
lengths present in the set of cells they transform. The direction may be changed by rotating
and reflecting the cell. Using only the rotation and the reflection parts of an isometry T

we get T ∗ on P2. Similarly the normal of a plane is a directional property. The diagram
in Figure 2.2 visualises (2.1) for plane normals, where T maps a cell c1 to c2 and f maps
c1 and c2 to the properties d1, d2 respectively which are related by T ∗.

As an example for something that is not a property in terms of the above definition, con-
sider the minimal distance of any cell in C from the origin. f maps each cell on its minimal
distance from the origin. Let T be a rotation around some axis which does not contain the
origin. Let S be a sphere with a centre on this axis such that p is the closest point on S

to the origin, i.e. f(S) = d(p, 0), where d is the Euclidean metric in E3. Rotating S by
T will not change its distance from the origin, i.e. T ∗(d(p, 0)) = d(p, 0). Now let R be a
planar face through p such that f(R) = d(p, 0). In general rotating R with T will change
its distance from the origin, i.e. T ∗(d(p, 0)) 6= d(p, 0). Hence, this f is not a property.

We call a property a feature if the property space is a path-wise connected, smooth, ab-
stract manifold with a metric and the T ∗ in (2.1) are isometries. The manifold conditions
mainly relate to the constraint solving algorithms and will be discussed in Chapters 5
and 6. The metric with the condition that the T ∗ are isometries is used for regularity de-
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tection. It essentially means that the relative relations between features of different cells
are preserved under isometric transformations. For the directions in P2 we can define
a metric by taking the smaller angle between the two lines for the directions and get a
directional feature space.

Note that not every property is a feature. For vertex cells we can define a property by
mapping each vertex position v to a non-uniformly scaled position Av, e.g. by doubling
the x-coordinate, whereA is represented by a matrix with different non-zero entries on the
diagonal and zeros elsewhere. This is a property and for a given T we have T ∗ = ATA−1.
However, it is not a feature as T ∗ is not isometric.

2.2.2 Selecting Suitable Features

There are many options how to choose features for the cells. Many of these options may
select equivalent features with different representations, i.e. the feature spaces are isomor-
phic such that the action of each T ∗ is preserved by the isometry. We are only interested
in really different features. The main purpose of the introduction of features is to describe
geometric aspects of cells by discrete point sets suitable for efficient regularity detection
and constraint solving. The selection of features may also depend on the particular do-
main of a class of objects and the related desirable regularities. We will first discuss some
general principles of how features could be derived from cells and then list our particular
choice of features for the solids we consider for beautification. The particular selection is
intended to be suitable for improving general engineering objects. For applications with
a more narrow range of objects, or objects with other surface types, or other applications,
a different selection may be appropriate. Our methods can in principle deal with any such
features.

Following Klein’s Erlanger Program [64, 141] a geometric property of a cell (or a group
of cells) in E3 is any property which remains invariant under isometric transformations
of E3. For a straight edge, the length, or for a sphere, the radius, are such features. For
them T ∗ is the identity independent of the isometry T . As such features relate to internal
properties of the cell or the group of cells from which they are derived, we call them
intrinsic features.

Given, for instance, two orthogonal planes, we could refer to the π/2 angle between the
plane normals as an intrinsic feature of the cell pair. However, as we intend to detect
such arrangements using each angle between the normals of each plane pair and, more
generally, the set of angles between the normals of a set of planes, this method is not
suitable. We would have to generate features for each set of planes or even each set
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of faces in the boundary representation. Instead, we choose to define the normal for
planar faces as a single directional feature. This feature type is no longer invariant under
isometric transformation, but changes in the same way that the plane does when rotated
and reflected. As the T ∗ for the directional features is an isometry in P2, the relations
between the normal features of a set of planes transformed by an isometry T remain
invariant when transformed by T ∗. This is the main reason why we require T ∗ to be an
isometry for features. We call such features extrinsic features as they are used for relations
between cells.

For the constraints, we have to consider another aspect of the features. In a torus, for
instance, we can define the minor and the major radius, and the sum and the difference
of these two radii, as intrinsic features. However, the minor and major radii depend on
the radii sum and difference. To handle these dependencies we should choose one set of
features as being dependent on the other set of features. We call the dependent features
extended features and the primary ones base features. These dependencies create addi-
tional constraints later. Note that extended features depend on base features, but are not
necessarily completely determined by base features. To avoid problems in the dependen-
cies there should be a clear distinction between extended and basic features without any
loops in the dependencies.

Another principle for defining features is to concentrate on basic properties of the cells.
For instance, for finite cylindrical cells we could define the sum of the radius and the
length in the direction of the axis as a length feature. However, in general it is unlikely
that this feature would have any meaning for shape regularities. For similar reasons we do
not consider features like the area of a face. The area may depend on functional purposes,
e.g. minimal surfaces, and simple area properties are already represented by features like
edge lengths and radii.

Sometimes it may be possible to create features of features. For instance, for cylinder
axes as features we could define the intersection point of cylinder axes as a feature of the
cylinder axis features. However, we will always define these in terms of the underlying
cells in the solid. We must take care to record the dependencies between such features
properly.

Our features have types, indicated by the feature space in which they exist. We primarily
consider positional, directional, length and angle features. Positions are points in R3 with
the usual Euclidean metric. Directions are points in P2 with the smaller angle between the
two lines representing these points as metric. For lengths we have R+ (including 0) with
the absolute value of the difference between two points as metric. For angles we use S1

with the shorter distance on the circle between two points as metric.
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In this context the length of a straight edge and a radius of a cylinder are both length
features. It is, however, useful to consider sub-types of features like lengths or radii for
certain regularities to avoid generating too many not very likely relations as regularities.
Furthermore, we also label the features with their specific function in the cell, so that we
can distinguish between things like the major and the minor radius of a torus. Here it is
important to note that each feature is not just a point in a feature space, but also has a label
identifying the cell it relates to and its particular relation to the cell. While the points in
the feature space for two distinct features may be equal, their labels are not and thus the
features remain distinguishable.

In Table 2.2 we list the basic features we use for beautification for the cell types listed in
Table 2.1 (note that we do not define features for lumps, shells, general loops and intersec-
tion edges as these do not appear to play a major role for general geometric regularities).
Besides listing features and their type for each type of cell, we also mark the features as
extrinsic (E) or intrinsic (I), and possibly extended (X). For a degenerate torus, we only
use the radius sum if the outer hull, sometimes referred to as an apple torus, represents
the surface, and the radius difference is used if the inner hull, sometimes referred to as
an lemon torus, defines the surface. For non-degenerate tori we use the radius sum and
difference.

In the table we introduce two new feature types: axis and polygon. An axis is a line in
E3 and for our cells it represents a central rotational symmetry axis. It is represented by
a direction coupled with a position, and usually depends on a directional and sometimes
a positional feature of the cell. We use it to detect special arrangements of axes where
we employ information gathered about the directional and positional features of the cells.
More details are discussed with the related regularity detection algorithms in Chapter 3.

We also consider polygonal loops of planar faces for regularities and define a special fea-
ture type for these. The details will be explained in Section 3.1.2. Basically we represent
each polygonal loop of a planar face by an n-dimensional vector over R and use the Eu-
clidean metric to find similar polygonal loops. We define a feature for each polygonal
loop rather than for the face to simplify handling planar faces with multiple loops. For
each of these loops we also have a root point which is the centroid of the vertices of the
loop. Combining the root point with the plane normal generates an axis.

The edge features can be regarded as optional, because in simple models regularities re-
lating to them only mirror the regularities between the faces. Table 2.2 also only lists
the basic features used for regularity detection. In addition we use an intersection point
feature to represent intersections of axes of cell pairs having axes. These are handled as
positional features to detect axis intersection regularities. Furthermore, we introduce one-
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Cell(s) Features Type Class

Vertex Location Position E

Straight Edge Edge direction Direction E

Axis Axis EX

Distance between end-points Length I

Circular Edge Centre Position E

Normal of circle plane Direction E

Axis Axis EX

Radius Length I

Angle of circle segment Angle I

Elliptical Edge Centre Position E

Normal of ellipse plane Direction E

Axis Axis EX

Major direction of ellipse Direction EX

Minor direction of ellipse Direction EX

Major radius Length I

Minor radius Length I

Polygonal Loop Root point Position E

(group of edges) Axis Axis EX

Polygonal loop Polygon I

Planar Face Normal Direction E

Spherical Face Centre Position E

Radius Length I

Cylindrical Face Axis direction Direction E

Axis Axis EX

Radius Length I

Conical Face Apex Position E

Axis direction Direction E

Axis Axis EX

Semi-angle Angle I

Toroidal Face Centre Position E

Direction Direction E

Axis Axis EX

Major radius Length I

Minor radius Length I

Sum of radii (unless lemon) Length IX

Difference of radii (unless apple) Length IX

Table 2.2: Basic Features of Cells Marked Extrinsic (E), Intrinsic (I), Extended (X).
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and two-dimensional partial position features as positions in E1 and E2. They are used to
represent points which are equal when projected onto special lines or planes. We also get
an angular feature from the angle between two directions, which is only used if the angle
is not part of a more complex regularity (see Section 3.2.1). Additional auxiliary features
are introduced to detect regularities, but are not used directly to represent them. These
will be introduced as needed in Chapter 3.

2.3 Geometric Regularities

In this section we introduce our concept for geometric regularities of boundary represen-
tation models. We only consider regularities related to the geometric nature of the model.
We do not consider regularities related to the function of the model or other properties not
directly related to shape. We first define exact regularities based on regular arrangements
(symmetries) of the features discussed in the previous section. We then expand this to
approximate regularities where the congruence between sets in the exact case becomes
an approximate congruence and additional conditions are employed to get well-defined
answers for the presence of an approximate regularity.

A simple regular arrangement, which we will use quite often, is the congruence of cells
with respect to features, e.g. equal radii or lengths or parallel directions. We can express
this by saying that a certain set of features remains invariant under the identity transfor-
mation of the feature space. More generally consider the isometries in the feature space.
A set of features which remains invariant under a sub-group of the isometries represents
a regularity. It is possible to expand this to other groups of transformations. Usually it
is not the whole set of features of a particular type derived from a model which remains
invariant under the transformation group. We have to find appropriate subsets, which are
maximal, i.e. there is no set which contains the subset and remains invariant under the
same transformation group. For instance, we may have eight positions which exhibit cu-
bic symmetry and we cannot expand the set of eight positions by other positions from the
model such that the expanded set still has cubic symmetry.

We can expand this further and include incomplete symmetries, i.e. there is a subset which
would be symmetric if certain additional features, which are not present, are added. How-
ever, note that any set can usually be expanded to be invariant under any transformation
group, so we require some additional conditions. The basic idea is that there is sufficient
information present in the feature set such that sufficient transformations can be derived
from it which generate the group. E.g. given a set of equi-spaced points on a line we
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Figure 2.3: Approximence Relations between Points at Two Tolerance Levels.

have an incomplete translation symmetry, but we require at least two points in order to
determine the distance and a third point to avoid trivial cases.

In the case of an exact regularity the feature set and its image under one of the trans-
formations in the group are exactly the same. This congruence generates an equivalence
relation between the elements of the feature set. The equivalence relation leads to clean
concepts and efficient detection algorithms (see Section 2.3.1). In the approximate case
the congruence is only approximately present. This generates a relation which is reflexive
and symmetric, but not necessarily transitive. In the following we call such a relation
an approximence. The lack of transitivity generates ambiguous situations where global
information is required for algorithms to work correctly.

In certain situations an approximence can be transitive when restricted to the relevant fea-
tures. In these cases we can use concepts similar to the exact case for efficient detection
algorithms. Essentially we detect tolerance levels at which the approximence behaves
transitively on the relevant features. For instance, consider the points in Figure 2.3 where
we seek approximately equal positions, i.e. we try to match the set with itself. At tol-
erance level ε1 we have four clusters of points and as two of the clusters have one point
in common the related approximence is not transitive. If we increase the tolerance to ε2

we get two clusters and the approximence becomes an equivalence. Note that when con-
sidering the right clusters alone the approximence is locally transitive with respect to the
two points at both tolerance levels. This is important for approximate models subject to
different local tolerances.

2.3.1 Exact Geometric Regularities

We first define an exact regularity of a solid model in terms of its features. Let F be the
set of features of a particular type in a feature space P derived from a solid. F is a discrete
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set of points in P . Each element of F is labelled to uniquely identify it and relate it to
the cells of the model. The label also allows us to distinguish two features with the same
value in P . In order to describe exact regularities we only consider two elements of F to
be the same if their distance in P is 0. For computational purposes, we test for equality
by checking if the distance is smaller than the machine precision ε. Thus the assumption
is valid if the distinct features in F are more than ε apart from each other.

Let G be a transformation group on P preserving the structure of P , i.e. a group of isome-
tries in P . Let R be a subset of F such that for each g ∈ G we have g(R) = R, where
the action of g is expanded to sets. Furthermore, R is maximal, i.e. there is no superset
R∗ ⊂ F of R for which this is true for G. We call (G,R) an exact regularity of F and
thus an exact regularity of the solid. The type of the regularity is indicated by the Group
G and the feature space P . For instance, if G is the symmetry group of a cube D4 and
P is a positional space we have a cubic symmetry regularity. Using the sub-types of the
features in P this can be refined to sub-type regularities which only limit the elements of
F considered, but not the feature space.

For a regularity (G,R), the elements of G are associated with permutations of the features
in R. Let the feature set R be a set of mutually distinct features r1, . . . , rn and let g ∈ G.
Then g induces a permutation σ of the labels 1, . . . , n of the features in R. For g(rk) = rl

we get σ(k) = l. In order to avoid ambiguities we have to assume that the values of the
features in R are mutually different. Otherwise g induces more than one permutation. In
this context identity regularities become a special case only associated with the identity
permutation. After identities have been detected and identical features are replaced by
single features representing the identical feature sets, we can use the result to find non-
trivial symmetries as permutations.

Let R be a set of mutually different features r1, . . . , rn. We say that a permutation σ of the
labels of features inR is distance preserving if for each pair rk, rl ∈ R we have d(rk, rl) =
d(rσ(k), rσ(l)). Any isometry g for which g(rk) = rσ(k) for k = 1, . . . , n induces the
permutation σ. In general g is not unique for a given σ as R may lie in a sub-space of P .
Let G(σ) be the set of isometries on P inducing a distance preserving permutation σ on
F . The G(σ) for the set Σ(F ) of all distance preserving permutations σ on F describe an
equivalence relation ∼ on the set G of all isometries under which R is invariant in P . For
exact regularities G is always a group and factoring it by the equivalence relation created
by the G(σ) generates a unique matching between permutations and the elements of the
factored group G/∼. Hence, by detecting distance preserving permutations Σ(F ) we find
the factored group G/∼ which contains sufficient information to describe the relations
between the features. Note, however, that we may also have to consider the sub-space of
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P that contains R in order to enforce those relations using constraints.

For instance, for n points p1, . . . , pn arranged in sequence symmetrically around a circle
in E3, the permutation σ : l 7→ 1 + (l mod n) is induced by a 2π/n rotation around an
appropriate axis or by a reflection of the points at the plane of the circle in combination
with this rotation. By detecting all distance preserving permutations of the points we find
the rotations and reflections in the plane of the circle that keep the points invariant. This
represents the factored group G/∼. Expanding these isometries to the whole space E3

gives G.

If R is the set of all features F of a particular type (or sub-type) derived from a solid,
we say that the regularity (G,R) is a global regularity. Global symmetries of positions
are an example for global regularities. For other regularities we may first have to find an
appropriate subset of F in order to find a particular symmetry, e.g. a subset of axes sym-
metrically arranged on a cylinder. As this means that in addition to finding the symmetries
we also have to find an appropriate subset, detecting such regularities is computationally
more expensive than detecting global regularities. We call these regularities partial regu-
larities. For partial regularities we only present detection methods for special cases where
we can use conditions that avoid the consideration of all subsets of F to avoid computa-
tional intractability (see Section 3.2). For instance, we only consider axes with parallel
directions and not the set of all axes.

We have an incomplete regularity if there is a superset R∗ of some R ⊂ F such that R∗

is invariant under some transformation group and R contains all elements that are in R∗

and F . An incomplete regularity can be global or partial, i.e. it may or may not relate
to all features in F . As it is always possible to expand a given set R to a symmetric one
there has to be sufficient evidence in R to justify the regularity. We base this justification
on the presence of transformations that can be derived from R directly and generate the
group G. A group G is generated by elements g1, . . . , gn if any element g of G can be
represented as a product of the gl where the same element gl and its inverse can occur
multiple times in the product. For instance, a π/2 rotation around an axis generates the
group of kπ/2 rotations around this axis. If we partition R into subsets Rl we can detect
the generators in R by detecting transformations which map the Rl onto each other. The
more often we detect the same generator or transformations g that can be generated by a
single generator, i.e. g = grl for some r ∈ N, the more likely the incomplete regularity
related to the generator is present.

Consider, for instance, n points p1, . . . , pn arranged in sequence symmetrically on a circle
in E3. We choose to ignore the reflections and so the regularity is created by k2π/n,
k ∈ Z, rotations. By removing a single point a 2π/n rotation still maps some of the
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remaining points onto each other and we still detect some k2π/n rotations between the
points. The more points we remove the less often we will find these rotations. Other
rotations, especially rotations by larger angles, may still exist, though (even as complete
regularities). Also note that if there are only two points left we could still argue that there
is a reflection present and even some evidence for a rotation. However, as this is true for
any point pair there is not sufficient evidence for an incomplete regularity. The precise
conditions for incomplete regularities are discussed with the particular regularity types in
Section 3.2.

In particular, repetitions are suitable for incomplete regularities. If G is generated by a
single transformation g, i.e. G = {gr : r ∈ Z}, we call G a repetition. If g is a translation
in some direction then the regularity is necessarily incomplete as we only have finitely
many features. However, if we have sufficiently many points on a line a fixed distance
apart, we can still refer to it as an incomplete regularity.

In order to detect regularities in solids, we have to specify which feature types or sub-
types we intend to consider, and which type of symmetries we are looking for, e.g. only
the identity, any isometry, only rotations, only reflections, etc. We can detect regularities
by essentially considering distance preserving permutations of the features. For this we
first have to detect identity regularities of the features. For partial regularities, we use
in addition certain conditions limiting the feature subsets considered. For incomplete
regularities, we need conditions describing the allowed symmetries with respect to the
feature set.

There is another type of regularity which we can detect if we have a structure in P which
explicitly selects special values. For lengths we have a special point 0 and from there we
can detect special distances from this point as special length values. Similarly for angles
and the special angle 0. But for directions and positions, for instance, we only consider
relative relations. There is no other structure unless we add some reference frame which
would also become a set of features in these spaces, again yielding relative relations. It
appears that the usefulness of special values is limited to intrinsic features.

A variety of approaches to the detection of exact symmetries in point sets exists. These
are essentially the methods that could be used to detect exact regularities. Exact symmetry
detection of planar sets of points and lines is possible in O(n log n) time [137]. Detecting
symmetries of point and line configurations and three-dimensional polyhedra in E3 has
the same time order [126]. The basic approach for exact symmetry is to sort the points
according to the distance from their centroid and then check how many there are at each
distance, which essentially reduces the problem to the complexity of sorting algorithms.
A general method for detecting partial symmetries, which is of low polynomial time order
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Figure 2.4: Points with Approximate Cubic and Pyramidal Symmetry.

depending on the space and types of symmetries, is discussed in [16]. For partial symme-
tries, multiple centroids have to be considered. One approach is to sort isosceles triangles
(a, b, c) with respect to the rotation they describe by mapping a 7→ b and b 7→ c. Note
that symmetries by reflection in the exact case can easily be determined by appropriately
combining the

(
n
2

)
possible point pairs that can be exchanged by reflection. All of these

methods are limited to the exact case as they rely on matching the points exactly. Further
algorithms for detection of exact symmetry are given in [58, 87, 88, 127].

2.3.2 Approximate Geometric Regularities

To beautify reverse engineered geometric models, we require a concept of approximate
geometric regularities. This new concept must generalise exact regularities, and include
it as a distinguished special case. In the exact case, regularities are symmetries of feature
sets. In the approximate case, we define them in terms of approximate symmetries. In-
stead of transformations that leave the feature set invariant, we seek transformations that
map the feature set onto another set which is only approximately congruent to the original
feature set. There are various definitions for this (see Section 2.3.3). Our main goal is to
find a notion of approximate symmetry that is suitable for efficient detection methods in
the context of geometric modelling.

One computational aspect of exact symmetry is its implication of local congruence, i.e.
the fact that something matches locally, automatically means that it matches globally.
This admits greedy detection algorithms which try to gradually extend partial symmetries
to complete ones. In the approximate case the greedy approach does not work in general.
Locally there may be matches between approximately equal features of the model which
are globally invalid such that backtracking is required. For instance, given the two sets
A = {1, 2, 3, 1.2} and B = {1.2, 2.2, 3.2, 0.8} we can try to match the elements at a
tolerance 0.3. If we start with the elements in A in sequence as listed we match 1 to 1.2,
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2 to 2.2 and 3 to 3.2 and then we don’t find a match for 1.2. Thus we have to backtrack
trying in principle all other matchings in order to find a match within the given tolerance,
which in this case would be matching 1 to 0.8, 2 to 2.2, 3 to 3.2 and 1.2 to 1.2. But note
that while this matching works, we cannot really tell whether 1 should be matched to 0.8

or to 1.2. We present a way to restore the validity of the greedy approach by constructing
a definition such that non-transitive cases cannot occur.

Recall that we can associate symmetries in the exact case with distance preserving per-
mutations of the feature set. In the approximate case we can expand this to approximately
distance preserving permutations which map distances to each other within some given
tolerance ε. Because in the approximate case the transformations are hard to determine
and not uniquely defined, we will use approximately distance preserving permutations to
define approximate symmetries.

Let F be a set of features of a solid in some feature space P and let R ⊂ F be a set
of n features r1, . . . , rn. Let s =ε t if and only if |s − t| < ε for s, t ∈ R and let
D(R) = {d(rl, rk) : l, k ∈ L} for L = {1, . . . , n}. A pair (ε, σ) of a positive real number
ε and a permutation σ is an approximate symmetry of R, if =ε is an equivalence relation
on D(R), and |d(fl, fk)− d(fσ(l), fσ(k))| < ε for all l, k ∈ L.

For instance, the set of eight three-dimensional points in Figure 2.4(a) has all the approxi-
mate symmetries needed for cubic symmetry. By moving the points on the top face closer
together, as in Figure 2.4(b), some of the approximate symmetries detected in case (a) do
not yield an unambiguous matching for the points. Hence, (b) has only the approximate
symmetries related to a square pyramid.

Combining the approximate symmetries of R at a tolerance ε generates a set of approxi-
mately distance preserving permutations G. Furthermore, we require that R is maximal
with respect to the approximate symmetries in G. In a similar way to the exact case, we
call (ε, G,R) an approximate regularity of F and thus of the solid from which F was
derived. An approximate regularity with ε = 0 is equivalent to an exact regularity. The
notions of global, partial and incomplete regularities also apply to approximate regulari-
ties.

Note that G does not have to be a group, as it is not necessarily closed. For example, the
point set R = {(10, 1), (0, 10), (−10, 1), (0,−10)} admits the permutation corresponding
to T (x, y) = (−y, x) as an approximate symmetry for ε = 1.5, but not T 2(x, y) =

(−x,−y): see Figure 2.5 which shows R marked by circles and T (R) and T 2(R) marked
by squares. In practice, the permutations detected often form a group, but this cannot be
guaranteed. Working with groups, however, is computationally intensive. We use methods
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R R, T (R) R, T 2(R)

Figure 2.5: Example for Approximate Symmetries which are not Closed.

which quickly determine the set of permutations that preserve the distances, obtaining
more information about the object. If a group is required then a maximal sub-group, or
the minimal super-group of the set may be used.

By requiring that the approximately distance preserving permutations in G are exactly
distance preserving in an appropriate sub-space of P which contains R, we get the exact
relations for the features to fulfil the exact regularity. Based on this we can then associate
the permutations with isometries in P . In cases where G is not a group we may have to
make it into a group in order to ensure that the specified relations are unambiguous.

For an identity regularity we only have to detect an =ε relation which is an equivalence
on D(F ). This creates a transitive clustering of F into equivalence classes. The smallest
ε values for which we get a new equivalence relation =ε represent the consistent tolerance
levels present in the feature set. In Section 3.3.1 we will present a clustering algorithm
specifically designed to detect those tolerance levels for global symmetries. For other
regularities we will describe a clustering method in Section 3.1 which uses two additional
parameters to reduce the number of different tolerance levels to only the “interesting”
levels, which depend on the error in the model, and which cut off too large tolerance
levels.

After detecting the identity regularities we can replace the equivalence classes at a toler-
ance level by single features (of the cells that the original features relate to) and detect
approximate symmetries of these features at this tolerance level. Depending on the reg-
ularity, we may choose only features of a special type or sub-type, or those which fulfil
certain conditions, e.g. only select axes approximately parallel to some direction. Detec-
tion methods for these symmetries are described in Section 3.2 and 3.3.

For the definition of approximate symmetry we require =ε to be an equivalence relation
on D(R) such that R is clustered into equivalence classes. However, each element of R is
associated with one or more cells in the boundary representation. Unless each R is related
to a unique cell the equivalence classes of R will not create equivalence classes of these
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cells. In certain situations, as will be described in Section 3.1, this is, however, desirable.
For instance, consider axis intersections. We can detect them by creating (approximate)
intersection positions of

(
n
2

)
axis pairs of n axes and cluster these positions. Then =ε is an

equivalence relation on D(R) if for a cluster with m elements all
(
m
2

)
distances between

the elements are smaller than ε. However, the elements of the cluster may not represent
the intersections of all axes related to the intersection. If l axes are involved in the cluster
of axis pairs, then the cluster has to have

(
l
2

)
intersection points of axis pairs in order for

all intersection points of the axes to be considered. It could be said that we transfer the
transitivity condition from the axis pair intersection point features to the axis features used
to generate them.

As for exact regularities, we also consider approximate special value regularities. This
simply means that a feature value is close to the special structure identifying special values
in the feature space (see Section 3.4).

2.3.3 Alternative Approaches to Approximate Regularities

Our definition of approximate regularity is based on a definition of approximate symmetry.
In the following we discuss the relations between our definition of approximate symmetry
and alternative approaches.

One approach to detecting approximate symmetry is to compute a measure of asymme-
try [91, 143]. This could be a real number, determined from information about an object,
which is zero if and only if the object is symmetric. Typically precisely defined, and often
easy to compute, these measures can be highly useful, for example in the determination
of the effect of asymmetry of molecules on the melting point of a material [143]. But
such measures suffer from calibration problems when applied in geometric modelling. It
is difficult to design a measure that will agree with the human visual system over a wide
range of models. Furthermore, the precise threshold at which an object is declared to be
symmetric or not is arbitrary, based on supposition and subjective evaluation.

Another approach is to find a symmetric object with a small distance (e.g. Hausdorff [48])
from the object in question. Although there is a certain arbitrariness in the choice of
metric, this often does not matter for determining the nearest symmetric object. There
are two discrete approaches for this. Alt et al. [5] determine a group of transformations
such that the images of the set under the transformations remain approximately equal.
The time order for this approach is high-polynomial depending on the precise context.
Iwanowski [55] tries to find a set with exact symmetry which is approximately equal to
the original set. This approach is NP-complete. The reason for the high time order can be
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seen intuitively in the case of multiple sequences of points with little distance between one
and the next, but a large distance between the first and the last, e.g. two clusters of points
arranged on two straight lines. It is not clear which point should be mapped to which, and
a combinatorial search may be required to determine this (also see introductory example
in Section 2.3.2). We assert that for our application the situation that leads to this problem
is not interesting. If the points are too close with respect to the error bound it is hard to
tell what sort of object is involved. For these cases it may be more appropriate to replace
the points by a curve or a surface or by a single point with larger tolerance bounds.

Using Alt’s approach [5] we acquire information about transformations which keep the set
approximately the same. From this we do not immediately know how to rectify the object.
We could try to compute an induced permutation for each transformation. If found, we
could use this information to rectify the object. But we might not find such a permutation,
because this approach does not always respect the structure of the object. Consider using
the Hausdorff distance and the set R = {1, 2, 28, 29, 30}. The isometry T (x) = 31 − x

produces T (R) = {1, 2, 3, 29, 30}. The Hausdorff distance between R and T (R) is 1.
The structure preserving maps of sets are the bijections. But any bijection between R and
T (R) produces a minimum distance of 25, which is not at all close.

Iwanowski [55] detects a symmetric set approximately equal to the original set, which is
potentially more useful for rectification. However, as a consequence of producing more
information, the computation is NP-complete. The difficulty in this approach is that the
overlap of error bounds may be non-transitive leading to a non-local matching problem.
We avoid this by suggesting that as a property of a solid, the non-transitive case does not
justify the assertion of approximate symmetry in the original object. The approximate
reflective symmetry of R = {1, 2, 28, 29, 30} about 15 is better expressed as a symmetry
of the object obtained by replacing each cluster of points by a single point.

The relation between our approach and the two discrete approaches is complicated. Both
of the above approaches begin with a specification of the group of symmetries which
the method should detect. In our approach we try to determine which symmetries exist.
While we may determine a description of the result as an abstract group afterwards, it
plays no explicit role in the actual computation. This is an advantage since the pragmatic
task is to find the symmetries of this set rather than detecting if the set has such and such
a symmetry. Similarly our method automatically determines suitable tolerance levels.

Moreover, both methods have to handle spatial isometries, in the knowledge that any
exact isometry chosen might not be the correct one. If we deal with only one isometry per
potential symmetry, we have the problem of determining the candidate. Alternatively, if
we deal with the set of all suitable isometries then we require a method for describing them
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symbolically. A method of handling generic sets of isometries would be complicated, and
not justified. We solve this problem by converting it into a combinatorial problem, in
which the potential symmetries are expressed as a permutation selected from a finite set.
In this way, each permutation we examine corresponds to a set of isometries but no explicit
computation with these sets is required.

2.4 Common Regularities for Engineering Objects

We have surveyed about 600 mechanical components to determine common geometric
regularities which are likely to occur in objects we wish to beautify [95]. These objects
included small engine parts, fittings and brackets for optical systems, plastic fittings, caps
and connectors, sliding fittings for cupboards, a general selection of CAD models from
online repositories and company catalogues, and parts from other surveys.

A generic algorithm to detect approximate global and partial symmetries suitable for all of
our feature spaces could detect most of our general regularity types. However, a method
which could particularly handle general partial symmetries appears to be computationally
intensive, as a large number of subsets would have to be examined for approximate sym-
metry. An efficient algorithm does not yet exist. Moreover, for incomplete regularities
we require conditions for extending the sets to complete symmetric ones. Therefore, the
survey was conducted to identify specific common cases so that we could concentrate on
developing efficient methods for specific regularities.

About 97% of the parts exhibited important geometric regularities which could be clas-
sified using our regularity concept. This justifies our approach of trying to exploit such
regularities to improve the quality of reverse engineered models. Common regularities
are given in Table 2.3 for each feature type. We consider direction, axis, (axis) intersec-
tion, position, partial position (generated by projection of points onto special lines and
plane), length and angle, and polygon features. Note that after detecting axis intersections
we treat the intersection positions in the same way as positions and do not list the other
regularities separately for them. We list a general description of the regularity together
with the involved symmetry types, and whether it is a global (G), partial (P) or incomplete
(I) regularity. We also have special values (S) of scalar parameters and ratios between
scalar parameters of the same types. For each of the regularities we list the general type
of isometries used for the symmetry group in Table 2.3. The number in the last column
indicates how common the particular geometric regularity is with 5 being nearly always
present to 1 being rare as determined manually. Later chapters will show how we detect
and enforce such regularities.
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Feature Type Regularity Symmetries Class Freq.

Direction Parallel directions Identity G 5

Symmetries of directions Isometries G 1

Rotational symmetries of directions Rotations PI 4

Axis Aligned axes Identity G 3

Parallel axes arranged equi-spaced
along lines and grids

Translations PI 3

Parallel axes arranged symmetrically
on cylinders

Rotations PI 2

Intersections Axes intersecting in a point Identity G 3

Position Equal positions Identity G 2

Point set symmetries Isometries G 3

Equi-spaced positions arranged on a
line or a grid

Translations PI 3

Positions arranged symmetrically on
a circle

Translations PI 1

Partial Position Equal positions when projected on a
special line or plane

Identity G 3

Length/Angle Equal scalar parameters Identity G 5

(Scalar) Special scalar parameter values — S 3

Simple integer relations between
scalar parameters

— S 4

Polygon Similar polygons Identity G 4

Table 2.3: Geometric Regularities Marked as Global (G), Partial (P), Incomplete (I),
Special Value (S) with their Estimated Relative Frequencies on a Scale from 1 to 5.

We have identity regularities for all feature types. Note that this includes a method to find
similar polygonal loops independent of a scaling factor. We also seek global symmetries
of the feature sets. For scalar and polygon features these are not relevant. For directions
we could look for global symmetries, but most of these are either covered by the rotational
symmetries (see below) or they are not very common. Global directional symmetries
require extremely regular objects with regular structures similar to the Platonic or semi-
regular polyhedra. So while the regularity is listed in Table 2.3, we do not explicitly
detect it. Similarly, global symmetries for axes are not common and the usual cases are
covered by special arrangements of parallel axes (see below). For intersection and position
features they are more common, but still require highly regular objects.
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Figure 2.6: Rotational Symmetries of Directions.

A further type of regularities is based on general partial symmetries. However, as they
appear to be quite expensive to detect we did not consider the general case but have con-
centrated on special types relating to repetitions. These special types allow us in addition
to consider incomplete partial regularities. We look for directions arranged symmetrically
around a circle in P2. These arrangements relate in general to prismatic or pyramidal
structures of (not necessarily adjacent) faces as indicated in Figure 2.6. For prismatic
arrangements the directions lie on a great circle of the unit sphere, and for pyramidal
structures the directions lie on a small circle of the unit sphere.

Furthermore, parallel axes can be arranged along lines and grids with equal spacing be-
tween them, and they can be arranged symmetrically around a cylinder. Both types gen-
erate partial regularities of axes under the condition that the axes are parallel. We have
similar arrangements for positional features, but note that most of these arrangements are
often associated with similar axis arrangements. For grids we only consider orthogonal
grids as a common special case. Other grids are only indirectly represented by regular ar-
rangements on lines. Considering approximate arrangements in grids in general is likely
to generate a large number of regularities and ambiguities.

In addition to positions, we have partial position features and seek positions which are
equal when projected onto special planes or lines. The special lines and planes are derived
from the main directions in the model as identified by the parallel direction regularities.
For instance, in the prism in Figure 2.6 there are pairs of vertices, one in the top and one in
the bottom plane, which are equal when projected onto the top or bottom plane. Similarly
all vertices of the top plane (and the bottom plane) are equal when projected onto the
central axis.

Scalar parameters from faces and edges are either lengths or angles. For each type sep-
arately, we look for special values including integers and simple fractions. We also try
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to find simple integer relations between pairs of scalar parameters of the same type, i.e.
relations of the form n2s1 = n1s2 with the scalar parameters sl and some integers nl. We
handle these integer relation regularities as special value of ratio features. The methods to
detect these special value regularities are presented in Section 3.4.

2.5 Summary

We have presented a well-defined concept for approximate geometric regularities. It pro-
vides exact answers to the question of the approximate presence of regularities in a solid.
The concept has been designed in order to derive efficient detection methods which will
be presented in Chapter 3. Its basis is a clean notion of a boundary representation for
solid objects from which discrete, special properties are derived as features. Symmetric
arrangements of these features in a feature space lead to regularities. By combining the
geometric and combinatorial nature of the object, a non-arbitrary, efficient concept for
approximate symmetries has been derived. The idea is to link combinatorial symmetries
(distance preserving permutations) with geometric symmetries that induce them to create
a new mathematical entity. Essentially, we seek levels of approximation for which it can
be asserted that the features behave symmetrically.

Depending on whether the regularity is global or partial and complete or incomplete dif-
ferent detection methods are required. Only certain partial regularities are considered due
to the intensive computational requirements for general partial symmetries. These regu-
larities relate to repetitions which in addition allow us to consider incomplete regularities.
Common regularities have been identified which can be described in terms of our regular-
ities and show that we require methods to detect identity regularities, global symmetries
and partially, incomplete regularities for repetitions, and special values.
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Chapter 3

Detection of Approximate Geometric
Regularities

In Chapter 2 we introduced our notion of approximate geometric regularities based on fea-
tures derived from a boundary representation model and approximate symmetries of these
features. The introduction of distinct features makes regularity detection a combinatorial
problem suitable to be solved by a computer. In this chapter we present algorithms to
detect our approximate regularities. By combining the combinatorial and geometric prop-
erties of the features we derive detection algorithms which provide exact, non-arbitrary
results indicating the presence of approximate regularities. We present four general meth-
ods for the detection of the following approximate regularities: congruent features; simple
partial, incomplete symmetries (repetitions) of features; global symmetries of features;
and special values for scalar features. Using these algorithms we show how common
regularities which were described in Section 2.4 are detected.

To find approximately equal features we detect distinct tolerance levels at which the fea-
tures fulfil certain regularity conditions. For this the author modified a hierarchical clus-
tering algorithm based on a closest pair strategy developed by Eppstein [35]. The resulting
clusters are further used to detect repetitions and, where applicable, special values to rep-
resent the clusters are determined. The methods for this were developed by the author
and they were first introduced in [74, 75, 76, 77]. Furthermore, in collaboration with B. I.
Mills an algorithm to detect global symmetries was developed [93, 94].

3.1 Approximate Congruences

Approximate congruences of features, expressed by saying that a set of features remains
invariant under the identity, like approximately parallel directions, are an important regu-
larity type. As noted in Section 2.3 they are the basis of more complex regularities. Reg-
ularities which can be described in this way are, for instance, parallel directions, aligned
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axes, etc. (see Table 2.3). Using these regularities we find symmetries like special rota-
tional symmetries of directions or special symmetries in the arrangements of axes later
(see Section 3.2).

Recall that we defined approximate regularities in terms of approximately distance pre-
serving permutations of feature clusters generated by an equivalence relation =ε on the
features (see Section 2.3.2). As for approximate congruence regularities we solely con-
sider the identity permutation, we only have to find relations =ε on the feature set which
are an equivalence. In the following we discuss a general clustering algorithm used to find
such relations. Then we show how this algorithm is used to find our particular approxi-
mate congruence regularities.

3.1.1 Consistent Hierarchical Clustering

We wish to detect approximately congruent sets of features F = {fl} in a feature space
P with metric d. In general this can be done by employing clustering algorithms. In order
to detect appropriate relations =ε for multiple tolerance levels ε we require a hierarchical
clustering algorithm. In addition the clusters have to fulfil a regularity condition such
that we get an equivalence relation. We call clusters which fulfil this regularity condition
consistent.

By seeking consistent clusters at multiple tolerance levels we avoid the requirement of
setting a maximum tolerance which is hard to find. Under the condition that all desired
regularities are detected, the number of unwanted regularities can in general only be min-
imised, but not completely avoided, if we use a maximum tolerance. In order to remove
all unwanted regularities we would have to discard desired regularities as well. A hierar-
chical structure of consistent clusters more accurately represents the structures present in
the initial model. Combining all consistent clusters at a tolerance level into a set R gives
an approximate congruence regularity for the subset R of F .

To represent feature clusters by a single feature, we assume that we have an averag-
ing method avgP to combine two features f1, f2 in P . It generates a new feature f =

avgP (ω1, f1, ω2, f2) where ω1, ω2 are two positive weights such that d(f, fl) ≤ d(f1, f2),
l = 1, 2.

A variety of approaches exist to the clustering problem [1, 47, 145]. The most common
approach is the agglomerative (bottom-up) technique. Initially each cluster Cl consists
of a single element cl, which also represents the cluster at tolerance 0. We start with
the smallest distance d(cl, ck) representing the closest cluster pair in the current set and
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combine the two clusters Cl, Ck to give a new cluster C∗ represented by the average
feature c∗ = avgP (|Cl|, cl, |Ck|, ck). C∗ replaces the clusters Cl and Ck. This is repeated
until only one cluster remains at the root of a cluster tree. A brute force solution searching
for the closest elements each time requires O(n3) time for n elements. Note that there
are alternative numerical [2] and top-down [142] techniques. If we allow an approximate
solution to the clustering problem there are sub-quadratic algorithms [15]. Also note that
we do not limit the number of clusters, but generate as many clusters as required. Thus,
algorithms for k nearest neighbour search [119] are not suitable.

Eppstein [35] uses a closest pair strategy to improve the brute force approach for the ag-
glomerative technique. We can use a distance matrix containing the distances between
the features and maintain a quad-tree like data structure to keep track of the closest pair.
We store the distances d(cl, ck) between the elements cl and ck representing clusters in
a matrix Dn for l < k for n elements. The elements are grouped arbitrarily into pairs
(cl, cl+1) and the distance between two pairs is defined to be the minimum distance be-
tween the four elements of the two pairs. These pairs define a new closest pair problem
in a matrix Dn/2 of half the size. Continuing this recursively we get the closest pair in D1

as the element left in the last matrix at the root of this structure. From there we can ex-
tract it and update the matrices. After initialising we have to update at most two rows and
two columns of each of the matrices for each update operation. Note that if at any stage
we have a matrix Dl with an odd number l of elements, we can introduce one additional
dummy element to make l even.

This algorithm is listed in Algorithm 3.1. We store the distances in a single matrix D and
maintain index matrices Ij identifying the solutions to the closest pair problems. Instead
of copying the solutions of the original matrixD into a new matrixDn/2 and keeping track
of which features are used for Dn/2, we represent the solution of the closest pair problems
by indices pointing to the position of the closest distance in the original D. If Dlk is the
position of the smallest distance representing the solution of a closest pair problem for Ij
then the index matrix Ij represents this by storing the index ln + k (interpreting D as a
vector). From the index in Ij we can easily generate the indices l, k for D. Note that in
order to save space we actually storeD as a triangular matrix where the index computation
is only slightly more complicated (the indices are of the form

∑l
j=0 j + k, k < l).

The initialisation of the matrices solves the closest pair problems recursively. In sequence
we remove the closest pairs left in the data structure to create the hierarchical cluster
structure. After a closest pair has been removed from the data structure updating is done
by marking one of the clusters as removed. The other cluster is replaced with a new cluster
by updating the distances in D and then adjusting the corresponding rows and columns in
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Algorithm hcluster(F, d,∆T)

Create hierarchical cluster structure of the n-vector F of features fl, l = 1, . . . , n, using
the metric d and the minimum tolerance constant ∆T. The resulting hierarchical cluster
structure is reported as tree.

I. Initialise cluster structure C and distance matrix D. For each feature fl:
1. Create the cluster Cl in C containing the feature fl with average feature cl =

fl and tolerance tl = 0.
2. For k = 1, 2, . . . , l− 1 let Dlk = d(cl, ck).

II. Recursively generate the index matrices for D by starting with an index matrix I1

representing the closest pairs in D itself. In each recursion step do the following:
1. Generate an index matrix N = Ij half the size of the previous matrix M = Ij−1

containing only elements below the diagonal.
2. Set each element Nlk to represent the smallest distance of the four distance

values M2l,2k, M2l,2k+1, M2l−1,2k and M2l−1,2k+1 (if l 6= k+ 1).
III. While there is a closest pair Cl, Ck:

1. Merge clusters Cl and Ck to form a new cluster C∗.
2. Mark cluster Ck as removed.
3. Replace Cl with C∗ and update the l-th row and column of D and all corre-

sponding entries in the Ij .

Algorithm 3.1: Hierarchical Clustering Algorithm.

the index matrices Ij by solving the new closest pair problems.

Initially generating D and the index matrices requires O(n2) time. Let T1(n) be the
time for generating the index matrices for n clusters. We get the recurrence T1(n) =

O(n2) + T1 (n/2) = O(n2). So the initialisation is O(n2) in time and O(n2) in space.
Inserting / replacing and deleting require the same amount of operations. An insertion
requires O(n) changes to the distance matrix Dn. Let T2(n) be the time required for
updating the index structure for n clusters. Then for updating the index matrices after an
insertion we get the recurrence T2(n) = O(n) + T2 (n/2), thus T2(n) = O(n). So for
n clusters an insertion or deletion requires O(n) time. Hence, the complete clustering
algorithm requires O(n2) time at a cost of O(n2) memory, assuming that the computation
of d and avgP requires constant time and space [35]. As the number of features is of the
order of the number of faces in a model (up to about 200 faces, see Section 1.2) memory
is readily available for our application.

Thus overall we have a fast hierarchical clustering algorithm at acceptable extra costs for
memory. Note that alternative hierarchical clustering algorithms could be used as well. In
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case memory has to be conserved other closest pair approaches discussed by Eppstein [35]
are suitable. A better time performance may be achieved with the sub-quadratic approxi-
mate algorithms [15]. But the methods have to be suitable for modification such that the
resulting cluster hierarchy consists of consistent clusters. We describe the modification
required for Algorithm 3.1 in the following.

Using Eppstein’s original algorithm on our features creates a complete cluster hierarchy as
a tree where the leaves contain the single features at tolerance level 0 and the other nodes
represent clusters containing sub-clusters at a certain tolerance level. However, we are
only interested in consistent clusters. In order to only keep the consistent clusters in the
tree we modify the merging of clusters. When merging two clusters to form a new cluster
we only keep them as separate sub-clusters of the new cluster if they are consistent.

Following our definition of approximate symmetry, a cluster is consistent if the related
=ε relation is transitive. This means that the distances between all features in the cluster
are smaller than the tolerance level ε and the distance to features in other relevant clusters
is larger than ε. In addition to this condition we introduce a minimum distance constant
∆TP , which has to be provided by the user. ∆TP indicates the minimum distance two
features have to be apart in order for them to be considered different. Experiments with
the clustering algorithm supported the introduction of ∆TP as it avoids the potential prob-
lem that relatively small changes in the distances between features can create additional
consistent clusters at intermediate tolerance levels. It indicates the minimum error we ex-
pect in the initial model from the reconstruction process and also simplifies the regularity
selection process by reducing the number of available options.

Each cluster Ck is represented by an average feature ck and a tolerance tk, which is
the maximum distance of the elements in the cluster from ck. We combine two clus-
ters Cl and Ck to give a new cluster C∗, which is represented by the average feature
c∗ = avgP (|Cl|, cl, |Ck|, ck) with tolerance t∗ computed as the maximum distance of the
elements of C∗ from c∗. All features in C∗ are at most 2t∗ apart from each other. Cl be-
comes a sub-cluster of C∗ if it is sufficiently apart from Ck, i.e. d(cl, ck) ≥ 3tl+ tk+∆TP

(see Figure 3.1: the closest possible position to Ck of an element of Cl is tl apart from cl

and the closest possible position to Cl of an element of Ck is tk apart from ck; the distance
between these two position has to be larger than 2tl in order for Cl to be consistent and we
expand this distance slightly by ∆TP ). Otherwise the elements and sub-clusters of Cl are
directly added toC∗. SimilarlyCk only becomes a sub-cluster if d(cl, ck) ≥ 3tk+tl+∆TP .
These conditions ensure that the distances between the clusters are sufficiently larger than
the distances between the elements of the clusters.

We handle the clusters as balls in P and check if they are sufficiently far apart from each
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Figure 3.1: Distances Between Clusters for Consistency Condition.

other in order to be considered distinct. This ensures that the clusters are equivalence
classes in a local sense as the clusters are sufficiently apart locally, but the tolerances may
not work globally (see example from Figure 2.3). However, we do not necessarily find
all possible partitions into equivalence classes. The hierarchical structure determined by
the algorithm is coarser than this, but it does not require globally consistent tolerance
levels. For global symmetry detection we present an alternative clustering method in Sec-
tion 3.3.1. This method detects all tolerance levels at which we get equivalence relations
on the whole feature set. This is slightly more expensive than Algorithm 3.1, requiring
O(n2 log n) time and O(n2) memory.

As noted in Section 2.3.2, depending on the feature type, further conditions may apply
to decide if a cluster is consistent. For instance, an intersection point of n axes should
be a cluster of n(n− 1)/2 intersections of axis pairs, i.e. the transitivity condition on the
cluster is transfered to the original elements in the boundary representation. These form
additional conditions for consistency, and are described below in combination with the
particular feature types. They can easily be added to the consistency test.

After we created the complete hierarchy of consistent clusters we recompute an average
feature for each cluster to better fit the elements of the cluster (e.g. in a least squares sense)
and compute precise tolerances. Doing this during clustering would make the merging of
clusters more expensive (e.g. by solving a least squares problem). The influence of this
on the cluster structure is negligible due to the coarser hierarchical structure.

As all features are combined into a single top-level cluster, the hierarchy contains clusters
at high tolerance levels which are not likely to represent a desired regularity. Thus, we
discard clusters where a large jump between the tolerance levels occurs. To detect this we
need an approximation Tm for the largest possible tolerance level, which is automatically
derived from the initial model (see Section 3.1.2). Tm is required since all features of a
specific type from a model may be close to each other, in which case the largest tolerance
jump is above the largest tolerance of the clusters. Note that ∆TP has to be chosen small
enough for the model such that Tm À ∆TP .
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We take the largest cluster tolerance t which is smaller than Tm. If there is a cluster tol-
erance larger than t, but not larger than t +∆TP we have found an appropriate tolerance
level. Otherwise, we set t to the next larger tolerance and repeat the test until an appropri-
ate t has been found. This is done to avoid cutting off clusters at tolerance levels which
are close to each other. All clusters with tolerances larger than t are removed from the
tree and we are left with a forest of approximate congruences represented by consistent
clusters. We refer to clusters in this forest which directly (not over sub-clusters) contain
elements from the original feature set F as base clusters. These will be important to limit
the cases considered when using the cluster results for the detection of other regularities.

3.1.2 Approximate Congruence Regularities

Our common regularities (see Section 2.4) which can be detected as approximate congru-
ences are parallel directions, equal positions, equal positions when projected onto special
lines or planes, aligned axes, axes intersecting in a point, equal lengths and angles, and
similar polygons. In this section we show how to detect these using the clustering algo-
rithm in the feature spaces introduced in Section 2.2.

In general we take the features in an appropriate feature space with a metric and an av-
eraging method and cluster them using a user defined ∆TP and a consistency condition.
After clustering, the average features representing the consistent clusters are recomputed
and the cluster tolerances are updated accordingly. Then using an appropriate Tm we cut
off the cluster hierarchy at a large tolerance jump. ∆TP is either a length tolerance ∆TL
or an angular tolerance ∆TA for most of our regularities. By increasing ∆TP , features are
more likely to be judged the same. Tm is automatically derived from the model. Let Lmax

be the largest length present in the model, which is approximated by taking the largest
distance between the position features of the model. Then an appropriate Tm for lengths
is Lmax/2. Since we identify opposite directions, our angles are in the interval [0, π/2] and
thus Tm = π/4 is appropriate for angles.

Approximately parallel directions are detected by clustering directions in the feature space
P2 using a metric that compares the (smaller) angle between two directions d1 and d2,
dP2(d1, d2) = arccos(|d1

td2|). Furthermore, we define the weighted average of two direc-
tions d1 and d2. If d1

td2 is non-negative, i.e. d1 and d2 point roughly in the same direction,
the weighted average is (ω1d1 +ω2d2)/(ω1 +ω2) with positive weights ω1, ω2. If d1

td2 is
negative, the weighted average is (ω1d1 − ω2d2)/(ω1 + ω2).

We improve the average directions representing the clusters in a least squares sense. Let
dl, l = 1, . . . , n, be the direction features in a cluster. We find a new average direction



50 3.1 Approximate Congruences

x by minimising the error of the linear system dl
tx = 1, l = 1, . . . , n, in a least squares

sense using singular value decomposition of the row vector matrix [d1, . . . , dn]. Note that
all the dl must point in the same half space as the original average direction x0, which
can be achieved by replacing dl by −dl if dltx0 < 0. Also note that the solution to the
optimisation problem might not be a unit vector, so x has to be normalised.

We find approximately equal positions by clustering them in E3 using the Euclidean metric
and the usual weighted average between positions.

The parallel direction clusters are used to find partially equal positions. Positions are
considered to be partially equal in 2D with respect to a direction if they are equal when
projected onto a plane orthogonal to that direction. Furthermore, they are considered
to be partially equal in 1D with respect to a direction if they are equal when projected
onto a line in the given direction. Both regularities can be detected by clustering the
projected positions as positions in R2 or R1. We remove clusters from the hierarchy which
contain projected positions which are as close together as the original positions, as these
represent approximately equal positions detected earlier. Optionally, we may choose to
consider only major parallel direction clusters in models with many different directions
to reduce the number of partially equal positions. In case an orthogonal system has been
detected (see Section 3.2.2), we consider the involved parallel direction clusters to be
major directions. Furthermore, we consider a parallel direction cluster which contains the
direction of an axis with at least 1/3 of the faces in the model having an axis parallel
to it as major direction (we have three “main directions” in E3 and if these are evenly
distributed between the faces we expect that we have 1/3 of the faces pointing in each
direction, e.g. consider a model with all directions belonging to an orthogonal system).

As all directions in the parallel direction cluster hierarchy are considered, there may be
positions considered to be partially equal with respect to different directions. To eliminate
such ambiguous cases we compare clusters from the same partially equal cluster hierarchy
to find clusters with the same positions and remove the cluster with the larger tolerance.
Note that there is also an ambiguity between 1D and 2D partial equality. Positions that
are equal when projected onto a plane are also equal when projected onto a line in that
plane. In case the selected directions contain the normal of the plane and the direction
of the line we get both regularities. As cases like this do not create a contradiction, we
do not explicitly check for it. Furthermore, the regularity indicating that the positions are
equal when projected on the line may involve additional positions. This yields additional
information about the relations between the positions (see Figure 3.2).

Length and angle parameters are clustered in R+ using the absolute value of the difference
between the scalar values as metric and the weighted average of positive reals.
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Figure 3.2: Partial Equality of Positions when Projected on Lines and Planes.

Using the parallel direction clusters we find sets of parallel axes by extracting the direction
features which are associated with an axis feature. Using the average direction of the
direction features of the axes we can then project the positions of the axes onto a plane. To
find an appropriate position of the plane such that the error for the projection is reduced we
first project the axis positions on a line through the origin parallel to the average direction
and take the average of the positions on this line to set the distance of the projection plane.
The projected axis positions can be clustered as positions in the Euclidean plane to detect
approximately aligned axes.

To find axis intersection points we create an approximate intersection point feature as the
centre of the shortest line segment between the two axes. Note that this point is only an
approximate intersection point if the axes nearly meet. However, we consider all such
points. This means an intersection point is a position in E3 with an associated length
value specifying the distance between the two axes. Also note that we use actual axes for
this and not any averages representing parallel direction clusters. Furthermore, we only
intersect axes that belong to different direction base clusters, to avoid trying to intersect
approximately parallel axes.

For intersection positions we expand the consistency condition. An axis intersection clus-
ter which contains n different axes is consistent if it has m = n(n − 1)/2 intersection
points of axis pairs. However, as some of the axes might be parallel, some intersection
points might not be present, so the cluster is still consistent if it has at least m − p inter-
section points where p is the number of parallel axis pairs in the cluster as indicated by a
parallel direction cluster at a tolerance smaller than the tolerance of the axis intersection
cluster t. To compare the angular tolerance of the parallel direction cluster with the po-
sitional tolerance of the axis intersection cluster we convert the angular tolerance t to a
positional tolerance Lm sin(t)+∆TL. We also check if the distances between the axes are
consistent with the cluster tolerances. If a cluster contains an intersection point feature
with an axis distance larger than the sum of the cluster tolerance and ∆TL, the cluster
is not consistent. This eliminates cases where the axes do not intersect within the toler-
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Figure 3.3: Representing Polygons as Distributions on the Unit Circle.

ance, but the centroids of the shortest line segment between the axes are close together. In
general these cases cannot be considered regular.

As another regularity, we seek approximately similar polygons. The basic idea of our
method is to represent each polygon as a function and then cluster the Fourier coefficients
of these functions [11]. There are various ways to represent a polygon as a function. One
way is to define a curvature of a polygon. Let αk be the angle at the k-th vertex of the
polygon with m vertices vk such that v0 = vm and let lk be the accumulated length of the
line segments from v0 to vk. In our particular approach we use a distribution (see [26] for
details) f of the form f =

∑m−1
k=0 αkδk. δk is the Dirac distribution defined on the unit

circle S1 with the singularity at 2πlk/lm such that 〈δk, φ〉 = φ(2πlk/lm) for φ ∈ C
∞(S1)

where C
∞(S1) is the space of infinitely differentiable functions on S1 in the complex

plane identified with the infinitely differentiable, 2π periodic, complex functions on R.
This means that we project the polygon on the unit circle and represent the projection
as a sum of distributions αkδk, which represent the αk at the projected position of vk on
the unit circle indicated by δk (see Figure 3.3). The complex Fourier coefficient of order
j ∈ Z of the distribution f is

uj =
1

2π
〈f, exp(−ij·)〉 = 1

2π

m−1∑

k=0

αk exp

(

−ij2π lk
lm

)

. (3.1)

For each polygon we compute the first n Fourier coefficients of f , which gives us a com-
plex vector u of Fourier coefficients with n components uj . When comparing two of
these vectors u, v we use the similarity measure dCn(u, v) =

∑n
j=1| |uj| − |vj| |, compar-

ing only the amplitude and not the phase. Note that if we compare the phase we would
not match congruent polygons which can be matched by rotations. The averaging method
for clustering is the usual weighted average of complex vectors. The vectors are clustered
with a tolerance ∆TF . By using the Fourier transform of f , we compare loops indepen-
dently of scale. Note that f could be chosen differently and that we could also split the
polygons into small sections and compare those [11]. While there are other methods to
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compare polygons, our method is efficient and simple, and provides a natural metric for
the clustering algorithm.

Let p be the minimum of (lk+1 − lk)/lm, i.e. the smallest ratio between an edge length
and the circumference of the polygon. Let P be the minimum p from all polygons being
compared. Then at least ceil(1/P ) Fourier coefficients have to be computed to ensure that
all relevant frequencies are considered. As the Fourier coefficients of f can be computed
exactly, only a small number of coefficients is sufficient to characterise the shape of the
polygon. Typically we use the first 10 coefficients.

For an m-sided, regular polygon, the only non-zero coefficients are those of order km,
k ∈ Z. In the approximate case the values of these coefficients are sufficiently larger than
the others, so that they can be used to identify regular polygons. It appears that this can
also be used to find polygons which are based on an m-sided, regular polygon, with minor
modifications like an additional or missing vertex.

In summary, we have presented an efficient hierarchical clustering algorithm which gen-
erates consistent clusters at different tolerance levels. It can be used to detect various
approximate congruence regularities. Some of these regularities form the basis for the
approximate repetition regularities discussed in Section 3.2 and special value regularities
discussed in Section 3.4.

3.2 Approximate Repetitions

Based on the approximate congruences detected with the methods discussed in Section 3.1
we can now look for special partial and incomplete regularities (see Section 2.3). A partial
regularity is a symmetry of a subset of the feature set. To avoid having to check all or
at least a large amount of subsets, we only present detection methods for special cases
where certain conditions are used to find interesting subsets. Incomplete regularities are
symmetries of a feature set appropriately expanded by additional features. As we can
make any given feature set symmetric by adding more features, we require rules indicating
the cases in which we should expand a given set of features.

Hence, we are only interested in repetitions which are generated by a single isometry g.
Given a subset R of a feature set F in some feature space P , we have a repetition if the
group G under which R remains invariant is generated by g. For instance, given n points
equally spaced around a circle, a 2π/n rotation generates a repetition for these points.
In particular for translational repetitions, but also for rotational repetitions, the regularity
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may be incomplete. We also have to identify an appropriate subset of F before we look
for the repetitions.

In order to find appropriate subsets of F we first identify a suitable subset fulfilling some
simple condition. For instance, for directional features we detect directions which lie on
a circle in P2. If we interpret P2 as lines through the origin this means we seek lines
which lie either on a cone with the origin as apex or on a plane through the origin. Then
we analyse each of these feature sets for subsets which are invariant under a repetition.
We seek a minimum number of repetitions and it has to be possible to determine the
generating transformation from mapping features onto other features in the subset. In
the case of directions, for each angle between a direction pair on a circle in P2, we get a
rotation, and can then group these into transformations which are generated by the rotation
with the smallest angle. Each such group describes a repetition which may be incomplete.

We first discuss the algorithm for detecting approximate repetitions for directions on cir-
cles in P2 and then show how this algorithm can be modified to find similar repetitions
relating to axes and positions.

3.2.1 Approximate Repetitions of Directions — Planar Case

Given a set of direction features from a boundary representation model, we wish to find
directions lying on circles which form partial, incomplete repetitions. Instead of using the
directions directly from the model, we use the features fl representing parallel direction
clusters detected by the clustering algorithm from Section 3.1. Each fl has a tolerance tl
from the cluster and can be interpreted as a feature of the cells Cl from which the features
in the clusters were obtained. Here we only consider the base clusters in the hierarchy as
the directions of the other clusters are already indirectly represented by the base clusters.
The hierarchy will be used later do determine possible higher tolerance levels at which
the base cluster directions can be considered parallel.

A set of directions {dl} on a circle satisfies the equation system |dltx| = a, where x is
the centre of the circle in P2. If a = 0, we have a direction plane with normal x and if
a ∈ (0, 1), we have a direction cone with axis x. Thus, we have to distinguish between a
planar case where we have to determine the centre x and a conical case where we have to
determine the centre x and the cone angle represented by a. Note that for the planar case,
taking the absolute value of dltx is not required, and we can drop it for a conical case if
we ensure that all directions lie in the same half-space.

First consider the planar case (the conical case is discussed in Section 3.2.2). Each linearly
independent pair of directions defines a plane through the origin, which we call a direction
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plane feature. By clustering the normals of these planes in the same way as clustering
direction features for finding parallel direction clusters we detect sets of directions which
lie on a great circle in P2. Note that we can consider base cluster features to be linearly
independent at the lowest tolerance level, as for each base cluster direction pair fl, fk we
have dP2(fl, fk) > tl+ tk+2max(tl, tk)+∆TP > ∆TP due to the clustering consistency
condition.

As direction plane features are generated by direction pairs we have to expand the con-
sistency condition for clustering in a similar way to that used for clustering axis intersec-
tions. A direction plane cluster is consistent only if it contains n(n− 1)/2 plane normals
generated from n parallel direction base clusters. Here we also have to consider the par-
allel direction cluster hierarchy. Consider a direction plane cluster consisting of n plane
normals plk generated by parallel direction base cluster pairs dl and dk. This cluster is
consistent if there are n(n−1)/2 different plk. If this is not the case, we count the number
m of direction pairs (dl, dk) for which there is no plk in the cluster, but which are con-
sidered to be parallel in the parallel direction cluster hierarchy at a higher tolerance level,
still smaller than the tolerance of the direction plane cluster. We still consider the cluster
to be consistent if there are n1(n1 − 1)/2 different plk for n1 = n − m, as there are m
parallel direction pairs.

After the cluster hierarchy has been generated and cut off at a large tolerance jump, we
recompute the average normal x of the planes using a least squares error method. For
directions dl, l = 1, . . . , n, on a great circle with normal x, we get the linear system
dl
tx = 0, l = 1, . . . , n, under the constraint ‖x‖ = 1. Thus we minimise ‖Dx‖ for

x ∈ P2 with the row vector matrix D = [d1, . . . , dn]. Let USV t be the singular value
decomposition of D. As U and V are unitary they do not change the norm of a vector.
Thus ‖Dx‖ is optimal if V tx = el where el is the l-th standard basis vector corresponding
to the smallest singular value of D, i.e. the solution to the least squares problem is x =

V el.

The direction plane cluster build the subsets in which we look for repetitions. Each cluster
represents a set of directions approximately orthogonal to the direction plane feature of
the cluster. In these sets we look for subsets such that the angles between the directions
in this subset are integer multiples of a base angle β, i.e. the directions as points on the
unit sphere are arranged equi-spaced around a great circle. The angle β represents the
underlying generating isometry. The subsets left invariant by the group generated by the
rotation can be incomplete in the sense that not all multiples of β need to be present.
We present an algorithm to detect these symmetries for direction planes and later discuss
modifications for direction cones and other similar repetitions.
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Algorithm planar_direction_repetition({dl}l=1,...,m, t, Nmax)

Detect repetitions in m directions dl on a great circle of P2 with tolerance t where Nmax

indicates the smallest allowed rotation angle. The regularities are reported as arrays of
clusters indicating which cluster of directions lies approximately on which position of the
circle with respect to a generating rotation angle and a direction indicating the centre of
the circle in P2.

I. Compute the angles αlk between directions dl and dk for l < k < m.
II. For all reference directions dk with k < m and for all angles αlk with k < l ≤ m:

1. Find the candidates βkn = π/n such that n < Nmax and |βkn − αlk| < t.
2. Add βkn to the list of candidates for dk unless it is an integer multiple of one

of the βkn0
already in the list.

3. If βkn has been added to the list, remove any βKn0
from the list which is an

integer multiple of βkn.
III. For each reference direction dk with k < m−1 consider the subset {dk, . . . , dm} and

for each candidate βkn with n = 1, . . . , Nk, where Nk is the number of base angle
candidates for dk:

1. For each direction dj with k < j ≤ m:
A. If for f = αjk/βkn, we have |round(f)βkn − αjk| < t, then record dj to

be a round(f) multiple of the base angle. If there is already a direction
d recorded as the multiple round(f), then only replace d by dj if the
tolerance of dj is smaller than the tolerance of d.

2. If the planar angle-regular subset found has at least two elements:
A. If we already found a subset with a base angle which is a divisor or a

multiple of the base angle of this subset, the two sets have common di-
rections and the error between the two initial directions is smaller than t,
then merge the two subsets and adjust the base angle.

B. Otherwise, create a new planar angle-regular set with base angle βkn.

Algorithm 3.2: Finding Planar Angle-Regular Direction Sets.

Let {dl} be a set of directions in a direction plane and let αlk be the angle between dl

and dk. We call the directions dl planar angle-regular if there is a β ∈ {αlk} such that
β = π/n for n ∈ N and for each αlk there is an integer p such that αlk = pβ. As we
identify opposite directions we only need to consider angles in the interval (0, π]. We do
not require that all multiples of β are present, but based on which multiples are present
we decide whether an angle-regular set is reported as a regularity. We call the directions
approximately angle-regular if the αlk are approximately integer multiples of β.

As a direct consequence of the requirement that the rotation has to be derivable from the
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features in the set we only look for base angles which are (approximately) present as an
angle between directions. For instance, if we have two approximate angles 2π/6 and 5π/6
relative to some direction, the underlying base angle π/6 is not detected. However, the
angles between the involved directions of such an arrangement are found as special angle
values.

We check the directions dl from the direction plane clusters for angle-regular arrange-
ments. As the direction planes were created using parallel direction clusters, the dl are
the average directions of these clusters. To avoid ambiguous angle-regular arrangements
due to the tolerances involved, we derive a maximum Nmax for the allowed n values of
the base angles. Let t be the sum of ∆TA and the maximum of the tolerances of the
parallel direction clusters and the direction plane clusters. If n is larger than or equal to
Nmax_tol = floor(π/(4t)), angle regularities with base angles π/n and π/(n+1) cannot be
distinguished at tolerance level t. Thus we set Nmax = min{Nmax_tol, Nmax_user/2}, where
Nmax_user is provided by the user to compensate for small tolerance values: even if the
tolerances are small an n larger than about 36 (a base angle of 10◦) may not be of interest.
We divide Nmax_user by two so that we can also use it for the conical case where oppo-
site directions in the plane cannot be considered equal and thus we have twice as many
directions to consider (see Section 3.2.2).

Given a set of m directions {dl}, we look for a minimum number of subsets which are
approximately angle-regular with respect to t. The algorithm for this consists of three
main steps. First we compute all angles αlk, k < l ≤ m, between the directions. From
these angles we derive a set of possible base angles βkn for each dk, which we call the
reference direction for the angles βkn. Note that more than one base angle candidate can
be close to a single αlk depending on the tolerances. In the third step we try to find angle-
regular subsets by checking the angles αjk for each reference direction dk and all base
angle candidates βkn (see Algorithm 3.2).

To compute the angles between the directions in step I, the reference direction dk is used
to choose the angle that lies consistently to the right of the reference direction dk with
respect to the direction plane normal q (see Figure 3.4). With v = q × dk we have

αlk =







arccos(dk
tdl) if vtdl ≥ 0,

π − arccos(dk
tdl) if vtdl < 0.

(3.2)

This allows us to identify which of the kπ/n, k = 0, . . . , n− 1, directions is occupied by
a particular dj for some n ∈ N.

In step II we look for base angle candidates βkn for each set {dk, . . . , dm} referenced by
dk. We have to check the relations between the base angles added for a single reference
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Figure 3.4: Planar Angle-Regular Arrangement of Directions.

direction to ensure that we use the smallest base angles and eliminate multiples.

In step III we check each set {dk, . . . , dm} for k < m − 1 for angle-regular subsets with
respect to the candidates βkn found in the previous step. The reference direction is always
an element of an angle-regular subset of the set. Thus, for each βkn we seek approximately
angle-regular subsets of {dk+1, . . . , dm}. A dl for l ∈ {k + 1, . . . ,m} belongs to the
angle-regular subset, if, for fl = αlk/βkn, we have |round(fl)βkn − αlk| < t. However,
we only allow one direction for each multiple of βkn, as the directions have already been
clustered into parallel directions. Hence, if we have two directions dl1 and dl2 for which
p = round(fl1) = round(fl2), we use the one that is closer to p, i.e. the one for which
|p− flj | is smaller.

Step I of the algorithm requires O(n2) time to compute the angles for n directions in the
direction plane cluster. In step II we create O(n2) times a constant number m of base
angles βkn and check if they are already represented in the list of base angle candidates
found before. The length of this list is also bound by the constant m. Thus step II requires
O(n2m) time with m ¿ n. In step three we have two nested loops over each reference
direction and each associated base angles, i.e. step III.1 and III.2 are executed O(nm)

times. Step III.1 is a loop over all directions, i.e. we have O(n) time. Step III.2 records
detected regularities and also compares the directions in the regularity with previously
detected regularities. This takes at most O(n2) time. However, usually the number of
directions involved in a regularity is bound by a constant (it does not grow with the number
of faces in the model), so III.2 usually takes O(1) time. In case as many directions are
involved in a regularity as we have directions, we expect to find only one regularity which
again means that III.2 requires only O(1) time. So we expect that all three steps require
O(n2) + O(n2m) + O(nm) × (O(n) + O(1)) = O(n2m) = O(n2) time for a direction
plane cluster. We create O(N 2) direction plane features where N is the number of faces
in the model. However, the consistency condition for clustering ensures that the number
of base direction plane clusters is O(N). The depth of the cluster hierarchy is bound by
a constant for usual engineering objects as we cut off the hierarchy at a large tolerance
jump and only accept consistent clusters. So finding planar angle-regular direction sets
for the whole model is expected to take O(N 2) time.
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Once we have found an angle-regular subset for a particular base angle and reference
direction, we first check if that subset can be merged with a set found before. This is
the case if one of the base angle candidates of the two subsets is a multiple of the other,
the subsets have common elements and the error between the two reference directions is
smaller than t. If there is no such set, we create a new regularity. While the algorithm
has been designed to avoid cases where sets have to be merged, they cannot be avoided
completely due to the approximate nature of the problem. Comparing the sets rather than
the relations between the base angle candidates is more robust and therefore preferred.

After the angle-regular subsets have been detected, we further check the distributions
of the directions in each angle-regular subset. For a base angle π/n we have possible
directions at positions 0 to n− 1 and we check if every m-th position is occupied starting
with some direction in the set. m should be a divisor of n and we seek a minimum
number of different m. We mark the occupied positions in a Boolean array and check for
all occupied directions and all divisors m of n if every m-th position is occupied in the
array. This results in a matrix {rml} where rml, l < m, indicates if every m-th position is
present starting with the direction at position l. We check all directions with the smallest
m first, such that we detect redundant arrangements in the matrix and only report the
smallest non-redundant m.

If any of the computed αlk are not involved in an angle-regular subset, we check whether
we can find a special value for this angle, using the algorithm to detect special angle
parameters described in Section 3.4.

3.2.2 Approximate Repetitions of Directions — Conical Case

The symmetrical arrangements of directions lying on a cone are detected in a similar
way to the planar case. To find direction cone features we have to consider an angle
and a direction. For each triple d1, d2, d3 of directions representing parallel direction
base clusters, we generate a direction cone with direction c and semi-angle α by solv-
ing the linear system dl

tx = 1, l = 1, 2, 3. From this we get the cone parameters as
α = arccos(|xtd1|/‖x‖) and c = x/‖x‖. As the dl are in general only approximations of
the directions, we avoid finding nearly flat direction cones that actually represent direc-
tion planes or direction cones that represent approximately parallel directions by rejecting
cones for which α < ∆TA or |π/2− α| < ∆TA.

One way to find sets of directions on a cone would be to cluster the generated direction
cones as pairs (cl, αl) [77]. This, however, means that we compare the direction cones
with respect to the cone semi-angle and the cone axis direction at the same time mixing
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both rather separate aspects. Better results can be achieved if we consider the angles
separately creating a cone angle hierarchy and use this hierarchy to guide the clustering of
cone directions. To cluster the angles, we generate a cone angle feature for each direction
cone and cluster them using ∆TA and the metric d(α1, α2) = |α1 − α2|. The cluster
hierarchy is cut off at a large tolerance jump using Tm = π/4.

We do a depth first traversal of the angle cluster hierarchy, clustering the cone directions
at the lowest level of the angle hierarchy first and reporting the results to higher hierarchy
levels. At the lowest level in the hierarchy we simply collect all cone directions belonging
to the angles combined in that cluster and cluster them in the same way as the direction
planes. A direction cone cluster is only consistent if n directions cones are generated by
n(n− 1)(n− 2)/6 different parallel direction base clusters. Analogously to the direction
plane consistency check, we also check if directions on the cone are approximately paral-
lel at higher tolerance levels in the parallel direction hierarchy. Note that in this case we
have to keep non-consistent clusters at the top level in the current hierarchy for the next
angle cluster. At a higher tolerance level from the angle cluster they may be merged to
form consistent clusters.

When moving upwards in the angle cluster hierarchy the clustering results of lower levels
are combined into a single set of clusters and the clustering of the cone directions is
continued using them. At each level the clusters are checked for consistency and only
the consistent ones are preserved, while the others are simply reported to the next higher
angle cluster level until the top-level angle clusters are reached. When combining clusters
at higher levels, those which are marked consistent are always added as sub-clusters to
new clusters.

This results in a direction cone cluster hierarchy which is created by only comparing the
directions of the cones. To avoid mixing cones with different angles, the angle clusters
are used to ensure that only cone directions with similar angles are combined at different
tolerance levels. The process is illustrated in Figure 3.5. We have two cone angle clusters
at tolerance levels t0, t1 combined to a single cluster at a higher tolerance level t2. First
the direction cones are clustered with respect to the direction in the sub-clusters. The
two separate cluster structures are combined at tolerance level t2 and we continue the
clustering from there such that the two corresponding cluster pairs are combined for a
cone angle at tolerance t2.

We finally recompute the average direction cone representing a cluster built from the
direction base clusters dl by solving the linear system dl

tx = 1, l = 1, . . . , n, in a least
squares sense using singular value decomposition to give the average semi-angle and the
average cone direction.
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Figure 3.5: Cone Angle Cluster Hierarchy to Guide Direction Cone Clustering.

In order to apply the algorithm to detect repetitions of directions in a plane, we project the
directions {dl} in the cone onto the plane through the origin orthogonal to the axis of the
cone. Due to the projection, opposite directions on the plane actually represent different
axis directions on the cone. Therefore, we have to use base angles of the form 2π/n in the
angle-regular definition. However, each axis direction on the cone can still point in one
of two directions, and so we always project the direction pointing to the same side of the
plane orthogonal to the cone normal c, i.e. dltc > 0.

As opposite directions are no longer identified in this case, the maximum n for the base
angles is Nmax = min{Nmax_tol, Nmax_user} with Nmax_tol = floor(π/(2t)). The tolerance t
is derived in the same way as for the planar case. Note that three axis directions form-
ing an orthogonal system generate a special conical angle regularity with semi-angle
arccos(1/

√
3) and angle π/2 between the axis directions.

Note that in general we can also handle directions in a plane without the repetitions as
regularities, especially if the normal of the direction plane is approximately parallel to a
direction in the model. Direction cones alone do not represent an important regularity, as
a model can easily create many different direction cones.

3.2.3 Approximate Repetitions of Axes and Positions

We are also interested in repetitions of parallel axes and positions in planes or lines. This
relates to translational repetitions, which are always incomplete. However, we can use
an approach similar to direction repetition detection. Instead of distances on a circle
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measured by angles we have distances on a line. As the distances on a line do not have to
be fractions of a maximum length there are no restrictions on the distances between the
features.

First consider parallel axes. We already detected approximately aligned axes with respect
to a parallel direction cluster. We can use the results generated by clustering axis positions
in an appropriate plane to find axes on a line, a gird, or a circle which are regularly spaced.
This yields repetitions of the axes. Note that we only consider orthogonal grids as the most
common case with relatively small ambiguity.

For each parallel direction cluster for which we have a cluster hierarchy for aligned axes
we use the projected axis positions to detect parallel axes along lines and grids. For each
pair of projected points, we create a line. These lines are clustered into approximately
parallel lines and in each cluster of parallel lines we group the points generating the lines
into point sets lying approximately on the same line. Then we check whether the points
on the average lines are regularly spaced. By further examining pairs of approximately
orthogonal groups of regularly spaced, parallel lines, we find the grids.

In the first step we generate a line for each pair of points p1, p2 in the plane. To cluster
the lines into parallel lines, we represent the lines by vectors d = p2 − p1. For two such
vectors d1, d2 with ‖d2‖ ≥ ‖d1‖, we use the similarity measure δ(d1, d2) = ‖d1−(d1

tu)u‖
with u = d2/‖d2‖, and ∆TL as the cluster tolerance. Using the distance between d1 and
its projection on d2 instead of the angle between the two vectors allows us to take the
distance between the points into account. If we used the angle between the vectors alone,
two points which are on different parallel lines in a grid and sufficiently far apart might
generate a line which is approximately parallel to the grid lines. For the same reason, we
also define the weighted average for clustering in terms of the lengths,

avgpl(d1, ω1, d2, ω2) = w

(
d1

‖d1‖
ω1 + sign(d1

td2)
d2

‖d2‖
ω2

)

(3.3)

with w = (‖d1‖ω1 + ‖d2‖ω2)/(ω1 + ω2)
2.

For each parallel line cluster, we solve the linear system dl
tx = 1, l = 1, . . . , n, in a least

squares sense where the dl are the normalised direction vectors of the parallel lines in the
cluster. The solution x is used as the average direction for the parallel line cluster and the
cluster tolerance is updated. After this the cluster hierarchy is cut off using Tm = Lmax/2.

The clusters represent sets of parallel lines, but we still have to group the points which
generate these lines to find distinct lines on which the points lie approximately. If we
have two approximately parallel lines each generated by two points, we can consider
these points to lie approximately on the same line if (at least) one of the points is used to
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generate both lines. In general we can use this to find the distinct lines by detecting sets
of points connected by lines in a parallel lines cluster. We start with pairs of points each
representing a single parallel line in the cluster. As long as we can find two sets of points
which have at least one point in common we merge the sets.

Each of the point sets representing points that are approximately on a line is further ex-
amined for regular arrangements of the points on the line, i.e. we look for base distances
such that the distances between a subset of the points on the line can be represented as
integer multiples of a base distance, analogously to the method used for angle-regular ar-
rangements (Algorithm 3.2). The main difference is that we do not have a special value
such as π/n for the base distance, but any distance could be a base distance.

After these steps we have sets of parallel lines with points on them where some subsets
of them might be marked as distance-regular. To generate grids, we search for orthogonal
pairs of distance-regular parallel line sets. Lines which are not distance-regular or for
which we cannot find an orthogonal partner are noted as simple regularities. For the
orthogonal pairs of line sets, we try to generate regular grids.

Each orthogonal pair is handled separately. First the two sets of parallel lines in the pair
are grouped into lines with compatible distance-regular arrangements. In the following
approximate always refers to an equality within the corresponding parallel lines cluster
tolerance plus ∆TL. Two parallel lines belong to the same distance-regular group if one
of their base distances is approximately a multiple of the base distance of the other and
the distance between the two reference points on the line in the parallel direction is ap-
proximately an integer multiple of the base distance. This produces two lists of groups
which contain compatible distance-regular lines. Corresponding elements of each group
form an orthogonal pair of compatible distance-regular lines. These pairs generate grids
in such a way that the distances between the lines in one group fit on the distance-regular
arrangement of the other group and vice versa.

The generated grids are not unique in the sense that various diagonals of a grid can form
a distance-regular line, and combining orthogonal pairs of these diagonals can form ad-
ditional grids. Thus, we have to find and remove such diagonal lines and grids, and add
additional points on them to the fundamental grid. A line is a diagonal of a grid if the ref-
erence point of the line lies on the grid and the base distance dl of the line can be generated
from the two base distances d1 and d2 of a grid. Let Dj be the unit vector representing the
directions for the distance dj in the grid and Dl be the direction of the line. The line is a
diagonal of the grid if

dlDl ≈ round

(
dlDl

tD1

d1

)

d1D1 + round

(
dlDl

tD2

d2

)

d2D2. (3.4)
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Figure 3.6: Combining a Fundamental Grid with Diagonal Lines and Grids.

Another grid with base distances d3, d4 and the corresponding directions D3 and D4 is
a diagonal of the fundamental grid if its reference point is on the grid and the distances
are compatible. Without loss of generality, we assume that d2

1 + d2
2 < d2

3 + d2
4, i.e. the

diagonal of the second grid is longer than the diagonal of the first one. Then the dis-
tances of the two grids are compatible, if Equation (3.4) holds for l = 3 and l = 4. The
grid with the shorter diagonal is the fundamental grid and we eliminate the one with the
longer diagonal. Figure 3.6 illustrates a diagonal grid marked with dot-dashed lines and
a distance-regular diagonal line drawn solid on a fundamental grid marked with dashed
lines. Only the positions of the fundamental grid which are also on the illustrated diago-
nals are marked.

Any distance-regular line that is not combined to give a grid or removed as a diagonal
of a grid is noted as a regularity. In addition we also try to find special values for base
distances of distance-regular lines and grids (see Section 3.4).

Approximately parallel axes can be arranged equally spaced around a cylinder. For cylin-
der, cone and torus axes we check if they approximately lie on a cylinder and are symmet-
rically arranged. For this we can use the projections of the root points onto a plane and
decide if the points lie on circles. We use the base clusters of aligned axes clusters and
remove any clusters which do not contain at least one cylinder, cone or torus axis.

In some cases, a set of points may lie both on a grid and on a circle, so we only consider
points derived from axes which do not lie on a large grid, having more than 5 points on it,
and with enough points on each line of the grid in each direction. For one grid direction
let n0 be the maximum number of points on a single line and let n1 be the average number
of points on a line. There are enough points on each line of the grid in this direction,
if n0 > 2, n1 ≥ 3/4n0 and there are at least two occupied lines in this direction, or
n0 = 2, n1 = 2 and there are more than two lines in this direction. This condition could
be adjusted to suit other special cases, but it helps to avoid finding many circles which are
actually produced by a single large grid.

Each triple of remaining clustered points generate a circle. We only consider circles with
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radii larger than ∆TL and smaller than Lmax, and the smaller arc of the circle described
by the three points should be larger than ∆TA. For n points there are n(n − 1)(n −
2)/6 possible circles, which can easily become too many for our hierarchical clustering
algorithm. Thus, we first group the circles by clustering their positions and stop as soon
as the distance between the pairs of average positions is larger than some dmax. Note
that we do not create a cluster hierarchy as this is only intended to reduce the amount of
circles considered to be approximately congruent. The hierarchical clustering structure
is created using these sets later (see below). dmax determines how many different average
positions we consider. The larger it is, the more possible relations between circles we take
into account. We set it to ∆TLmin{Lmax/∆TL, Dmax} with some user-defined limit Dmax,
which should be as large as possible with respect to the memory available or time we are
prepared to take.

Given three points p1, p2, p3 in the plane such that pl = p1 + pl,xb1 + pl,yb2 with p3,y 6= 0,
where b1, b2 are two orthogonal vectors representing the plane such that b1 = (p2 −
p1)/‖p2 − p1‖, the centre of the circle defined by the points is

c = p1 +
p2,x

2
b1 +

p3,x
2 + p3,y

2 − p2,xp3,x

2p3,y

b2. (3.5)

We get the radius from the distance between c and any pl.

We find similar circles by considering each group of circles separately to reduce the
amount of memory required. The circles in a group should be clustered with respect
to their position and radius. Our strategy to cluster them is similar to that used for find-
ing direction cones. First we create a cluster hierarchy for the radii and cut it off using
Tm = Lmax/2. Then we use the radius cluster hierarchy to guide the clustering of the
positions. A circle cluster is consistent if for n different points in the cluster generating
the circles, we have n(n−1)(n−2)/6 circles in the cluster. The resulting position cluster
hierarchy is finally cut off using Tm = Lmax/2.

Once we have the circle cluster, we recompute a circle that fits the points in a least squares
sense. For this we minimise the function F : (c, r) 7→ ∑

l(‖pl − c‖ − r)2 for the circle
centre c and the radius r with the points pl. As r = 1/n

∑

l‖xl − c‖ for a minimum of
F , we actually minimise G : c 7→ ∑

l(‖pl − c‖ − 1/n
∑‖pl − c‖)2 using the Nelder-

Mead downhill simplex method [99, 107]. The downhill simplex method performs a
multidimensional minimisation based on appropriately modifying an initial simplex in
order to find a small simplex enclosing the minimum. It does not require the evaluation
(nor existence) of derivatives, but requires many function evaluations. It was chosen as it
is simple to implement and works well to find the unique minimum of G. But alternatives,
like quasi-Newton methods, could be used as well.
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Finding repetitions of positional features on lines, grids and circles is done in the same
way as finding repetitions of axes. The only difference is that we use positional features
rather than projected axis positions (but we still have to project the positions onto an
appropriate plane or line as they only lie approximately on a plane or a line). To find
positional features which are approximately on a line or a plane, we can use the results
from the partially equal positions. Positions which are equal when projected onto a line
lie in a plane, and positions which are equal when projected onto a plane lie on a line.

In summary, by creating feature clusters we detect subsets of all features from a model
which represent interesting cases to look for repetitions. By considering all distances be-
tween the features in these subsets we can combine the distances to compatible distances
to detect repetitions. The generating transformation of a repetition is represented by the
base distance. We presented a general algorithm to detect such repetitions which can
easily be adjusted to various different feature types.

3.3 Approximate Global Symmetries

We wish to determine the approximate symmetries of a set of positions F . According to
our definition of approximate symmetries as regularities (see Section 2.3.2). This means
we have to find an equivalence relation =ε on F . We then require approximately distance
preserving permutations σ on F which essentially map the equivalence classes of =ε

onto each other and describe a geometric symmetry of F . Alternative approaches to the
detection of approximate symmetries and the relations to our approach were discussed in
Section 2.3.3.

Following the definition our approach to finding the approximate symmetries consists of
two parts. We first detect tolerance levels at which the relation =ε is an equivalence and
then look for approximate symmetries at these levels.

3.3.1 Distinct Tolerance Level Detection

We have to detect appropriate tolerances ε to determine the permutations σ. For ε less
than the smallest non-zero distance between the points in P , the approximence =ε is
an equivalence on F . This is also true for any ε greater than the maximum distance
between the points. The problem is to determine which intermediate values of ε produce
an equivalence relation.



3.3 Approximate Global Symmetries 67

Algorithm distinct_tolerance_levels(Points)
Detect distinct tolerance levels for point set Points. The output consists of a list of
consistent clusterings with the corresponding tolerance levels where each clustering is
described by a set of point clusters with their centroid.

I. For each P in Points:
1. Create a graph component C containing P.
2. Initialise node count C.nodes = 1 and edge count C.edges = 0.

II. Initialise counter of incomplete components Incomplete = 0.
III. Create a list Edges of each distinct point pair in Points.
IV. Order Edges by the distance between the points.
V. For each E in Edges:

1. If Incomplete = 0, report the set of current components as a consistent clus-
tering at a tolerance level of half the minimum distance between the centroids
of the clusters.

2. If E connects two nodes in a single C, then C.edges = C.edges+ 1 and if C is
complete, decrement Incomplete by 1.

3. Else E must connect two distinct components C1 and C2:
A. If C1 is complete, increment Incomplete by 1.
B. If C2 is complete, increment Incomplete by 1.
C. Merge C1 and C2 to a single component C, set C.nodes = C1.nodes +

C2.nodes, and C.edges = C1.edges+ C2.edges+ 1.
D. If C is complete, decrement Incomplete by 1.

Algorithm 3.3: Detect Distinct Tolerance Levels in Point Sets.

Note that the clustering algorithm from Section 3.1 may be used for detection of the
distinct tolerance level at which =ε is an equivalence. However, we require tolerance
levels at which we get an equivalence relation on the whole set of points. This cannot
immediately be derived from the cluster hierarchy which only contains locally consistent
clusters. Thus, we use a graph based algorithm instead, particularly designed to find
tolerance levels for global symmetry detection.

Since =ε⊂ F × F is symmetric, (=ε, F ) is an unordered graph. For it to be an equiv-
alence relation each connected component of this graph must be a complete sub-graph
(the components represent equivalence classes). A connected component with m nodes is
complete if and only if it has m(m−1)/2 edges. By keeping track of the number of edges
in a component when we create the relation it is possible to detect complete components
efficiently.
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Assuming all the points in F are distinct, =0 is the discrete partition. Thus, the initial
graph has each point in a component of its own, and the graph is an equivalence relation.
We can consecutively add edges to the graph from a list of point pairs ordered by distance
and keep track of the number of nodes and edges in each component. The algorithm is
listed in Algorithm 3.3.

The most critical part of the algorithm is merging of components as it will be done many
times at the core of the algorithm. On the one hand we require fast merging and on the
other hand we want to be able to determine quickly when an edge connects two nodes of
the same component. Careful bookkeeping techniques can keep this down to logarithmic
complexity. We can store the components as small trees. When merging the components
we make the root of the shallower tree point to the root of the deeper tree. To check if two
nodes are in the same component we can move upward in the tree from both nodes until
we reach the same node in which case the nodes are in the same component. If we reach
the root of a component tree first, the nodes are in different components.

Each relation generated as the edges are added is a superset of the one before. Hence,
each equivalence relation is a coarsening of the previous one, and is obtained by merging
some of the equivalence classes previously found. The set of centroids of the classes is
considered to be a new point set, whose symmetries are to be determined as described in
the next sub-section. It is apparent that the distance between any two of these new points
is at least twice the tolerance. Thus, the association of a transformed point to a nearby
(within tolerance) point is unique if it exists.

3.3.2 Symmetry Detection

We have to find approximate symmetries of the clustered points at a tolerance level t
as permutations. This is done for each consistent clustering reported by Algorithm 3.3.
We do this by detecting distance preserving permutations of the centroids of the clusters.
An exhaustive search over all n! permutations would work, but is computationally too
expensive. However, a more efficient search can be devised since metric preservation is a
monotonic property. The permutations are described by point pairs indicating which point
is mapped to which other point. We can build up the permutations consecutively one pair
at a time where the pair lists are partial injections of a set into itself. This generates a
tree with an empty partial injection at the root and a child is generated from its parent
by adding an additional point pair. The leaves of this tree are permutations. For any
distance preserving permutation the partial injections in the tree leading to it also have to
be distance preserving. Thus, if we build the permutations one pair at a time, then once
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any partial injection has been shown to be non-metric-preserving no extension of it needs
to be considered.

Once we know where an isometry takes a non-degenerate simplex, we also know exactly
where it takes the whole of space. Similarly if we know approximately where some non-
degenerate simplex is mapped to, by a permutation, then we can tell roughly where the
other elements of the set are mapped. Thus it is sufficient to build up the partial injections
for the points in a non-degenerate simplex, which is chosen as described below. This
yields distance preserving mappings between a simplex explicitly chosen from F and
arbitrary simplices build from points in F . In the following we call the explicitly chosen
simplex the registration simplex.

We still have to check if the mappings between the simplices also map all other points
approximately onto each other. Given a non-degenerate simplex the distances between
the points in the simplex and another point p uniquely determine the position of p. Thus,
in three-dimensional Euclidean space four distances from the four vertices in a given non-
degenerate tetrahedron determine a point uniquely. Hence, given a distance preserving
partial injection between two simplices of points in F , we can check whether it induces
a distance preserving permutation on all points by matching the four-dimensional vectors
of distances from the two simplices. Due to the detection of distinct tolerance levels we
have a unique matching of two four-dimensional vectors if they are no further than t apart.

The centroid of the points in F must be mapped to itself by a symmetry of F . So by
expanding F by its centroid we can eliminate one linear scan from the search of distance
preserving partial injections by always adding the centroid to the registration simplex.
Moreover, maximal volume would be a desirable characteristic of a registration simplex,
but its computation is intensive. Instead we build a greedy simplex by finding the pair
of points with the largest distance between each other, then add the point that makes the
largest triangle, and finally add the point that makes the largest tetrahedron. In practice it
was found that choosing the first point as furthest from the centroid worked well.

We want the chosen partial injection to fix the rest of the permutation to the greatest degree
possible. It can be shown that the edges of the greedy simplex are on average at least one
half the length of the maximal simplex. The idea of picking this sort of simplex is that
we want a reasonably wide spread collection of points so that bringing these points into
approximate correspondence will be as restrictive as possible on the rest of the points.

Algorithm 3.4 lists the algorithm to find approximate symmetries of the centroids of the
point clusters at a tolerance level. The algorithm works for three-dimensional points, but
can easily be modified for other dimensions. First a large tetrahedron is detected. Then we
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Algorithm detect_symmetry(Points, t)
Detect approximate symmetries of point set Points at tolerance t. The approximate
symmetries are reported as permutations of the points.

I. P0 = centroid of Points
II. P1 = P in Points with maximal length(P, P0)

III. P2 = P in Points with maximal area(P, P1, P0)
IV. P3 = P in Points with maximal volume(P, P2, P1, P0)
V. For each Q1 in Points:

1. If |d(P0, P1)− d(Q0, Q1)| < t, for each Q2 in Points without Q1:
A. If |d(P0, P2)− d(Q0, Q2)| < t and |d(P1, P2)− d(Q1, Q2)| < t, for each Q3

in Points without Q1, Q2:
i. If |d(P0, P3) − d(Q0, Q3)| < t and |d(P1, P3) − d(Q1, Q3)| < t and
|d(P2, P3) − d(Q2, Q3)| < t and expand(P0 → P0, P1 → Q1, P2 →
Q2, P3 → Q3, Points, t), report symmetry as permutation of points.

Algorithm 3.4: Detect Approximate Symmetries of Point Sets.

try to map the points (P0, P1, P2, P3) of the tetrahedron to any tuple (Q0, Q1, Q2, Q3) of the
cluster centroids stopping each attempt as soon as the mapping is not distance preserving
within the tolerance level. Once we found a mapping for the tetrahedron which preserves
the distances approximately we still have to check whether it can be expanded to the
remaining points in the method expand. This is done by using the distances of the points
from the registration simplex and finding a point q for each point p such that the distances
of p from the tetrahedron (P0, P1, P2, P3) are approximately the distances of q from the
tetrahedron (Q0, Q1, Q2, Q3). If this succeeds for all points we have found an approximate
symmetry as a permutation of points.

The level of approximation t used is half the distance between the two closest points.
Thus, points that are far away constrain the distance preserving permutations proportion-
ately more than points that are close to the centre of the model. This means that points
which are close may prevent the detection of a symmetry of some subset that is consid-
erably larger than the distance between the points. However, the large discrepancy in the
distances between the points that are close and the size of the set means that the points
close together will be combined to a cluster at some later stage in the process and the
symmetry of the larger shape will be noticed.

For points on long thin rods the algorithm ignores any cross sectional symmetry. Con-
sider a long thin prism. The points at the ends are likely to be combined to a single point
during the consistent clustering detection and the symmetry detection algorithm will con-
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Figure 3.7: Approximate Symmetry Detection Example.

sequently only detect the mirror symmetry. In order for the rotational symmetry to be
detected a much higher accuracy is required which may not be possible to realize under
the condition of getting a consistent clustering. In retrospect, as a first analysis this is
justified. However, a second pass could be used in which the model is first expanded or-
thogonally to its longitudinal axis. In a similar manner a point set whose primary structure
is planar might be expanded orthogonally to the plane to examine its secondary symme-
tries. Both these ideas are simple to implement in the context of the original algorithm.

We used a similar approach to detect approximately congruent sub-parts in a geometric
model [39]. But this is not further discussed here.

3.3.3 Symmetry Detection Example

To illustrate the operation of the algorithm consider the points shown in Figure 3.7. They
are arranged approximately at the corners of a cube except that at one corner there are
three points, and the centroid p0 is also included. We detect three consistent clusterings.
Firstly we have each point in a separate component, secondly the three points at one corner
of the cube are combined into a single component labelled p4, and finally all points are in
a single component.

At a tolerance of 0.0 the model is clearly asymmetric and has only the identity transfor-
mation as an approximate symmetry. The first tolerance level produced by the algorithm,
however, is half the distance between the closely grouped points in the corner. If the points
on the other corners are not out of place by more than this, then the model, at this tolerance
level, is approximately a cube with one truncated corner. This has a three-fold rotational
symmetry about each diagonal of the cube, as well as three related mirror symmetries.

The next tolerance selected is about half the edge length of the cube. At this tolerance we
might select the points p0, p1, p2 and p3 as the large tetrahedron. The centroid p0 has to
be mapped to itself. We can try to map p1 to p2 which succeeds as d(p0, p1) ≈ d(p0, p2).
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Next we can try to map p2 to p4. While d(p0, p2) ≈ d(p0, p4) the distances d(p1, p2)

and d(p2, p4) are not approximately equal. So we have to try another option for p2, for
instance, we could try p3. In this case we have d(p0, p2) ≈ d(p0, p3) and d(p1, p2) ≈
d(p2, p3). Finally we can try to map p3 to p4 and check that d(p0, p3) ≈ d(p0, p4),
d(p1, p3) ≈ d(p2, p4) and d(p2, p3) ≈ d(p3, p4). This means we found a valid mapping for
the tetrahedron and have to complete the mapping by considering the registration coordi-
nates of the points p4, . . . , p8. This yields a mapping of p4 to p1, p5 to p6, p6 to p7, p7 to p8

and p8 to p5. Continuing with the other options of mapping the tetrahedron we determine
the remaining cubic symmetries.

At tolerances greater than half the length of the edge there are no more consistent cluster-
ings until, at about

√
3/2 ≈ 0.866 of the edge of the cube, all the points are close enough

to the centroid to be grouped together as one point. Of the four tolerances, which might
be 0.0, 0.1, 0.5 and 0.9 of the edge of the cube, it is the middle two that characterise the
approximate symmetry of the model. The symmetries at zero and infinite tolerance are
generic and are not checked explicitly by our algorithm. All finite models have spheri-
cal symmetry at infinite tolerance, and only exactly symmetric models have non-trivial
approximate symmetry at zero tolerance.

3.3.4 Complexity Analysis

Our algorithm consists of two methods where the symmetry detection method (Algo-
rithm 3.4) is called for each consistent clustering of points at distinct tolerance levels
determined by the clustering method (Algorithm 3.3). We will show that the time com-
plexity of this method is O(n3.5 log4 n) and in practice we expect O(n2 log4 n) time for
engineering objects.

The clustering method requires O(n) time to initialise the components for n points and
O(n2 log n) time to create a list of point pairs ordered by distance. Detecting distinct
tolerance levels is done in a loop adding the point pairs in order as edges to the graph.
Adding a point pair to a graph may merge two connected components of the graph. Storing
the components as trees requires O(logm) time to check if a newly added edge lies in
a single component where m is the average size of the component, and merging two
components takes constant time. Thus, the time complexity of the clustering method is
O(n2 log n+ n2 logm). As m ≤ n, we have O(n2 log n).

The symmetry detection method to detect the symmetry requires O(n) time to find the
tetrahedron. As the centroid is part of the tetrahedron and has to be mapped to itself we
have to find matches for three more points in three nested loops. The time required to
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match the first two points is bound by O(n2). A bound on the number of matches for
these two points can be found from the result that the number of points a given distance
apart is no more than O(n1.5) [46]. After the centroid and two more points have been
matched successfully, the next point can only match a constant number of points, but it
takes O(n) time to find out which points. So the total time taken in matching is bound by
O(n2+n2.5) = O(n2.5) time, producing O(n1.5) possible matchings for the four points. In
order to match the rest of the list, for simplicity, our implementation uses the direct O(n2)

approach. So we have O(n2.5) for the loop and O(n1.5) × O(n2) for the expansion of all
possible matchings. This yields and overall time complexity O(n3.5) for the symmetry
detection method in our implementation.

However, a better approach treats the matching of the rest of the points as a problem
of finding a data point in a rectangular piece of four dimensional space (defined by the
distance from each of the four points). This can be done with a once off O(n log3 n) setup
time, for each set of four points, and then O(log4 n) query time for each point [27]. This
means that O(n1.5n log3 n) = O(n2.5 log3 n) time will be taken over the whole execution,
doing the setup operations, and O(n log4 n) time per set of four will be spent doing the
matching. In each case this is O(n2.5 log4 n), which is thus the improved time order of the
symmetry detection method.

The clustering method requires O(n2 log n) time. Each time symmetry detection is called
the clustering method has made the partition of points coarser. Thus, the immediate limit
to the number of calls is n. This limit can be reached by a collection of points built up
one at a time, adding each point a bit further away each time. The symmetry detection
method requires O(n2.5 log4 n) time. So the order of the algorithm in the worst case is
O(n) × O(n2.5 log4 n) + O(n2 log n) which is O(n3.5 log4 n) using the improved point
matching algorithm. Analogously our implementation with the simple point matching
requires O(n4.5) time.

The order of the symmetry detection method is actually an overestimate because the fig-
ure O(n1.5) (for the number pairs at a given distance) is an overestimate. The actual value
is between O(n) and O(n1.5), most likely closer to the lower than to the upper limit. Fur-
thermore, with normal engineering objects, even reaching the bound of O(n) is unlikely.
For an object to have as many distinct partitions as points would require the object to
have interesting features on as many scales as there are points. In practice an engineering
object, even a complex one, will have only a few levels of size of feature. Thus the ac-
tual number of times that the symmetry detection method would be called is bound by a
constant, and is O(1). These two issues taken together lower the order by n1.5 bringing
the expected performance in practice on engineering objects to O(n2 log4 n) (and O(n3)
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using simple point matching).

In summary, our definition for approximate symmetries from Section 2.3.2 leads directly
to an efficient and practical algorithm to detect global symmetries. Theoretically and
practically our algorithm is faster than the best algorithms known for other definitions of
approximate symmetry. However, it cannot be easily generalised to detect partial regu-
larities and repetitions, which, at the moment, are better handled by methods like the one
introduced in Section 3.2.

3.4 Special Values

We are interested in finding special values for length and angle features. While the other
regularities discussed so far in this chapter relate to congruences and in general special
arrangements of features, we also require parameter values for the exact realization of
the geometries and the special arrangements. For instance, we require values for cylinder
radii, edge lengths, etc., but also exact values for the cone angle of conical angle-regular
directions, distances of axes arranged regularly on a grid, etc. We assert that these values
are likely to be simple fractions on some scale as described below. Even if the origi-
nal design did not specify such a special value, in engineering objects the exact values
are usually subject to a tolerance and it is likely that we find a special value within this
tolerance.

For each average parameter value p for a length or angle cluster, we seek some special
values fb(nk/mk) close to p. Here nk and mk are integers and fb : R→ R is a member of
a family of functions representing the scales on which we look for simple fractions, which
depends on the parameter type. A special value is close to p if it is within the tolerance of
the cluster or the appropriate ∆TP , whichever tolerance is larger.

The functions fb are usually of the form fb : v 7→ vKb, where Kb are base units for length
or angular measurements. For length units Kb depends on the measurements in the model
and could for instance be 1.0, 0.1 or 2.54 (cm to inch conversion). For angles we use base
units π and π/180 (degrees) and in addition the special function ft : v 7→ arctan(v).

To find special values for some value v, we seek integer pairs nk, mk for each relevant
fb such that |f−1

b (v) − nk/mk| < t0. The tolerance t0 depends on the cluster tolerance
tc and the appropriate ∆T . It also depends on the scale represented by fb. For the linear
fb we set it to t0 = max(tc,∆T )/Kb to have consistent tolerance values independent of
the constant Kb. As arctan(x) = x + O(x3), we use t0 = max(tc,∆) for ft, which
is a good approximation as long as tc is small. Note that for ft we have the condition
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| |v| − π/2| > ∆TA assuming that v ∈ [−π, π], which can easily be achieved as v is
an angle. The algorithm to find the integer pairs approximating some w = f−1

b (v) is
described in the next sub-section. Note that we may have to eliminate duplicates, if we
consider multiple functions fb, e.g. arctan(1) = π/4

Furthermore, we look for simple ratios between the average cluster parameters. Instead
of selecting special values independently the ratios relate them to each other which may
yield a more consistent choice of special values. For each pair of average parameters vl
and vk, we seek two integers nj , mj such that |vl/vk − nj/mj| < tr, where tr is a separate
user-defined tolerance, and the clusters have been ordered such that vl/vk ≥ 1.0. 1/1

ratios are avoided as they represent approximate congruences in the cluster hierarchy. We
also require that the difference between the two parameters is larger than the maximum
of the two cluster tolerances. To find the integers we use the algorithm mentioned above
with w = vl/vk.

Special values determined in this way have to be handled with care by the subsequent
beautification steps. We may obtain several special values for each parameter and while
a preferred value can be chosen using some merit function, there is no clear indication
which one is the desired special value. Some special values are particularly simple, while
others may be closer to the input data.

Special values might also depend on manufacturing and functional purposes. We do not
consider the former for the ideal model. For values which are not simple rational numbers
and depend on functional purposes, other specialised methods will need to be developed.
Values depending on functional purposes are usually also subject to a tolerance. If we
choose values within these tolerances, the beautified model should be usable.

3.4.1 Finding Simple Fractions

We have reduced the problems of finding special parameter values and ratios to finding a
list of simple fractions approximating a real number w within a tolerance t0. For this we
assume that integer values of w are always special, and without loss of generality we also
assume that w is non-negative. As integers are always special, we first find the closest
integer a0 to w and note it as a special value if it is within the tolerance t0. The remaining
problem is to find simple fractions for the signed remainder w0.

Finding an integer relation between real numbers, using Euclid’s algorithm for two num-
bers, or the PSLQ algorithm for more than two numbers [36], and recognising numerical
constants [7] are related problems, but they assume that a close approximation is required.
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Algorithm simple_frac(w, n, m, s, M, M0, neg, t0, t1)

Recursive algorithm to find simple fractions for sn/m ± w which approximates w within
the tolerance t0. w is the value in [0, 1] which still has to be approximated by a fraction,
n, m are the two integers representing the fraction n/m found so far with the sign indicated
by s, M is the maximum denominator, M0 is the value for M with which the recursion has
been started, and neg indicates whether w has to be added or subtracted from n/m. Once
the error is smaller than t1 no further simple values are computed. The algorithm reports
the special fractions in a list.

I. Let a = 1.
II. While the denominator b = round(a/w) is not larger than M:

1. If b > a:
A. Let r = w− a/b.
B. If r is negative, set neg_r to true and r = |r|. Otherwise neg_r is

false.
C. If neg is false, the new numerator is p = nb+ ma. Otherwise:

i. If nb < ma, the new numerator is p = ma− nb and s = −s.
ii. Otherwise the new numerator is p = nb − ma and neg_r =

not(neg_r).
D. The new denominator is q = ma.
E. Reduce the fraction p/q to simplest terms.
F. If r < t0, add sp/q to the special values list, if it is not already in it.
G. If r > t1 and sp/q was not already in the special values list, call

simple_frac(r, p, q, s, M0M, M0, neg_r, t0, t1)

H. Let a = a+ 1.

Algorithm 3.5: Recursive Algorithm for Finding Simple Fractions.

Instead, we try to find some special values not too distant from w, which are in some sense
simple rather than as close as possible to w.

A straight-forward method for finding fractions within a tolerance is to determine the nu-
merators n for a given denominator m by multiplying w0 by all integers m = 1, . . . ,M0,
where M0 is some maximum allowed denominator. If |w0 − n/m| < t0 with n = round

(w0m), i.e. if n/m is within the tolerance limit, then n/m is a suitable special fraction.
However, as we also wish to find fractions close to w0, we must use large values for M0,
which makes this method expensive.

If 1/(2t0) < m, then more than one n/m for a fixed m could be in the interval (w0 −
t0, w + t0). To avoid this ambiguity we set the maximum allowed value for m to M0 =
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0.59 = 1/2 + 0.09
︸︷︷︸

= 1/11 [→ 13/22] − 0.000909

= 2/22 − 0.000909

= 2/3 − 0.076667
︸ ︷︷ ︸

= 1/13 [→ 23/39] − 0.000256

= 3/5 [→ 3/5] − 0.01

Table 3.1: Finding Special Values for 0.59 with t0 = 0.05, t1 = 0.01 and M0 = 5.

floor(1/(2t0)). Additionally we limit M0 by two configuration parameters Mmin and
Mmax, say 3 and 10, to avoid too small or too large an M0 if we have a large or small
tolerance t0.

An alternative to the simple method is to approximate real numbers using continued frac-
tions [63]. We approximate w0 by a1 = floor(1/w0) such that w0 = 1/(a1 + w1) and
continue approximating w1 and so on until wl is smaller than some tolerance t1. While
this quickly computes a good approximation, it does not generate all special values close
to w, especially as the iterative process based on the function c : x 7→ 1/x − floor(1/x)

behaves chaotically [23].

Our method thus combines the simple method with the continued fraction method to find a
number of simple special values as well as some other special values closer to w0 without
checking a large number of possible denominators. This leads to a recursive algorithm
checking some fractions with the simple method at each recursion level. On recursion
level l, we have a fraction nl/ml approximating w0 with a remainder wl. In a loop for
a = 1, 2, . . . , we approximate wl by fractions a/b with b = round(a/wl) as long as
b < Ml, where Ml is a limit for the denominators at this recursion level. We add each b/a
to nl/ml. If this new fraction is not already in the list of special values, we add it to the
list. If the new error wl+1 is larger than t1, we call the algorithm recursively on wl+1 with
an increased denominator limit Ml+1 = M0Ml. This increase ensures that we still find
valid approximations on higher recursion levels.

The complete recursive algorithm considering the signs of all involved values is listed in
Algorithm 3.5. Due to the behaviour of the function c from above, it is more likely to find
fractions with small denominators if |w0| > 0.5. As w0 is the remainder to the closest
integer, we have |w0| ≤ 0.5. Thus, we start with w = 1.0 − |w0|, n = 1, m = 1 and the
flag neg = true (otherwise we would start with w = |w0|, n = 0, m = 1, neg = false).
M is initially M0 and s is −1 if w0 is negative and 1 otherwise.

Table 3.1 contains an example for 0.59. The special values generated in the process are
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marked with →. For the intermediate results 1/2 and 2/3, which are too far away from
0.59 to be accepted as a special values, we do one further recursion step to find more
special values for the corresponding errors.

At recursion level l we have w = yl−1+xl where w is the original value in [0, 1] for which
we seek special fractions. yl−1 represents a special fraction approximating w which has
been found so far with the error xl. xl is approximated by fractions k/bk with bk =

round(k/xl) for k = 1, . . . , n. We get the error

xk,l+1 =

∣
∣
∣
∣
∣

k

round
(
k
xl

) − xl

∣
∣
∣
∣
∣
. (3.6)

We have xk,l+1 ≤ 1/2 and thus also xl ≤ 1/2. Let εk = round(k/xl) − k/xl with
|εk| < 1/2. Hence, we get
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as |εkxl| ≤ 1/4. Thus the error at recursion level l is smaller than 1/2(1/3)l considering
that at the first recursion level l = 0 we have an error of at most 1/2. Hence, for tolerance
t1 < 1 the maximum recursion depth is limited by L = ceil(|log(2t1)|/ log(3)).

As in each loop we have the condition bk < M l+1
0 , we check at most Nl = ceil((1/3)l

(M l+1
0 /2 + 1/4)) fractions k/bk in each loop at recursion level l. However, we eliminate

duplicates. We also frequently find fractions at small recursion levels l which are very
close to xl, i.e. some xk,l+1 are very small for relatively small l. These two factors mean
that many of the branches in the search for special values are eliminated at small recursion
levels and the maximum recursion level L is only reached by a few branches. Hence, we
actually check a considerably smaller number of fractions. It appears that we check at
most a constant number of fractions on each recursion level (across all recursive calls)
which is determined by M0. Hence a rough bound on the overall number of fractions
considered is O(M0|log(t1)|). This is considerably better than a worst case analysis con-
sidering the maximal values L and Nl which represent a limit on the recursion branches
and the values checked in the loops rather than the usual amount of fractions tested.

Note that the algorithm can only miss special values whose denominator is larger thanM0.
The precision increases with the depth of recursion. With appropriate t1 and Mmax we get
the simple method as a special case. Also note that we can easily expand the method to
detect special fractions of the form (ak/bk)

r for r = 1, 2, . . . or r = 1/2, 1/3, . . . by
calling Algorithm 3.5 with w1/r for all r in question.

The presented method to find special values as simple fractions on various scales is a
combination of the simple search method with a continued fraction approach. Combining
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both methods allows us to search for interesting special values in an interval around the
original value. In addition we are also able to find close approximations of the original
value without searching an extremely wide range of denominators in a loop.

3.5 Summary

We have presented four basic algorithms to detect approximate congruences, repetitions,
symmetries and special values of scalar parameters. We have also shown how to use
these algorithms to detect the common geometric regularities identified in Section 2.4.
The algorithm designs are based on our definition of approximate regularities from Sec-
tion 2.3.2, and they were refined based on experiments with various models (see Chap-
ter 7). They were mainly adjusted to simplify the task of selection described in Chapter 4.
The resulting algorithms provide reliable results indicating the presence of approximate
regularities in the initial model at various tolerance levels. The regularities form the basis
for the following step where an appropriate subset of the regularities is selected as basis
for improving the initial model.

The basic assumption behind the algorithms is that we can describe certain aspects of
boundary representation models by a set of distinct features. The features have to be
sufficiently apart from each other in order to be distinguishable within the accuracy of
the initial model. We take all features of a certain type or sub-type and then examine
the set of features without further reference to the model. Thus, the features have to be
distinguishable independent of their relation to the model. Note that for complex mod-
els, usually consisting of several sub-parts, this assumption may no longer be true. The
features may not be sufficiently distinguishable without considering the structure of the
model. The analysis methods given here were designed for models of simple to medium
complexity with only a relatively small number of completely independent sub-parts (see
Section 1.2).
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Chapter 4

Regularity Selection and Model
Rebuilding

The regularity detection methods described in Chapter 3 detect a large set of approximate
regularities present in the initial model at various tolerance levels. The regularity detection
considers various relations between the cells in the model to find potential regularities
which do not have to be mutually consistent. As we do not use a strict tolerance limit
we get some regularities at rather large tolerances. Moreover, the detection methods seek
multiple relations between the same set of features, e.g. multiple special ratios between the
same scalar parameters. Hence, the set of detected regularities is likely to contain many
inconsistencies and an appropriate subset has to be selected. The selected regularities
must be mutually consistent and should be likely to represent the original, ideal design
intent. In this chapter we present a general selection strategy, which includes an algorithm
to detect simple inconsistencies, and priorities used to select likely regularities. We also
describe how to construct an improved model from the set of selected regularities. The
consistency test will be discussed in Chapters 5 and 6 in form of a solvability test of
geometric constraint systems.

The author devised a general regularity selection strategy (see Section 4.1) based on se-
quential selection of regularities in order to reduce the number of regularity sets checked
for consistency and desirability. An exhaustive search over all regularity subsets or any
large amount of subsets would be too expensive considering the high computational costs
of testing the solvability of constraint systems. The general selection strategy includes
merit functions for priorities to determine the sequence in which the regularities are con-
sidered (see Section 4.2) and a rule-based method for detecting simple inconsistencies
(see Section 4.3). In [72] the selection strategy was first introduced in combination with a
numerical solvability test (see Section 5.6). In [73] it was used with a more efficient topo-
logical solvability test (see Chapter 6). We also discuss a simple reconstruction method
to rebuild a new model from the selected regularities in this chapter (see Section 4.4). It
was developed by the author employing standard surface-surface intersection algorithms.
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Note that problems related to fixing topological problems during reconstruction are not
considered in this thesis (see Section 1.3).

4.1 Selection Strategy

Given a set of potential regularities, our task is to select a consistent subset which can be
used to improve the initial boundary representation model so that it more closely repre-
sents the original, ideal design intent. The regularities detected in the initial model can be
expressed by sets of geometric constraints (see Section 5.5). We assume that we have a
solvability test algorithm available to determine if a given set of regularities described by
constraints is solvable. This method has to be initialised with G = init_solvability(R)
for the set of all regularities R in order to express the regularities with appropriate con-
straints and create a data structure G for the solvability test. G depends on the solvability
test used and is not required if we directly compute a solution of each constraint system to
test its solvability. As this approach is computationally too expensive (see Section 5.6) we
store some information about the solvability properties of the constraint system describ-
ing the previously selected regularities such that we only have to consider the changes
introduced by the constraints for a new regularity.

The method solvable(G, S, r) returns a Boolean indicating if the regularity r is con-
sistent with the set of regularities S under the condition that r and S do not themselves
contain internal inconsistencies. G is the data structure reported by init_solvability
and contains information about the solvability properties of S. If solvable returns true,
then it also updated G to represent the constraint system S expanded by r. Note that for
the implementation G can be hidden in an object describing the solvability properties of a
constraint system S.

The above S and r are constraint sets grouped by regularities. The solvability methods
are described in detail in Chapters 5 and 6 using a purely numerical approach and al-
ternatively a more efficient topological approach related to degrees-of-freedom analysis.
For the topological approach G is a (hyper-)graph where the nodes describe the geomet-
ric objects (the cells from the initial boundary representation model). The non-directed
(hyper-)edges describe a geometric constraint by connecting the involved nodes. For in-
stance, a geometric constraint system describing distances between vertices forms a graph
with the vertices represented by the nodes and the constrained distances between the ver-
tices are described by the edges. As in general a constraint may refer to more than two
cells we have a hyper-graph with edges between more than two nodes.
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We also assume that we have a method priorities(R)which computes a numerical value
ω(r) for each regularity r in the set of all regularities R, indicating the likelihood of r being
part of the original, ideal design (see Section 4.2). Also recall that we have dependencies
between regularities, e.g. we first require a parallel direction regularity before we can add
an aligned axes regularity (see Section 2.2.2 for an overview and Section 5.5 for particular
dependencies). Let dependencies(r) be the set of regularities the regularity r depends
on. For the selection strategy we only need to know if all regularities in dependencies(r)
are already selected.

Even if we do not consider topological changes of the model we still require a description
of the topology in order to enforce the dependencies between the features and ensure that
a valid model is generated from the regularities. The features not only have to fulfil the
regularity constraints, but also have to describe the cells such that the geometric intersec-
tions of the cells are consistent with the algebraic complex (the geometric realisation of
the cells has to be consistent with the algebraic complex), e.g. the position of a vertex must
lie on all surfaces the vertex is part of. See Section 5.5 for a description of the geometric
constraints T used to describe the topology for our models. We can handle such constraints
as a special regularity describing the geometric relations required by the topology. This
regularity always has to be included in the set of selected regularities. Note that as the
regularities already describe exact relations between intersecting cells (either directly or
indirectly), and as the regularity detection process considers all such relations, we only
require a basic set of topological constraints. For instance, general constraints that sim-
ply require two faces to intersect (without specifying details about the intersection) are
not necessary. We only have one topology regularity as we do not consider changes in
the topology. But note that it is not sufficient to introduce multiple topology regularities
describing topological alternatives. In order to consider topological changes we also have
to change the cells in the boundary representation.

Furthermore, there are dependencies between features such as the requirement that the
apex feature of a cone has to lie on the axis feature (see Section 2.2.2). These can also be
described by constraints as discussed in Section 5.5. We assume that these relations are
also part of the topological constraints T.

We have two basic choices for selecting subsets from the set of all regularities R. We
could consider all subsets of R and try to find those which are consistent and desirable.
Alternatively we could sequentially build a subset by adding elements of R in order of a
priority indicating the desirability of each regularity. Note that in both cases we must al-
ways include the topology regularity and feature dependency constraints as well as check
whether the dependencies between the regularities are met.
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The naive approach for considering all subsets would create all of them and then check
if they fulfil the dependency and solvability conditions. This is clearly too expensive, but
the costs can be reduced by growing regularity subsets. When creating the subsets we
can start checking for solvability of the subsets from the beginning and eliminate a subset
and all its expansions as soon as a set was determined to be unsolvable. However, we
would still have to check a large number of subsets for solvability which is an expensive
test and we would also have to store a lot of information about the solvability properties
of the different subsets. As even for models of medium complexity we can get n ≈ 500

regularities or more this approach is not feasible as there are 2n subsets.

It may be possible to refine the approach of growing regularity subsets using a backtrack-
ing strategy. We could start with some regularity set, expand it and backtrack whenever
some condition on the selected set of regularities becomes true. This means that we would
always only have one set of selected regularities. But this condition is not trivial. Clearly
we can backtrack if we have found a set which cannot be expanded any further, but at
the same time this set may be used to beautify the model. We could develop an absolute
measure for the desirability of these sets and seek a set with a maximal desirability mea-
sure. But this would still mean that we have to check a large number of regularity sets
for solvability and would have to explore all combinations of regularities which yield a
solvable constraint system.

As an alternative for finding a set with a maximal desirability measure we could use
an evolutionary [44] or randomised approach. Bit strings indicating which regularities
are part of the selected constraint system can be used to represent the population. By
evaluating the selected systems with respect to solvability and desirability a maximum
could be found using a genetic algorithm. It is not clear how long such an approach
would take, but testing for solvability of multiple constraint systems is expensive and so
a straight-forward evolutionary approach may still take a long time. More sophisticated
approaches considering solvability properties may improve this. But note that in any
case a measure indicating the desirability of a regularity set is required which allows
comparing different selections consistently. Geometric reasoning in combination with
artificial intelligence techniques may provide an appropriate method for this evaluation.
This is, however, beyond the scope of this thesis and left as future work for more complex
models.

For the models considered in this thesis a simpler approach proved to be usable. Using a
sequential selection method which tries to add regularities in order of a priority is suitable
to improve simple to medium complexity models (see Chapter 7 for the experimental
results). Instead of a method to determine the overall desirability of a regularity selection
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we use priorities only to decide which regularity to choose in case of an inconsistency.
This way we get a selection of regularities with high priorities by at most considering
each regularity once for the solvability test.

We require a subset with likely regularities as indicated by priorities ω(r). While in
principle we could select the set with the highest sum of ω(r) in the selected subsets, this
actually requires that the sum has a meaning. Instead of being a priority, the ω(r) would
have to be an absolute merit. While the sums do not have to be a probability distribution,
there has to be an underlying probability distribution such that consistent decisions can
be made based on these sums. In general it is easier to construct meaningful ω(r) for our
regularities if they are only used to compare the likelihood of regularities being part of the
ideal design.

Hence, we have chosen a sequential approach of constructing a single subset which is
grown in order of the regularity priorities. We reject those regularities which create in-
consistencies in the selected subset. A summary of the general selection method is given
as Algorithm 4.1. Using the set of detected regularities R and the constraints T describ-
ing the model topology it selects a subset of R (including T) with high priorities which
represents a solvable constraint system. It uses the solvability test methods from above,
which are discussed in detail in Chapters 5 and 6, and a pre-selection mechanism based
on simple selection rules as described in Section 4.3. The regularities and constraints are
marked as inactive if they cannot be selected due to a selection rule, as active if they can
be selected and as selected if they have been added to the set of selected regularities.

Initially we have a list of potential regularities. Calling init_solvability in step I adds
sets of constraints between the features to each regularity to derive a low-level description
of the high-level regularities suitable for the solvability test (see Section 5.5). Depending
on whether we choose the numerical or topological solvability test, the constraints are
created slightly differently. However, in both cases they form a (hyper-)graph G where
the constraints represent the edges between the nodes which represent the cells with their
features (see Chapter 5). G is used by the actual solvability test to record information about
the solvability of the selected constraints. Moreover, priorities computes numerical
priorities in [0, 1] for each regularity.

The constraint sets describing different regularities may contain several constraints be-
tween the same geometric objects, e.g. multiple special values are considered for a single
scalar parameter such as a cylinder radius. It can also happen that different regularities
contain exactly the same constraints, e.g. an orthogonal system regularity and a planar
angle-regular direction regularity with the base angle π/4 in a eight-sided regular prism,
which suggest the same π/2 angle between two directions. We can detect these using the
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Algorithm select(R, T)

Select and report a consistent subset of the regularity set R with high priorities. T is the
set of constraints describing the model topology.

I. Call G = init_solvability(R) and priorities(R) to create appropriate con-
straint sets and priorities for the regularities in R.

II. Detect multiple constraints between the same geometric objects and run the initial
regularity selection using the function init_selection(R, G) (see Section 4.3).
This marks selectable constraints and regularities as active, and all others as inac-
tive.

III. Call solvable(G, S, t) for all constraints t in T (in order to properly build up G),
add them to the selected constraint set S, and mark them as selected.

IV. Repeat until R does not contain any elements marked active:
1. Remove the active regularity r from R with the highest priority for which all

regularities dependencies(r) it depends on are marked selected.
2. Let S0 = ∅ and for all u in the set of non-selected constraints U of r do

a. If solvable(G, S, u) is true add u to S0 and S, and mark u as selected.
b. Otherwise, reject r, i.e. mark all constraints in S0 as active, remove them

from S, remove all regularities depending on r from R, mark r as inactive,
call check_selection(r, R) to adjust the selection with respect to the
selection rules from step II, and exit the loop of step IV.2.

3. If all elements of U were successfully added, mark r as selected.
V. Report the selected regularities / constraints as the set of selected regularities.

Algorithm 4.1: Select Consistent, High Priority Regularities.

constraint graph G. If these constraints have the same constants, the related regularities are
consistent, so we replace them by a single constraint with a reference to it from each in-
volved regularity. This avoids adding the same constraint multiple times to the constraint
system. If the constraints involve different constants, then the related regularities are mu-
tually inconsistent and only one regularity can be added to the constraint system. This
generates a very simple selection rule. There are more complex situations which generate
similar rules. For instance, we detect cases where distance constraints between points are
limited by incidence constraints between points, e.g. the distances between a point p0,
and two other points p1 and p2 which are constrained to be equal, have to be the same.
These rules are detected by init_selection and an appropriate initial selection based
on these rules is made as well, such that the regularities and constraints are marked as
active and inactive. In general we try to mark as many high-priority regularities as active
as allowed by the rules. At this stage we cannot simply remove the inactive regularities
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with low priority as we may later still reject an active regularity, which in turn may allow
the reactivation of a low priority regularity (see step IV.2.b).

In step III we select the constraints describing the topology of the model and add them to
a constraint system S. While we know that they are consistent and can be enforced on the
model as we have an initial model and do not consider topological changes, we still have
to call solvable to properly build up the solvability information about the constraint
system (at least in the general case, for specific implementation of solvable, like the
numerical solvability test in Section 5.6, where G is not used, the call may be omitted).

In step IV we select the regularities. We take the active regularity with the highest prior-
ity from the list for which all regularities it depends on are already selected (step IV.1).
The constraints of this regularity which are not yet added to the constraint system due
to another regularity are checked in turn by solvable (step IV.2) and are added to the
constraint system (step IV.2.a). If solvable reports that a constraint created an inconsis-
tency in the constraint system, we reject the regularity and remove all constraints added
for this regularity from the system (IV.2.b), and all regularities which depend on it are also
removed from the regularity list. The new constraints for the regularity are all marked ac-
tive again as they may still be added as part of another regularity. The regularity itself is
marked inactive and we call check_selection to verify if the selection rules from step II
allow the activation of another regularity due to the inactivation. The check_selection
method may mark regularities active again which were previously marked inactive as a
previously marked active regularity is now inactive (see Section 4.3 for details).

We only select each regularity as a whole and not parts of it. For instance, consider a
cluster of parallel directions. If only one constraint in the regularity which makes a cer-
tain direction parallel to all the other directions creates an inconsistency, the complete
regularity is rejected. For those cases Algorithm 4.1 could easily be modified to accept
sub-regularities. As described in Section 5.5, a regularity is usually represented by a basic
structure and then the relation between the features from the cells in the model are added
to this structure. For instance, for parallel directions the directions are made parallel to an
auxiliary direction cell. For more complex regularities like repetitions we have to create
more than one auxiliary cell and specify relations between these cells. The constraints
required for the basic structure of a regularity always have to be added. Constraints which
specify the relation between the features of the cells and the basic structure may be omit-
ted. However, if too many of these regularities are omitted, e.g. only one direction is in
a parallel direction regularity, the regularity may become meaningless. Hence, more de-
tailed considerations to derive additional rules for splitting regularities are required. Note
that under the assumption that the initial model consists of a relatively small number of
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independent sub-parts and has a consistent design intent (see Section 1.2), splitting the
regularities is not a major issue and was thus omitted.

In the following we first describe the computation of the priorities in Section 4.2, then
we present the ideas behind the selection rules in Section 4.3. Finally we show how to
reconstruct an improved model from the results of the selection algorithm.

4.2 Prioritising Geometric Regularities

To resolve inconsistencies between regularities, a mechanism is required to select regular-
ities which are likely to be present in the model’s ideal design. As discussed in Section 4.1
we base the selection on a priority computed using merit functions. The decision about
which regularities to choose is non-trivial and often there is more than one sensible choice.

The priorities we use are real numbers in the interval [0, 1] where 1 indicates a very likely
regularity. The selection process in Algorithm 4.1 ensures that regularities with higher
priorities are selected if they are inconsistent with lower priority regularities. It does not,
however, maximise the priority sum of all selected regularities. The priorities are only
used to compare regularities in case of an inconsistency. They are not absolute measures
for quality or desirability and thus they do not necessarily have to be based on a probability
distribution or a similar mechanism.

There are many choices for the types of functions to compute the priorities. Functions
modelled to compare regularities in a consistent way (e.g. functions which produce high
priorities for regularities with small errors and low priorities for regularities with large
errors) usually create similar selection results independent of the particular functions used.
However, as the priorities indicate which regularities are preferred they also involve many
user-defined constants. This plays a major role in the choice of functions as it should be
possible for the user to predict the effect of changing the constants. Therefore we have
chosen simple functions, often of the same type, such that constants with similar meaning
have similar effects.

Functions completely different from those considered below could be used to model dif-
ferent selection criteria. Our particular functions mainly consider the accuracy to which
the regularity is present in the initial model and the desirability of the regularity solely
from a geometric point of view. So we consider measures for geometric aspects of the
regularities relating to the symmetry types, geometry types, etc. and the particular ar-
rangement and number of cells of the model involved in the regularity.
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To decide the priority ω(r) of a regularity r we consider the accuracy to which the regu-
larity’s constraints are satisfied in the initial model, and the quality or desirability of the
regularity. We compute ω(r) as a weighted average of a measure ωe(r) of the numerical
accuracy of the regularity in the initial model, a figure of merit ωq(r) for the quality or
desirability of the regularity, and a constant ωb(r) describing a minimum desirability for
each regularity type. We split the desirability in two values: ωq(r) indicates the desirabil-
ity with respect to the specific arrangements, constants, etc. involved in the regularity and
ωb(r) is a constant indicating a minimum for the desirability which only depends on the
general regularity type. Furthermore, the weighted average of these values is weighted
by a constant ωc(r) indicating how common the regularity is (determined by surveying a
range of engineering components, see Section 2.4 and [95]). Thus,

ω(r) = ωc(r) (ceωe(r) + cqωq(r) + cbωb(r)) (4.1)

where all constants and functions are in [0, 1] and cq + ce + cb = 1 (to get a weighted
average in [0, 1]), e.g. ce = 3/6, cq = 2/6, cb = 1/6. The maximum of ω(r) is ωc(r)
and the minimum for an undesirable regularity with high error is ωc(r)ωb(r)cb. Thus with
ωc(r) we set a maximum priority depending solely on the regularity type which allows
us to favour common regularities. This is modified by a value for the error ceωe(r) and
a value for the desirability cqωq(r) + cbωb(r). Here cqωq(r) indicates the desirability of
the specific instance of the regularity and cbωb(r) avoids to some extent that desirable
regularities with relatively large errors get too low priorities.

ωe(r) and ωq(r) depend on specific parameters for the regularity and are not just constants
as are ωc(r) and ωb(r). We use two basic function types for this. A function of the form

R→ [0, 1], x 7→ 1

1 + cx
for c ∈ R+ (4.2)

is used if small values of x are desirable and large values are not. c indicates how fast the
function drops towards zero. For cases where a specific value p ∈ R of x is favoured we
use functions of the form

R→ [0, 1], x 7→ exp
(
−|c(x− p)|d

)
for c ∈ R+, d ∈ R+. (4.3)

Here c indicates how fast the function drops towards zero, and d indicates at what distance
of x from p the function starts dropping quickly towards zero (d also has an influence on
how fast the function drops towards zero).

For our regularities we have angular errors in radians and length errors in length units
from the constraints. Thus, for ωe(r) we often have to combine an average angular error
er and an average length error el. ωe should be close to 1 for small errors and drop quickly
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towards 0 when the errors become too large. By converting the angular error to length
units using the maximum length Lm in the model we may define

ωe(r) =
1

1 + cl(Lm sin(er) + el)
(4.4)

where cl is a user-defined constant indicating the base length unit for the model, e.g.
cl = 1 or 2.54 (for inch in centimetre units). Lm could be chosen to be the diagonal of
the bounding box of the model, but note that sometimes smaller values like the maximum
edge length or a median / average value may be more appropriate to avoid emphasising
angular errors between small faces or edges too much.

ωq(r) describes the desirability or quality of the regularity if it could be enforced exactly
on the model, computed by considering the regularity type, the arrangement of the in-
volved cells, and features and special values involved. For instance, consider a planar
rotational symmetry of directions. One quality aspect is the special value for the base an-
gle of the rotation. We also take the number of pairwise adjacent faces into account as this
relates the regularity to planar angle-regular directions in a prism (in a prism with n faces
we have n pairwise adjacent faces). Furthermore, we consider the ratio of the number of
possible different directions which can be part of a planar angle-regular arrangement to
the number of directional features actually present in the regularity (for a base angle of
π/n we have n different directions which may not be all occupied as the regularity can be
incomplete). Another aspect which can be used is the number of directional features as-
sociated with cells of the same geometric type. We first define some quality aspects used
to compute ωq(r). The choice of the quality aspect is based on the information present in
the regularities and the methods used to detect them. They indicate certain aspects of the
regularity like special values or the type and number of faces involved, etc.

All special values involved in regularities have the form v = fb(±n/m) with integers n,
m, and a function fb : R → R representing the scale used to find the special values (see
Section 3.4). fb is usually of the form x 7→ xb where b is some base value like π or 1. We
evaluate the quality of special values using the function

ωsv(m, fb) =
2q(fb)

2 + c0l + c1
(

m
MK − 1

) (4.5)

where q(fb) is a constant in [0, 1] evaluating the desirability of the function fb which
indicates the scale (e.g. q(x 7→ xπ) = 1, q(x 7→ xπ/180) = 0.8, q(x 7→ arctan(x) = 0.4,
q(x 7→ x) = 1, . . . ), M is the base used to represent m (usually 10), l is one less than
the number of digits required to represent m in the base M , and K is the number of
consecutive zeros in the representation of m in base M starting with the lowest valued
digit. c0 is a constant indicating the importance of the length of the representation of
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Figure 4.1: Graph of Quality Merit Functions for (a) Special Values of Denominators
ωsv(m,x 7→ x) over m and (b) Common Boundary Elements ωa(X,0.5) over n(X).

m, c1 is a constant indicating the importance of the non-zero part of m, e.g. c0 = 0.01,
c1 = 0.005. The graph of ωsv(m,x 7→ x) is shown in Figure 4.1(a) for special values of
the form n/m. One can identify points on separate curves of the type of Equation (4.2) for
values with m of the type p ∗ 1000, p ∗ 100, p ∗ 10 with p ∈ N representing the non-zero
part of m. The formula for ωsv has been chosen to favour special values with a small
non-zero part m/MK and short representations in the base M .

Another quality aspect involves the number n(X) in a set X of |X| cells involved in the
regularity which have a common boundary element. For instance, symmetrically arranged
directions relating to pyramidal or prismatic arrangements of pairwise adjacent faces are
favoured. It is computed as

ωa(X, p) = exp

(

−
(

cw
(
p|X| − n(X)

))cp
)

(4.6)

with user-defined constants cw and cp (e.g. cw = 0.11, cp = 4) where the parameter
p indicates the most desirable number of adjacent objects. We get high priorities for
adjacent arrangements close to the desirable arrangement indicated by p. We can set X to
the set of faces F which should share common edges, the set of vertices V which should
be connected by edges or all cells O which should have a common boundary element. p
is 1 if we desire arrangements of the elements in loops and 0.5 if we desire adjacent pairs.
Figure 4.1(b) shows the graph of ωa(X, 0.5) for an X with 10 elements over the number
of elements n(X) with common boundary elements in X .

For regular arrangements of directions or axes we have a base distance which is a special
value (n/m)b. For symmetrically arranged directions and axes on a cylinder with base
angle π/m we have 2m different positions, and for axes on a line we count the number
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of positions between the first and the last occupied position. We prefer arrangements for
which most of the possible positions are occupied and use a quality aspect ωra(r) when
appropriate for a regularity r. If all consecutive positions are occupied ωra(r) for this
arrangement is ωsv(m, fb). Otherwise, we have a list of smallest integers k for which all
positions (starting with an arbitrary position) with the distance k(n/m)b between them are
occupied. For each k we add m/(kn)ωsv(m/ gcd(m, kn), fb) to ωra. For axes arranged
regularly on a grid we have two orthogonal directions. For each of the directions we can
project the occupied positions in the grid on a line and handle the line like equi-spaced
axes along a line. The average of the quality for both directions gives the quality of the
grid arrangement.

We also count the number c(t) of geometric objects of the same type t involved in a
regularity for the geometric objects O and compute the quality

ωt(O) =
1

|O|
∑

t∈ObjectTypes

c(t) exp

(

−
(

tw
(
|O| − c(t)

))tp
)

(4.7)

with constants tw and tp, e.g. tw = 0.05, tp = 2. The graph of ωt(O) is similar to
ωa(X, p) shown in Figure 4.1(b). It favours regularities with consistent object types, e.g.
two parallel planes are preferred to a regularity making a cylinder axis parallel to a plane
normal. Note that O for the computation of ωt of polygonal loops are the faces connected
by the edges in the loop.

Depending on the regularity type, we select appropriate quality aspects and compute their
weighted average to give ωq(r) as listed in Table 4.1. For example, for parallel directions
we mainly consider the quality ωsv(0, x 7→ xπ) of the parallel angle, but also prefer reg-
ularities with objects of the same geometric type. For symmetrically arranged directions
in a plane, we put the main emphasis on the number of occupied positions and faces ar-
ranged in a loop as computed by ωra(r) and ωa(F, 1), but also consider the special angle
value for the planar arrangement and the geometric types involved.

Table 4.1 also lists the constants we use for ωc and ωb. ωq, ωc and ωb were derived
from a part survey estimating the frequency of regularities in simple mechanical com-
ponents [95]. The constants were in addition refined to adjust the priority order of regu-
larities in various example models. Users may adjust these values depending on the types
of models arising in a particular application domain.

The values for all the constants considered in this section were chosen to give good results
for all our example models considered in Chapter 7. In all cases optimising the constants
for the individual model improves the selection of regularities. This mainly relates to
particular instances of the models and other details rather than to major regularities of



4.2 Prioritising Geometric Regularities 93

Regularity r ωc(r) ωb(r) ωq(r)

Parallel directions 1.00 1.00 0.8ωsv(0, x 7→ xπ) + 0.2ωt(O)

Rotational symmetries of direc-
tions (planar)

1.00 1.00 0.2ωsv(2, x 7→ xπ)+0.3ωa(F, 1)

+ 0.1ωt(O) + 0.4ωra(r)

Rotational symmetries of direc-
tions (conical)

0.90 0.70 0.3ωsv(m, fb) + 0.3ωa(F, 1)

+ 0.1ωt(O) + 0.3ωra(r)

Orthogonal system 1.00 1.00 0.6 + 0.3ωa(F, 1) + 0.1ωt(O)

Special angle between directions 0.90 0.60 0.8ωsv(m,x 7→ x)

+ 0.2ωa(0, 0.5)

Aligned axes 0.97 0.85 ωt(O)

Parallel axes arranged equi-spaced
on grids

0.90 0.85 0.3ωt(O) + 0.7ωra(r)

Parallel axes arranged equi-spaced
on lines

0.88 0.75 0.2ωt(O) + 0.8ωra(r)

Parallel axes arranged symmetri-
cally on cylinder

0.95 0.90 0.3ωt(O) + 0.7ωra(r)

Axes intersecting in a point 0.90 0.80 0.1ωa(F, 1) + 0.9ωt(O)

Equal positions 0.80 0.55 ωt(O)

Point set symmetries 0.95 0.90 1

Positions arranged equi-spaced on
grids

0.90 0.85 0.3ωt(O) + 0.7ωra(r)

Positions arranged equi-spaced on
lines

0.88 0.75 0.2ωt(O) + 0.8ωra(r)

Positions arranged equi-spaced on
circles

0.88 0.75 0.2ωt(O) + 0.8ωra(r)

2D partially equal positions 0.85 0.65 0.5ωa(V, 0.5) + 0.5ωt(O)

1D partially equal positions 0.83 0.60 0.5ωa(V, 0.5) + 0.5ωt(O)

Equal lengths / angles 0.90 0.75 ωt(O)

Special values for lengths / angles 0.85 0.70 ωsv(m, fb)

Special ratios between lengths /
angles

0.80 0.55 ωsv(m,x 7→ x)

Similar polygons 0.85 0.55 ωt(O)

Table 4.1: Constants and Merit Functions for Regularity Priorities.

the model. We often have a choice for special values or ambiguous regularities which are
about equally likely with respect to their accuracy in the initial model and their desirability
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(e.g. we can either allow for a high inaccuracy and make two planes parallel or only accept
small errors and thus favour an angle of say 3◦ between the planes). When adjusting the
constants to choose special values and ambiguous regularities we usually use additional
knowledge about the original design intent. Further details are given with the experiments
in Chapter 7.

While the order for selecting the regularities can be adjusted by changing the constants,
the rather large number of constants makes it hard to predict the effect of such changes
for a user who is not aware of the internal relations. A method to choose the constants
depending on a few multiple-choice questions presented to a user might improve this. In
the current system the priorities are sufficient to improve the model, but a more intelligent
decision process considering more complex relations between regularities and the model
on a global level could improve the regularity selection with respect to design intent.
Neural networks could be used to compute the priorities or directly make the decision
which regularity to choose next. A belief network could also make decisions about which
of the inconsistent regularities to include. This should be studied in combination with
more sophisticated general selection methods for more complex geometric models where
complexity here mainly relates to ambiguous and multiple, independent design intents
present in the model.

The various priority and error values could also be used to filter out regularities with small
priority values or large errors. This provides a simple mean for users to eliminate unlikely
regularities and it can speed up the selection process as fewer regularities have to be
considered. By providing the user with the priorities computed for a particular regularity
set the obviously unlikely cases can often easily be identified manually. In particular a
filter removing regularities with high errors (or low ωe) is useful to reduce the number of
undesirable regularities.

4.3 Selection Rules

To speed up the selection process we use a simple mechanism to avoid simple inconsis-
tencies. There are obvious inconsistencies between sets of regularities of the same type
involving the same geometric objects but with different special values. For instance, we
have multiple special values for the distance between two points or multiple choices of
the cone semi-angle for conical angle-regular direction features. These and similar incon-
sistencies can easily be detected and eliminated before we determine the solvability of the
constraint system. We detect constraints between the same features or between features
made equal by incidence constraints. This results in selection rules which are used to
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make a pre-selection in step II of Algorithm 4.1 and adjust the selection options in case a
regularity is rejected.

As the candidate regularities often specify multiple potential relations between the same
features, eliminating simple inconsistencies reduces the number of regularity selections
we have to check for solvability and thus speeds up the algorithm. However, not all
inconsistencies can be removed in this way as there are more complicated dependencies
induced by multiple regularities between different geometric objects.

By traversing the list of constraints from all regularities, we can detect sets of constraints
between the same features. We first note constraints between the same features with the
same constants involved to avoid adding the same constraints more than once to the sys-
tem. These constraint sets are replaced by a single constraint and the regularities contain
references to this single constraint. Furthermore, we detect regularities associated with
constraints between the same features with different constants as these cannot be added
at the same time. For this we create a rule indicating that only one of the contradictory
regularities can be added simultaneously.

Further inconsistencies arise from incidence constraints (e.g. there can only be one special
ratio between two scalar parameter pairs (a, b), (a, c) if we also have a constraint b = c).
We expand the inconsistency check by considering these incidences when checking if the
constraints involve the same geometric objects. This creates rules with a condition that the
rule only applies if the incidence constraints are present. We get conditional rules of the
form that if certain regularities are part of the constraint system then other combinations
of regularities cannot be part of it. Note that in the current implementation we never con-
sider more than one incidence constraint. In principle, we could expand this to multiple
incidence constraints at the expense of increasing the costs of enforcing the rules (more
rules have to be considered in a network of rules). Detecting these inconsistencies can
easily be implemented using the constraint graph. Care should be taken to avoid checking
too many incidence constraint combinations, and increasing their depth as this may take
longer than checking these conditions with the solvability test.

In step II of Algorithm 4.1 the method init_selection is called. It first constructs se-
lection rules using the constraint graph as described above, and then marks all regularities
as active. For each of the rules it then calls Algorithm 4.2 to enforce a selection rule on the
regularities by marking some of them as inactive. For regularities which remain active,
all their constraints are marked active as well. As the constraints can be part of multiple
regularities they have to have a separate marker.

To handle the selection rules algorithmically we require a simple way to represent them.
The rules from the inconsistency detection stage can in general be expressed as selection
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Algorithm enforce(r, D)

Enforce rule r with the regularity sets R1, R2 and integers n1, n2 on the constraint system
without activating any of the regularities in the set D. This algorithm changes the activation
markers of the regularities.

I. Deactivate regularities in Rk to satisfy r, if there are more than nl active regularities
in Rl for all k = 1, 2 for which Rl 6= ∅ and note the deactivated regularities in d:

1. For k = 1, 2 find all active sets Ak in Rk and remove the nk elements with the
highest priority.

2. Find the set Ak0
with the smallest largest priority.

3. Call deactivate(c, d) for all c ∈ Ak0
.

II. Find a set X of regularities which may be activated due to the deactivations by check-
ing for each c ∈ d and for each previously enforced rule e:

1. If before step I for e there were at least n1 + 1 active elements in R1 and now
there are less, or R1 is empty and there were n2 active elements in R2 and now
there are less, add all inactive regularities from R2 to X.

2. If before step I for e there were at least n2 + 1 active elements in R2 and now
there are less, or R2 is empty and there were n1 active elements in R1 and now
there are less, add all inactive regularities from R1 to X.

III. D = D ∪ d.
IV. Try to activate all regularities in X:

1. Recursively add all inactive children and dependent regularities of the ele-
ments in X to X and remove those which are in D (including those which depend
on them).

2. In order of priority call active(c, X) for each element c of X.
V. Call enforce(r, D) for all already enforced rules r which may be affected by the

activations in IV.

Algorithm 4.2: Enforce a Selection Rule.

rules which involve two sets of regularities R1, R2 and two non-negative integers n1, n2.
A rule is violated if more than nk elements of Rk are active for all l = 1, 2 for which
Rk 6= ∅ (in general this can be done for any number of nk, Rk pairs). One interpretation
of this is, that if at least n1 + 1 elements of R1 are active, then at most n2 elements of
R2 are allowed to be active. In this form R1 and n1 represent the condition, which is
derived from the incidence constraints, and R2 and n2 represent the regularities creating
the inconsistency under this condition. Note that if R1 = ∅ and n1 = 0 we have an
unconditional rule.

Without trying to define this exactly, in a general sense the rules can be seen as hyper-
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edges between regularity nodes. The nodes connected by each edge are divided into
two sets. To enforce rules we can add the rules in sequence to this graph and adjust
the labels (active/inactive) of the regularities to satisfy the new rule. As changing the
labels also influences previously enforced rules we have to check them again. This can be
done by following all edges in the graph which involve regularities for which the labels
changed. In the worst case this means that we have to follow all paths in this graph (again
without trying to define this precisely). While this makes our approach rather expensive,
the number of paths is limited by the number of selection rules we detect. As the current
implementation only considers a few simple, but rather common rules the number of paths
we have to consider is relatively small. The practical costs of our approach depend on the
number and type of rules detected and is hard to determine.

Due to the high costs of enforcing a rule, expanding the rules to more general cases is not
feasible. Also for each inconsistency type which can be expressed with our rules a spe-
cialised method has to be implemented. While the rules on single distances in the feature
space are easy to detect, there are far more complicated cases. For instance, consider the
distances between nÀ 2 points in E3. There are many rules for which of these distances
can be constrained at the same time. If we ignore special cases relating to special distance
values any set of 3n − 6 distances is consistent. Specifying this in terms of our rules of
what cannot be selected at the same time creates

(
n(n−1)/2

3n−6

)
rules specifying that if 3n− 6

distances in the first set are selected than none of the remaining
(
n
2

)
−3n+6 distances can

be selected (without considering any special cases). The selection rules were not created
for these cases and there is a far more efficient way for the generic case (see Chapter 6).

Hence, with the selection rules in the current implementation we can only resolve simple
inconsistencies between constraints on the same geometric features with different con-
stants where at most one of the involved features is constrained to be incident with another
one. As this is often the case with our regularities it can still reduce the number of regu-
larities considered for the solvability test. The algorithm is not intended for other cases.
In particular it is used to reduce the time required for the numerical solvability test. As
the topological solvability test is considerably less expensive than the numerical test there
is no real requirement to use this method. But note that we still have to check for equal
constraints to avoid adding the same constraints more than once (which causes problems
for the topological test as well as for solving the constraint system numerically). Thus,
the detection of simple inconsistencies between constraints on the same features with dif-
ferent constants can easily be done and we still use it for the topological solvability test.

For each selection rule r Algorithm 4.2 is called with D = ∅. D is used to keep track of
deactivated regularities which basically avoids following cycles in the graph. It adjusts
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the selection status of the regularities such that in addition to the already enforced rules
the new rule is also satisfied and the regularities with the highest priorities are active. For
this we have to consider deactivating regularities in R1 or R2 to enforce the new rule r (step
I). In case of a violation of a rule we have to deactivate elements in one of the Rk such
that at most nk elements are still active. Let Ak be the set of elements we would have to
deactivate in Rk to satisfy the rule and ωk be the largest priority in Ak. Then we choose to
deactivate the set with the smallest ωk. This way we keep regularities with larger priorities
active rather than trying to maximise the priority sum of all active regularities. Note that
the priorities have been designed to compare regularities in case of an inconsistency, but
not for a global desirability.

The deactivations may allow the activation of other regularities as it may reduce the num-
ber of active elements in one of the Rk sets for another, already enforced rule (step II and
IV). If we activated any other regularity we have to check already enforced rules involving
these regularities (step IV). To avoid activating and deactivating regularities over and over
again in the recursive calls of enforce we keep a set of deactivated regularities and do
not allow any of them to become active again during the recursion. Note that this set is
reset to ∅ for each initial call of enforce for each rule.

The function deactivate(c, d) used in enforce deactivates a regularity c and adds it to
the set d. It also deactivates any regularities depending on it recursively (its parents in the
hierarchy and those explicitly marked as dependent) and adds them to d.

The function activate(c, X) tries to activate a regularity c with the option that the reg-
ularities in the set X may also be activated. It first checks if the regularities on which c

depends are active. If one is inactive and in X, it removes it from X and tries to activate
it calling activate recursively. If not all dependencies are active or can be activated, c
cannot be activated. Furthermore, for all already enforced rules involving c we check if
c can be activated. Assume c is an element of R2 and more than n1 elements of R1 are
active or R1 is empty. In order of highest to lowest priority, the inactive regularities in R2

which are in X are removed from X and we try to activate them recursively as long as less
than n2 elements of R2 are active or c is next in the order (which means the rule allows the
activation of c). We handle the case where c is an element of R1 similarly. If all the rules
involved allow the activation of c, c is activated. Any previously enforced rule for which
the activation of c caused exactly nk + 1 elements of Rk to be active for either k = 1 or
k = 2 is added to the set of rules which have to be checked in step V of Algorithm 4.2.

For instance, assume that we have four regularities A, B, C, D, which are all marked
active and for which ω(A) < ω(B) < ω(C) < ω(D), and three rules we wish to enforce
(see Table 4.2). First we add the rule with R1 = ∅, n1 = 0, R2 = {A,B}, n2 = 1, i.e.
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A B C D 3 rules enforced in sequence:

• • • • Initially all regularities are active

Rule 1: R1 = ∅, n1 = 0, R2 = {A,B}, n2 = 1

¤ • • • At most either A or B, not both, can be active
→ Deactivate A due to lower priority

Rule 2: R1 = {B}, n1 = 0, R2 = {C,D}, n2 = 1

¤ ¤ • • If B is active, then at most either C or D, not both, can be active
→ Deactivate B due to lower priority

Recheck rule1, as B was modified
• ¤ • • Rule 1 allows reactivation of A

→ Activate A

Rule 3: R1 = {B,D}, n1 = 0, R2 = {A,C}, n2 = 1

¤ ¤ • • If B or D are active, then at most either A or C, not both, can
be active
→ Deactivate A due to lower priority

Recheck rule 1, as A was modified
¤ ¤ • • Cannot reactivate B due to rule 2

→ Final regularity activation

Figure 4.2: Selection Rule Enforcement Example for Regularities A,B,C,D with
ω(A) < ω(B) < ω(C) < ω(D) (• indicates active, ¤ inactive regularities).

either A or B, not both, can be active. Calling enforce deactivates A due to the lower
priority. We add a second rule with R1 = {B}, n1 = 0, R2 = {C,D}, n2 = 1, i.e. if
B is active, then either C or D, not both, can be active. We deactivate B in this case.
This influences the selection for the first rule and we can activate A again. Finally, we
enforce a third rule with R1 = {B,D}, n1 = 0, R2 = {A,C}, n2 = 1, i.e. if either B
or D is active, then either A or C, not both, can be active. We deactivate A to satisfy the
rule, leaving only C and D active. Considering the first rule we have to check if B can
be activated due to the deactivation of A. Calling activate initially succeeds in this, but
the recursive check deactivates B again due to the second rule.

In step IV.2.b of Algorithm 4.1 we call check_selection(r, R) to check if the deactiva-
tion of the regularity r allows us to activate some other regularities due to the selection
rules. The method for this is very similar to Algorithm 4.2. We basically call activate



100 4.4 Constructing an Improved Model

for each of the deactivated regularities which are part of selection rules that also refer
to r and call Algorithm 4.2 for rules which may be violated due to the newly activated
regularities.

4.4 Constructing an Improved Model

The regularity selection process (Algorithm 4.1) results in a list of consistent regulari-
ties as determined by the solvability test which have in general high priorities. They are
represented by constraints which describe the improved model. In this section we briefly
describe how to construct an improved model from this constraint system and the addi-
tional information from the initial model.

If we use a numerical solvability test we already have the numerical solution of the con-
straint system from the last successful call of the solvability test. The topological solvabil-
ity test does not compute a solution and thus we still have to solve the system. Our version
of the topological solvability test does not produce a decomposition of the constraint sys-
tem which would allow a symbolic solution, so we simply call the numerical solver to find
a solution of the constraint system. This is followed by the actual reconstruction process.

A numerical approach is justified as we already have a valid boundary representation
model which should be close to the improved model. It can be used to provide a good
initial value for the numerical solver. As the initial value is close to the solution we only
require a few iterations. If a solution exists the optimisation method will converge to
one that is close to the initial value [42]. In the case of a discrete set of solutions this is
sufficient to improve the model. In the case of non-discrete solutions close to the initial
value, the detected regularities are insufficient to specify a unique model. As we aim
to find a large number of regularities this is unlikely, and did not occur in any of our
tests. However, we can still choose the solution closest to the initial model. Symbolic
methods based on the results of the solvability test using the graph representation of the
constraint system are an alternative to our numerical solver. It may be possible to modify
the solvability test to create a decomposition plan for a symbolic constraint solver [51, 52].
For the description of the numerical solvers we used see Section 5.6. The topological
approach is described in Chapter 6.

From the numerical solution of the constraint system an improved model is rebuilt using
the topological information from the initial model with the feature values obtained from
the solution. We create new faces using the solution of the constraint system and re-
intersect them to obtain the complete model. From the solution of the constraint system
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we have the vertex positions and the faces. We get sharp edges by using a standard
surface-surface intersection algorithm for the adjacent surfaces (as provided by the ACIS
solid modelling kernel). For a closed curve the intersection gives the edge immediately.
Otherwise we have to limit it with vertices to get the edge. If multiple options arise for
the intersection, the information in the initial model is used to determine which part of the
intersection curve is required, e.g. to distinguish between a convex and concave cylindrical
surface.

In the case of a smooth edge, the intersection is tangential and cannot be computed by a
standard intersection algorithm. Such intersections relate to special cases which can be
computed separately for all combinations of the considered surface types. For instance,
as we do not consider topological changes we may try to intersect two equal planes. By
checking the parameters of the planes this case can easily be detected and the intersection
is simply computed as the straight line between the two vertices in the intersection. Other
tangential intersections with planes, e.g. a plane and a cylinder, can be handled similarly.
More generally, this applies to any tangential intersection which is a straight line. Another
case is a tangential intersection between a torus and a cylinder in a circle. This case can
be detected by checking whether the cylinder axis is tangential to the central circle of
the torus and the cylinder radius is equal to the minor radius of the torus. The point
where the cylinder axis is tangential to the circle gives the centre of the intersection circle
whose radius is determined by the common radius. Note that in general it may be useful
to explicitly compute special intersections which are not necessarily tangential (e.g. the
intersection of a cone on top of a cylinder) in order to get analytic representations of the
intersections rather than free-form curves.

Additional adjustments include moving the object to a special position and orientation
with respect to certain determined vertex positions, orthogonal systems and main axes.
Topological changes and problems relating to holes in the model caused by adjacent sur-
faces which do not properly intersect due to the adjustments are not considered here. The
changes have to be small enough such that the topology need not be changed. The topo-
logical issues are discussed separately [40] and are not part of this work.

4.5 Summary

This chapter describes the core of the regularity selection and the general strategy used
for it. We select regularities sequentially in order of a priority considering dependencies
between them. Geometric constraints are used to determine if the selected regularities
are consistent. From the solution of a selected, consistent constraint system created from
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regularities with high priorities, an improved model is reconstructed. A numerical and a
topological approach to the solvability test are described in the following chapters. To
reduce the number of calls to the solvability test we also use simple selection rules. These
are of particular importance for the numerical solvability test. The topological test is fast
enough such that an even simpler version of the selection rules can be used.

Our rather simple selection strategy is sufficient for the types of models we consider in
this thesis (see Section 1.2). The results of the experiments reported in Chapter 7 show
that the method selects a suitable set of regularities. For more complex models with many
independent sub-parts, etc. a more sophisticated approach may be required. However, this
is beyond the scope of this thesis and is left as future work. Here we are more interested in
regularity detection and determination of the solvability properties of geometric constraint
systems.
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Chapter 5

Geometric Constraints

One of the crucial subtasks of the regularity selection strategy discussed in Chapter 4 is
the test whether a consistent set of regularities remains consistent if an additional regu-
larity is added. As we express the regularities in terms of geometric constraints, this test
can be implemented by checking whether a solvable constraint system remains solvable
when additional constraints are added. While we ultimately require a solution of the geo-
metric constraint system which represents an improved geometric model, the main aspect
for the selection process is the solvability of the constraint system. In this chapter we
give a general overview of geometric constraint systems, and the different approaches to
testing for solvability and computing a solution. We also present a simple numerical solv-
ability test and solver employing optimisation methods, and discuss ways to represent the
regularities using geometric constraints. A more sophisticated approach to the solvability
problem based on the topological dimensions of the involved sets will be presented in
Chapter 6.

The main purpose of this chapter is to give a general overview of previous work in the area
of geometric constraints. It also very briefly introduces the author’s topological interpre-
tation of geometric constraint systems which was first presented in [73] (see Section 5.4)
and the representation of regularities using constraints [72, 73] (see Section 5.5). Fur-
thermore, a numerical solver employing quasi-Newton (or variable metric) optimisation
methods developed by the author [72] is described in Section 5.6.

5.1 Geometric Constraint Systems for Beautification

Geometric constraints have a wide range of applications in geometric modelling. For
their general role in geometric modelling see [53]. For an overview of the representation
of geometric constraints and geometric constraint solvers see, for instance, [17, 33, 51].
In the following we will introduce geometric constraint systems in general, and discuss
their use for the beautification problem, in particular.
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A geometric constraint system consists of a set of geometric elements like points, lines,
planes, etc. and a set of geometric constraints upon them specifying desired relations be-
tween the elements. The constraints may, for instance, specify the distance between two
points, the angle between two planes, or require that a point lies on a line or a plane,
etc. We call finding one (or all) solutions of a geometric constraint system a geometric
constraint solving problem. For a geometric constraint solvability problem we try to de-
termine if a geometric constraint system has at least one solution (this includes a finite as
well as an infinite number of solutions). Note that the solvability problem does not neces-
sarily require the solution of a constraint system, and thus there may be a more efficient
way to decide if the system is solvable since we require in some sense less information.

For the beautification problem, the geometric elements of a constraint system are the cells
of the boundary representation of the initial model (see Section 2.1). As we do not con-
sider topological changes to the model and construct the improved model by intersecting
the geometry of the faces, the constraint system only determines the geometry of the cells.
Basic topological relations are expressed by constraints on the geometry ensuring that it is
compatible with the topology. The regularities relate to the features of the cells (see Sec-
tion 2.2) and are described by constraints upon the cells specifying relations between their
features. Constraints on base features can be expressed directly by constraints between
the cells. For constraints on extended features we have to introduce auxiliary cells repre-
senting the extended features (e.g. an auxiliary line to represent a cylinder axis feature)
and represent the dependencies between the base and extended features by additional con-
straints. Details of the construction of the constraint system to improve an initial model
are given in Section 5.5.

The geometric constraints used to represent regularities can be classified into three types.
We have incidence constraints which require that two cells or two features of the same
type are equal (either with respect to the geometric realisation of the cells or the features
in the feature space), distance constraints which require that two features of the same type
are a positive distance apart in the feature space, and subset constraints which require that
a cell is a subset of another cell (with respect to the geometric realisation). Note that only
subset constraints can relate different types of feature spaces with each other.

For the regularity selection strategy described in Chapter 4 we have a geometric constraint
solvability problem besides the regularity selection problem. We only require a solution of
the complete constraint system selected to improve the model. In particular we are inter-
ested in determining whether a given, solvable geometric constraint system (possibly the
empty system) remains solvable when we add an additional set of consistent constraints.
We already have an initial model which can be seen as a solution to a similar constraint
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system close to the solution of the new constraint system we try to construct. Hence, the
question of the cardinality of the set of solutions (especially whether there is a finite or
an infinite number of solutions) is relatively unimportant. Theoretically we can define the
desired solution as the one closest to the initial model. Practically, we choose the solution
determined by a numerical solver, which is very likely to be close to the initial model (see
Section 5.6). However, it is of course desirable to have a constraint system with a discrete
set of solutions which are sufficiently apart from each other such that we have a distinct
solution close to the initial model. While we do not explicitly check for this, during the
selection all regularities are considered in sequence. Thus, if we detect sufficient approx-
imate regularities in the initial model, it is likely that we will select sufficient constraints
to get a finite set of solutions. We can encounter certain cases where we have an infinite
set of solutions, but without further regularities, we cannot add more constraints without
additional regularity detection methods. The large number of regularities detected by our
methods makes this situation unlikely. The main problem during selection is to ensure
that we do not add too many constraints to the system, so that it has no solution.

For an inconsistent system we can only find solutions which approximately (within a
possibly large tolerance minimising, for instance, the least squares error) satisfy all con-
straints. In this case, none of the regularities nor the required topological relations are
likely to be satisfied by the resulting model. Hence, the resulting model will be broken
and is very unlikely to represent any kind of improvement over the initial model.

In this chapter we present a simple numerical test (see Section 5.6) which determines the
solvability of a constraint system by minimising a least squares error function. Using this
means we have to numerically solve many constraint systems during the selection process,
so this test dramatically slows down the beautification algorithm. But while our main
problem is solvability, we also require a solution for the final set of selected constraints.
For simplicity we always use the numerical method to solve the final constraint system,
but alternative decomposition-recombination methods [51, 52] together with some other
numerical or symbolic solver could certainly be employed as well. We will present a more
efficient solvability test in Chapter 6.

In the following sections we first review numerical and symbolic algebraic as well as
rule-based geometric approaches to geometric constraints (for a general overview also
see [17, 33, 51]). Furthermore, we discuss a graph-based or topological interpretation of
constraint systems which is the basis for degrees-of-freedom analysis and our solvability
method discussed in detail in Chapter 6. Then we introduce our particular constraint types
and how they are used to represent our regularities. Finally, we present our numerical
solver in detail.
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5.2 Algebraic Interpretation of Geometric Constraints

We can interpret a geometric constraint system as a non-linear equation system. Each ge-
ometric constraint is expressed as one or more equations on parameters describing the ge-
ometric elements. This gives a system of m equations for n parameters x = [x1, . . . , xn]

t,

F (x) =







f1(x)
...

fm(x)






= 0 with F : Rn → Rm and fl : Rn → R, l = 1, . . . ,m. (5.1)

The fl are usually polynomial functions, but in some cases they may involve analytical
functions (e.g. trigonometric functions if we have variable angles). Methods which handle
the constraint system as a non-linear equation system are based on the algebraic properties
of the constraints. Such methods can be further distinguished as numerical and symbolic.
In the following we give a brief overview of these methods. While they are all aimed at
computing a solution of the constraint system, they can also be used as a solvability test.

5.2.1 Numerical Methods for Geometric Constraints

Numerical methods solve a particular instance of a geometric constraint system by pro-
ducing a numerical solution using an iterative algorithm. Unlike symbolic methods (see
Section 5.2.2), they do not solve classes of geometric constraint systems, creating a solu-
tion depending on certain constant parameters.

A classical, widely used method to find the solution of a non-linear equation system is
the Newton-Raphson method [101]. Let x∗ be a solution of a non-linear equation system
F (x) = 0 and let DF (x) =

[
∂fl(x)
∂xk

]

l=1,...,m
k=1,...,n

be the functional matrix of partial derivatives

of F . For an approximation x0 of x∗ we have F (x∗) = 0 ≈ F (x0) + DF (x0)(x
∗ − x0)

using the first order approximation of F at x0. For non-singular DF (x0) we can solve
F (x0)+DF (x0)(x1−x0) = 0 for x1, which yields the Newton-Raphson iteration formula.
This and similar methods like the secant method directly seek the solution of an equation
system starting with some initial value which approximates the solution.

Alternatively, we can use an optimisation method trying to minimise a function indicating
the error in an approximate solution to F (x) = 0 [28, 62, 122]. Given an error function
tF : Rn → R, we try to find a solution to the equation system ∇tF (x) = 0, which is a
necessary condition for an extremum of tF . A general iteration formula to find a solution
to this equation system is xl+1 = xl − σldl where xl is an approximation to a solution, σl
is a step size in R+ and dl ∈ Rn is a direction for l = 1, 2, . . . . The difference between
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such optimisation methods is in the different ways of finding σl and dl. The values are
chosen such that there is a sufficient decrease of function values in the sequence tF (xl),
l = 1, 2, . . . , in order to guarantee the convergence of the method to a (usually local)
minimum. For a least squares error function tF (x) = F (x)tF (x), methods developed
to minimise quadratic functions are suitable. This means that quasi-Newton (or variable
metric) methods as discussed in Section 5.6 are of use when solving geometric constraint
systems by optimisation.

Iterative equation solvers as well as optimisation methods depend on the initial value for
the iteration and may converge to different values for different initial values. For the
Newton-Raphson method, the sets of initial values for which the method converges to a
particular solution are fractal sets [105]. This makes it hard to predict which solution we
will get from a given initial value, and how to change the initial value in order to find a
different solution. Hence, using the initial value from our initial model may not result in
a solution which produces an improved model close to the initial model.

Using the optimisation approach it is more likely that we will find a solution close to the
initial value [42]. This makes this approach more suitable for our problem, as we have a
good initial value from the initial model. However, the optimisation method may converge
to a local rather than a global minimum, and a local minimum is not necessarily a solution
to the constraint system. Using certain safeguards for the optimisation (see Section 5.6),
and the fact that the initial value is close to the desired solution, makes it very likely that
we will find a global minimum of the error function and thus a solution to the constraint
system. This has been confirmed by our experiments (see Chapter 7).

Hence, while equation solvers and optimisation methods have major drawbacks for solv-
ing constraint systems in general, the optimisation method is suitable for solving the con-
straint systems arising in beautification. However, as it requires a relatively large amount
of time to solve the constraint system compared to our other algorithms for beautification
and the topological solvability test, it is not suitable as general solvability test.

For completeness we also shortly mention homotopy methods which avoid the problem of
finding a good initial value. The basic idea is to convert the solution of a known, “simple”
equation system into the solution of the given system. The homotopy equation is

H(x, λ) = (1− λ)G(x) + λF (x) for λ ∈ [0, 1], (5.2)

where G(x) is the simple system and F (x) is our given system. Using Equation (5.2) we
can transform solutions of G(x) = H(x, 0) = 0 into solutions of F (x) = H(x, 1) = 0.
The parameter λ determines the homotopy path from a solution of G(x) to a solution of
F (x). For instance, a predictor-corrector approach can be used to find this path [3]. Let x
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be the value on the homotopy path for a given λ = λ0 (starting at a solution of G(x) = 0).
A predictor computes x1 as an approximate solution of H(x, λ0 + δ) = 0 for a small
δ ∈ R. Then a corrector uses x1 to compute a point on the homotopy path for λ0 + δ.
Obviously the choice of the system G(x) is crucial for an efficient homotopy method.
It determines the number of paths from G(x) which are followed to F (x). Ideally each
solution of G(x) should lead to a unique solution of F (x), but this is not true in general
and often solutions of G(x) = 0 lead to solutions of F (x) = 0 at infinity. Such solutions
are difficult to detect and expensive to compute [96].

For solving general geometric constraint systems homotopy methods are numerically sta-
ble and versatile methods to find all solutions of a constraint system [4]. However, they
also require expensive computations and thus are limited to small systems. For further
details see [3, 31, 71, 84, 113].

5.2.2 Symbolic Methods for Geometric Constraints

Symbolic methods for solving constraint systems are based on algebraic elimination in
combination with root finding methods. One advantage of these methods is that they can
solve classes of constraint systems. The solution can be computed such that it depends
explicitly on parameters describing a particular instance of a constraint system class.

One class of symbolic methods is based on polynomial ideals. Let F be a set of polyno-
mials f1, . . . , fn. The ideal of F is I〈F 〉 = {h1f1 + · · · + hnfn : hl ∈ K[x1, . . . , xn]}
where K[x1, . . . , xn] is the ring of n-variable polynomials over the coefficient field K.
This means we can interpret F as the basis for the ideal I〈F 〉 which is generated by mul-
tiplying the elements of the polynomial ring with the elements of F . If we have another
set G of polynomials g1, . . . , gn which forms a basis of I〈F 〉, then any root of F is also a
root of G. A Gröbner basis is a special basis of I〈F 〉 which allows us to answer questions
about consistency, ambiguity, solvability, etc. Thus the core of this approach is to trans-
form the original system into an equivalent system represented in the Gröbner basis. The
transformed system is also called a triangular system and it can be solved easily by find-
ing roots of univariate polynomials and back-substitution. For a detailed discussion of the
theory see [19, 20, 24]. It has been applied to geometric constraint systems in [65, 114].

A similar method is based on Ritt’s characteristic (or triangular) sets [111, 112]. It has
been used in [22, 138, 139] for theorem proving in mechanical geometry. This method
decomposes the solution set of an algebraic system into set-expressions involving the
solutions of simpler systems. Further methods relating to the decomposition of solution
sets of polynomial systems into triangular sets and solving over R are presented in [61,
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80, 108, 109, 110, 132]. A detailed discussion about different concepts of triangular sets
can be found in [81].

Another approach can be interpreted as a generalisation of determinants for linear sys-
tems. This approach is based on the resultant of a polynomial constraint system [21]. The
main idea is to expand the original system into a larger system which contains the terms
of the original system as distinct variables, and then decompose and solve this system as
a sparse polynomial system [43, 123, 124, 125].

A major drawback of all such symbolic methods is that they require exponential running
time. Thus they cannot handle problems of the size encountered in beautification. One
of the main reasons for this is that the algorithms see the problem as solving a general
polynomial equation system, which covers a class of problems in some sense larger than
geometric constraint solving problems. Methods which consider the specific structure of
geometric constraint problems are expected to be more efficient.

5.3 Rule-Based Geometric Interpretation of Geometric
Constraints

One way to consider the geometric structure of constraint systems is to represent the con-
straints as a set of rules and predicates. By employing rewrite rules, which represent the
geometric knowledge of the solver, we attempt to find a construction sequence that satis-
fies all constraints. Basically, the predicates which describe the desired relations between
the geometric elements are transformed into predicates which describe the position, etc.
of the geometric elements.

Borning [14] presents such an approach by extending Smalltalk. A constraint is repre-
sented as rule and a set of methods that can be invoked to satisfy the constraint. The rule
constructs an error expression indicating whether and how well a constraint is satisfied.
The methods describe alternate ways of satisfying the constraint. By calling one of them
the constraint will be satisfied. The rules and the methods are provided by the user and
the system’s task is to find ways to locally satisfy the constraints such that eventually a
global solution is found. Another approach which computes all solutions symbolically
is presented by Brüderlin [18]. Here the predicates are represented in Prolog and the
construction steps are evaluated by calls to Modula-2 methods.

An approach of Verroust et al. [131] can handle dimensional, tangency and radius con-
straints. The constraint system is expressed in terms of mutually constrained distances
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and angles which are evaluated simultaneously. Joan-Arinyo et al. [59] extend this basic
system and prove its correctness. In [60] the method has been combined with a symbolic
equation solver.

Gao et al. [41] describe a constraint solving system that generates a construction sequence
from a declarative description of geometric diagrams. A global propagation method is
used to solve problems which involve loops. Similar to a local propagation method [82],
it tries to determine the position of a new geometric element from positions of already de-
termined geometric elements. But in addition to constraints involving the new geometric
element, it also considers implicit information derived from other constraints. This im-
plicit information is computed prior to the actual constraint solving and is deduced using
a fixed set of geometric axioms.

Rule-based methods explicitly represent geometric knowledge, and the representation of
this knowledge is separated from the processing. This means it is relatively simple to add
additional rules and adjust it to different problems. However, finding a solution is likely
to be slow as the inference mechanism involves an exhaustive search.

5.4 Topological Interpretation of Geometric Constraints

The methods discussed so far are all computationally expensive. As we require a solv-
ability test for a large number of constraint systems as differing constraints are added
and removed, such methods are not suitable for our selection strategy. A more efficient
method is required. In this section we briefly discuss our new interpretation of geomet-
ric constraints based on the topological type of the sets involved. This is closely related
to degrees-of-freedom analysis where the topological dimensions of the involved spaces
represent the degrees of freedom of the geometric elements. In this section we only intro-
duce the general idea. A detailed discussion of this new approach and examples will be
presented in Chapter 6 in combination with our topological solvability test.

From a set-theoretical point of view we can start with an unconstrained tuple of elements
involved in a constraint system. The set of allowed values for the tuple is a product space
of sets indicating the maximal range of values for the elements. A constraint requires
that the tuple lies in a subset of the product space. For instance, consider a fixed distance
constraint between two points. The unconstrained point pair can have any value in R3 ×
R3. The constraint limits this to the subset of point pairs which are the given distance
apart, i.e. one of the two points has to lie on a sphere around the other point. Hence, the
set of solutions of a constraint system is the intersection of the subsets selected by the
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constraints. In the case of only distance constraints between points, a point may have to
lie in the intersection of multiple spheres.

For a product space generated by finite sets, this creates links between constraint satisfac-
tion and universal algebra [56, 57]. A constraint satisfaction problem becomes a pair of
relational structures, and the solutions to the problem are the structure preserving map-
pings between these two structures. However, for geometric constraints the elements of
the product are infinite sets, which makes the problem more complicated.

However, all the sets involved in geometric constraint systems have a topological structure
(one of the reasons feature spaces are required to be path-wise connected, smooth mani-
folds; see Section 2.2.1). The set of geometric elements of a given type are manifolds, and
our regularities are described in terms of regular arrangements of features which are also
elements of manifolds. The subsets selected by geometric constraints can be interpreted
as (lower-dimensional) sub-manifolds of the feature space. Satisfying multiple constraints
means that we intersect these sub-manifolds. The details will be discussed in Chapter 6.
At the moment it is only important to notice that a constraint selects sub-manifolds of
some of the manifolds for the involved geometric elements. These sub-manifolds reduce
the dimension of the sets of allowed values for the elements. When intersecting these
sets we can argue generically about the result of the intersection and this again gives a
dimension reduction of the sets. By generic we mean a likely configuration which does
not require any special conditions. For instance, in the case of distance constraints be-
tween points, we have to consider the generic intersection of two spheres. As will become
clearer in Chapter 6, this intersection will be a circle, i.e. a one-dimensional sub-manifold
of the three-dimensional manifold of all points in E3. Thus, under the assumption that the
intersections are generic, we can argue solely about the dimension of the involved spaces
in order to consider the solvability of a constraint system.

Finally, when all the sets are of dimension 0, we have a set of discrete solutions of the
geometric constraint system. However, as our constraints only specify relative relations
between the geometric elements it is not possible to fix the location or the orientation of
the resulting geometric structure. In E3 this means that there should be in general six
dimensions (three for location and three for orientation) left in the product space.

This type of argument does not directly produce a solution to the constraint solving prob-
lem. Instead, it investigates the structure of the constraint system, which includes its
solvability properties. Due to the generic reasoning it may fail for special constraint sys-
tems. In degrees-of-freedom analysis we only consider the dimensions of the topological
spaces involved in a constraint system. These dimensions are usually referred to as de-
grees of freedom of the geometric elements. One of the main aims of degrees-of-freedom
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analysis is to create a decomposition-recombination plan for a constraint system [51]. An
algorithm for this creates a plan to decompose the constraint system into small, solvable
sub-systems. These sub-systems are usually small enough to use one of the expensive
symbolic solvers. Afterwards, their solutions are then recombined by solving other small
systems. Restricting the solvers to small sub-systems improves the overall efficiency of
finding a solution. The main aim is to efficiently decompose the constraint systems into
close-to-optimal small sub-systems. The whole system cannot be decomposed arbitrarily
into small sub-systems as some constraints have to be solved simultaneously (for instance,
see [32]). An overview of current decomposition-recombination planners with a clean
problem formulation and measures to evaluate their efficiency is given by Hoffmann et
al. [51, 52]. Our main aim for beautification is to use the approach to argue about the
solvability of a constraint system and not to find an efficient decomposition, though.

There is a huge variety of methods related to the degrees-of-freedom (or graph-based)
approach (e.g. [25, 38, 49, 54, 68, 69, 78, 79, 86, 102, 103, 121]). Rather than discussing
all of these methods in detail we only present the basic concept. For an overview see [17].
For all of these methods, the basic idea is to argue about the degrees of freedom a ge-
ometric element has and how a geometric constraint reduces the degrees of freedom of
these elements. As there are usually different ways in which a geometric constraint can be
interpreted to reduce the degrees of freedom, the algorithms try to find ways to distribute
these reductions between the geometric elements. A constraint system in this context
can be interpreted as a (hyper-)graph with the nodes representing the geometric elements
and a geometric constraint creates a (hyper-)edge between the geometric elements it in-
volves. Degrees-of-freedom analysis methods use this graph to find a way to distribute
the degrees of freedom and identify sub-graphs that describe small, solvable sub-systems.
Such a sub-graph can be replaced by a simpler graph. Usually the sub-graph is replaced
by a single node. However, better results can be achieved by replacing only the internal
nodes of the sub-graph with a single node and keeping the frontier nodes (nodes connect-
ing the internal nodes to the rest of the graph) [52]. This process eventually generates a
hierarchical structure of sub-graphs which yields the decomposition-recombination plan.
The methods differ in the ways they replace the sub-graphs, the geometric elements and
constraints considered, and the ways the degrees of freedom are distributed in the graph
(see [51] for a general framework for this). Many approaches rely on specific properties
of two-dimensional constraints and cannot be easily generalised to three dimensions.

In Chapter 6 we present our topological solvability test. Its structure is similar to the
dense algorithm developed by Hoffmann et al. [121], which is used to detect close-to-
optimal small sub-systems in a given constraint system. However, we do not aim to
decompose a constraint system, but only determine its generic solvability.
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5.5 Constructing Constraints for Beautification

In this section we describe how we construct the constraints representing the approximate
regularities detected in the initial model to determine the model geometry. We also use
constraints to describe the relations between the geometries as required by the topology
of the improved model based on the initial model. We first describe the geometric ele-
ment and constraint types available to model the constraint systems. Then we present the
constraints used to describe the topological structure of the model and other required rela-
tions. Finally, we show how to express our regularities in terms of geometric constraints.

5.5.1 Elements of Geometric Constraint Systems

In the following we introduce the basic elements of our constraint systems. For beau-
tification we use constraints between the cells (see Section 2.1) of the initial model as
geometric elements in the constraint system. The constraints describe the relations be-
tween the parameters required to describe the shape of the cells.

The parameters are three-dimensional vectors and scalars used to describe the base fea-
tures (see Section 2.2) of the cells, and some additional parameters to completely de-
termine the geometry of the cells such that an improved model can be constructed (see
Section 4.4). The additional parameters are required, as, for instance, for a plane we also
require a position which is not represented by the plane’s features. The parameters de-
scribe elements of feature spaces, which also represent the type of the parameter. But not
all parameters are features used for regularity detection. Table 5.1 lists the cells with the
parameters used to describe them for the constraint system. Note that some positional
parameters do not describe cells uniquely (positions of planes, lines, etc.). Other parame-
ters cannot be chosen freely as there are additional dependencies (e.g. the major direction
of an elliptical edge has to be orthogonal to the normal of the ellipse’s plane). These
additional conditions are modelled by required constraints (see Section 5.5.2).

In addition to the cells of the initial model we also use auxiliary cells as listed in Table 5.2.
They are used to represent the relations of some features to the cell, e.g. the length of an
edge cell becomes an auxiliary length cell which is used in a constraint specifying the dis-
tance between the two vertices of the edge. This allows us to specify relations between the
edge length and other parameters without having to include a constant value. There can
be a constraint setting the length value explicitly or it can be determined by constraints
relating it to other length values. Auxiliary cells are also used to construct auxiliary ge-
ometry to simplify the representation of more complex regularities. For instance, for a set
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Cells Parameters Type

Vertex Location Position

Straight Edge Edge direction Direction

Edge position Position

Circular Edge Centre Position

Normal of circle plane Direction

Radius Length

Elliptical Edge Centre Position

Normal of ellipse plane Direction

Major direction of ellipse Direction

Major radius Length

Minor radius Length

Polygonal Loop Root point Position

Axis direction Direction

Planar Face Normal Direction

Location Position

Spherical Face Centre Position

Radius Length

Cylindrical Face Axis direction Direction

Radius Length

Location Position

Conical Face Apex Position

Axis direction Direction

Semi-angle Angle

Toroidal Face Centre Position

Direction Direction

Major radius Length

Minor radius Length

Table 5.1: Cells Used as Geometric Elements in Constraint Systems.

of parallel directions we add constraints making each of the directions parallel to an aux-
iliary direction rather than adding constraints to make them pairwise parallel. In general
this avoids the introduction of complex constraint types which are hard to handle by the
topological solvability test. Note that while auxiliary cells are described by elements of
feature spaces, they are not necessarily a cell in the sense of our boundary representation.
For instance, an auxiliary cell of an edge length does not have a geometric realisation, but



5.5 Constructing Constraints for Beautification 115

Auxiliary Cells Parameters Type

Auxiliary line Location Position

Direction Direction

Auxiliary plane Position Position

Direction Direction

Auxiliary cylinder Position Position

Direction Direction

Radius Length

Auxiliary position Position Position

Auxiliary direction Direction Direction

Auxiliary angle Angle Angle

Auxiliary length Length Length

Table 5.2: Auxiliary Cells and Their Parameters.

is used to describe the geometric realisation of the boundary representation cells.

We have incidence, distance and subset constraints as listed in Table 5.3. We list the ge-
ometric description of the constraint and the equation between the parameters involved,
which are either three-dimensional vectors or scalars. We assume that there is another
equation for each direction vector ensuring that it is a unit vector. We have subset con-
straints requiring positions to lie on a surface or curve cell. These are expressed by the
appropriate algebraic equations for the cell geometry. Subset constraints involving a line
being a subset of some other cell are specifically required in order to express certain reg-
ularities. More general subset constraints are not needed in our system. Note that some
distance constraints involve variable rather than fixed distances which are represented by
an auxiliary length cell. This enables us to specify the distance value separately from the
distance constraint. In the numerical approach to solvability testing, the constraints are
handled as numerical equations (see Section 5.6). In the topological approach, they are
primarily handled in terms of the feature spaces involved and the restrictions introduced
by the constraints, as discussed in Chapter 6.

5.5.2 Required Constraints

In this section we describe the constraints which are required to be part of the constraint
system. They either describe the relations between the cells required by the topology of
the model, or necessary relations between parameters of a cell or the relation of auxiliary
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Geometric Constraint Equation

Parallel directions d1, d2 d1
td2 = 1

Constant angle α between two directions d1, d2 d1
td2 = cos(α)

Variable angle a between two directions d1, d2 d1
td2 = cos(a)

Equal positions p1, p2 ‖p1 − p2‖ = 0

Constant distance l between two positions p1, p2 ‖p1 − p2‖ = l

Distance between two position p1, p2 is a constant multiple
ν of a variable length l

‖p1 − p2‖ = νl

Position p0 is the average of n positions pk np0 =
∑n

k=1 pk

Constant value α for angle/length parameter s s = α

Equal angle/length parameters s1, s2 s1 = s2

Linear relation between lengths/angles sk with constants αk
∑

k αksk = 0

Position p on cell O p ∈ O
Line with position p1 and direction d1 lies on plane with d1

td2 = 0

position p2 and normal d2 p1
td2 = p2

td2

Line with position p1 and direction d1 lies on cylinder with d1
td2 = 1

position p2, direction d2 and radius r r = ‖(p1 − p2)−
(p1 − p2)

td2 d2‖
Line with position p1 and direction d1 is axis of cell with d1

td2 = 1

position p2 and direction d2 (p2 − p1)
t × d1 = 0

Table 5.3: Geometric Constraints.

cells to the cells. Note that relations between auxiliary cells and the cells only have to be
added to the constraint system describing the improved model in cases where the auxiliary
cell is actually used by the regularities. This can easily be done at the time of regularity
selection. Whenever a constraint which involves auxiliary cells is added to the constraint
system, required constraints for the auxiliary cell also have to be added unless they are
already part of the constraint system. This simple modification has been omitted in the
description of the constraint selection algorithm (Algorithm 4.1) for clarity.

To impose the correct topology on the model, we add constraints requiring each vertex
to lie on appropriate edges and faces. This does not fully specify the geometric relation
between adjacent faces, but only ensures the proper intersection of faces at vertices of the
model. In the case of the intersection of two adjacent planes, two distinct vertices from
a common edge are sufficient to ensure that a proper straight line intersection exists. In
other cases, e.g. the intersection of two cylinders, it only ensures that the intersection is
not empty (the vertices have to be in it), but it does not specify the type of the intersection.
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Instead of adding inequality constraints or using alternative techniques to ensure that the
surfaces intersect properly for the model reconstruction, we use the regularities. As the
regularity detection phase considers all possible relations between face features, and sug-
gests multiple options for special relations, there is at least one regularity which specifies
the exact relation between two adjacent faces. Thus, the regularities determine the exact
relation between adjacent faces, e.g. constraining a cylinder axis to be parallel to a plane
normal. The relation between adjacent surfaces is either part of a higher-level regularity
such as a partial rotational symmetry of directions, or a pairwise regularity such as a spe-
cial angle value between the normals of two adjacent planes. Pairwise relations which are
part of a higher-level regularity may be rejected due to inconsistencies not caused by the
particular pairwise relation. This means that in principle the relation between two adjacent
faces is not determined exactly. But keeping all pairwise relations creates a lot of addi-
tional regularities which would make the selection process considerably more complex.
Such cases may in principle also be handled by adding partial regularities. For each regu-
larity we have certain constraints which determine the basic structure of the regularity and
have to be added every time. Other constraints relate to individual faces, etc. and could
easily be dropped if they create an inconsistency (e.g. a complete rotational symmetry of
directions created by a prism could be reduced to a partial directional symmetry). This has
not been considered further. It would also make the selection process more complicated
as the reduced regularity is unlikely to have the same priority. We start with a valid initial
model and try to find an improved model close to it. Hence, it is unlikely that a missing
pairwise relation would break the model. Note that at least the involved vertices lie on the
intersection.

If every regularity specifying a precise relation between a pair of adjacent faces is re-
jected due to inconsistencies, the relation is determined indirectly from other regularities.
In such cases we cannot add any constraints specifying the relation between the face pair
without making the constraint system unsolvable or at least over-constrained. The rela-
tion between the face pair is effectively determined by other parts of the model. But recall
that appropriate vertices are always constrained to lie in the intersection of the two faces,
which limits the relations between the pair. Note that it is possible to add further positions
to describe the topology, especially for cases where there are no natural vertices, e.g. the
intersection of a sphere with the top of a cylinder. In practice (see Chapter 7) we never
observed any topological problems created by the solution of the constraint systems. Po-
tential topological problems are not discussed in this thesis. They are handled separately
by pre- and post-processing steps for the system presented here [40].

In the constraint system we treat edges as cells independent from the two surfaces they
lie on. They are only used to express regularities relating to their features and not to
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ensure that the surfaces intersect. When we construct the improved model all the surface
intersections are recomputed, so there is no need to require that the edges are on their
surfaces. Similarly we handle polygonal loops as separate cells with special relations to
the model, mainly to handle the axis and the position of the loop.

To enforce necessary dependencies between the features, we must create various required
constraints as discussed below. These dependencies are directly introduced by the defini-
tion of the features. For each elliptical edge we have to add a constraint which requires
the major axis direction to be orthogonal to the normal of the ellipse’s plane. For all axis
features we have to create an auxiliary line and create a required constraint making it the
axis of the corresponding cell. This means we can handle any regularities involving axes
in terms of lines and thus can still use simple constraints, which can easily be handled in
terms of the topological interpretation of constraint systems. Similarly, we require aux-
iliary scalars for the radii sum and difference of toroidal faces, the distance between the
end-points of a straight edge, and the angle of the circle segment of a circular edge. Con-
straints are used to describe the relations of these auxiliary scalars to the cells. In order
to describe the angle segment of a circle we also require two auxiliary lines through the
circle centre and an end-point on the edge. Furthermore, the root point of a polygonal
loop is constrained to be the centroid of the vertices in the loop. These required con-
straints are associated with their auxiliary features and are added whenever a constraint
referring to one of the auxiliary features is introduced by a regularity. This is done to keep
the constraint system simple. For the numerical constraint system, this especially avoids
the introduction of unnecessary relations which are not relevant for beautification as all
regularities related to the auxiliary cells were rejected.

5.5.3 Regularity Constraints

We describe our regularities listed in Table 2.3 by geometric constraint sets (see also
Chapters 2 and 3). Any regularities which can be expressed using the constraints from
Table 5.3 between cells from Tables 5.1 and 5.2 can be handled by our system.

Identity regularities indicating the approximate congruence of features are arranged in a
cluster hierarchy tree, where a regularity can only be added to the constraint system if
its children are also present. Furthermore, we add dependencies requiring certain regu-
larities to be present before we can add another one, e.g. requiring a parallel direction
regularity to be present before a corresponding aligned axes regularity is added. We use
separate regularity hierarchies for parallel directions, equal positions, equal length, and
equal angle parameters. For each cluster of approximately congruent features, we create a
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corresponding auxiliary cell, and constrain the features in the set to be equal to this object.
To handle hierarchies, we constrain auxiliary cells for children to be equal to the auxiliary
cell for their parent.

Aligned axes and axis intersections can also be found by clustering features, where a
parallel direction cluster is used to determine if axes should be aligned or intersect. Each
axis is represented by an auxiliary line which is made the axis of the corresponding cell by
certain constraints (see Section 5.5.2). Aligned axis regularities are marked dependent on
the related parallel direction regularity. Thus, we only have to add constraints which make
parallel lines equal. This is done by adding an auxiliary vertex for each cluster of aligned
axes and require that this point lies on each of the axes in the cluster. For the cluster
hierarchy, we create additional auxiliary lines for non-base clusters and require that these
axes are equal to the axes of base clusters. Axis intersections can easily be represented by
creating an auxiliary vertex for each axis intersection cluster and requiring that this vertex
lies on all axes. The hierarchy is expressed by requiring that auxiliary vertices are equal.

For parallel aligned axes, we further look for regular arrangements on grids, lines and
cylinders. This is expressed with the help of additional auxiliary cells. For a symmetrical
arrangement of axes around a cylinder, e.g. bolt holes arranged in a circle, we create an
auxiliary cylinder and require that the axes lie on that cylinder. For each of the symmet-
rically arranged axis locations on the cylinder we create an auxiliary plane through the
cylinder axis with a normal constrained to be orthogonal to the cylinder axis. The angles
between these planes are set to an appropriate integer multiple of 2π/n. To enforce the
symmetrical arrangement, the positions of the axes are constrained to lie on one of these
planes. For parallel axes arranged equi-spaced along grids we generate planes intersecting
at appropriate distances and require the axes to lie in the two planes at each intersection
of the grid. The planes are constrained to be parallel and orthogonal to give the grid
structure. The distances between the planes are specified by distances between vertices
which are constrained to lie on an auxiliary plane and on one of two auxiliary lines. Axes
arranged equi-spaced along a line are handled in a similar way.

For equi-spaced positions arranged on a line, or a grid of positions arranged symmet-
rically on a circle, we create an auxiliary cell structure similar to those used for axis
arrangements. We have to add an additional plane to account for the fact that we have
positions rather than lines arranged in this structure.

We also consider global symmetries of points. These can in principle be represented by
requiring that distances between the points that are mapped onto each other by the permu-
tations are the same. As the symmetry detection algorithm was implemented separately,
this is not further considered here.
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We distinguish planar and conical cases of symmetrically arranged directions. In the first
case we have a set of directions orthogonal to a direction d0, e.g. plane normals for the
sides of a prism. The angles between the directions are integer multiples of π/n for n ∈ N.
In the second case the angle to the direction d0 has some other fixed value and the angles
between the directions projected on the plane defined by d0 are integer multiples of 2π/n,
e.g. plane normals in a pyramid. To create the constraints for the planar case we create two
orthogonal auxiliary directions d0, d1. For each direction in the set we add a constraint
requiring it to be orthogonal to d0 and with angle to d1 being a suitable integer multiple
of π/n. In the conical case we have a list of possible special values for the angle between
the directions and d0. For each of the special values we create a regularity specifying the
angles between the directions and d0 and d1. Note that an orthogonal system is a special
case of the conical case. Also note that we do not have regularities for global symmetries
of directions (see Section 2.4).

To express regularities for similar polygons, we create conditions that require the angle
between the directions of the straight lines to be equal, and the edge lengths (as distances
between the vertices) to be related by a constant ratio. We do not use auxiliary polygon
cells (or similar) to express the hierarchy, but use a specific polygon from each set of the
children clusters and require these to be similar.

Also, we have cluster hierarchies of equal positions when projected onto special planes
(2D partially equal) and lines (1D partially equal). The special plane and lines are derived
from major directions in the model such as main axes and orthogonal systems. Positions
which are equal when projected on a plane lie on the same line.

We also have lists of special values for angles between individual directions. These relate
to direction pairs which are not part of a higher-level regularity like a partial rotational
symmetry of directions. Note that distances between vertices are features of the edges
connecting them and other distances are not considered as there would be too many. Fi-
nally, there are regularities specifying special ratios between pairs of angle or length fea-
tures and lists of special values for these features. For all these regularities appropriate
constraint sets with dependencies can be created using the constraints on scalars.

5.6 Numerical Solvability Test and Solver

In this section we discuss our numerical approach to the solvability problem. In Sec-
tion 5.2.1 we discussed in general how to use non-linear, numerical optimisation to find
a solution to a geometric constraint problem. In the following, we first assume that we
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have a numerical optimisation method and discuss how to use it in the selection algorithm
(Algorithm 4.1). Then we briefly discuss quasi-Newton based methods for optimisation
and how to handle numerical redundancies.

As noted earlier, the basic idea is to minimise an error function tF : Rn → R for a non-
linear equation system F (x) = 0, F : Rn → Rm. We use quasi-Newton methods, which
are particularly suitable for a least-squares error function tF (x) = F (x)tF (x) as they
are based on a quadratic model. Furthermore, in general the quasi-Newton method and
in particular the BFGS method are stable and efficient optimisation methods [122, 144].
They have previously been used successfully for geometric constraint problems [42]. For
other numerical approaches to constraints see, for instance, Mullineux [97].

For the selection strategy in Algorithm 4.1 from Section 4.1 we require two methods for
the solvability test: init_solvability, which initialises the solvability test appropri-
ately, and solvable, which indicates whether the constraint system expanded by an addi-
tional constraint remains solvable. For our numerical solvability test, init_solvability
creates appropriate non-linear equations (see Table 5.3) for each regularity. The param-
eters for all cells from the model and all auxiliary cells are represented by a large vector
p over R. We maintain appropriate references from the elements of p to the cells they
describe. The vector p is initialised by the values taken from the initial model. For the
optimisation method we require a vector p′ which contains the values for the parameters
involved in the current constraint system. p′ only contains values for cells which are in-
volved by at least one selected constraint. When adding new constraints which involve
new, not yet considered cells, p′ is expanded appropriately using p. Suitable references
between the elements of p and p′ are maintained. To avoid numerical problems created by
unused values in p′, it only contains the values used in the constraint system. The com-
plete data structure G containing the equations and the vectors p and p′ with the references
is returned by init_solvability.

Also note that we have to add an additional numerical constraint to the system for each
direction vector to normalise it. This can easily be achieved in the data structure G at the
time we create the vector p′. It avoids having to create more complicated numerical equa-
tions which handle unnormalised direction vectors. Such more complicated equations are
more likely to cause numerical instabilities and slow down the evaluation of the target
function tF .

The method solvable uses a quasi-Newton based optimisation method to find a solution
to a selected constraint system S, expanded by the constraints r using the data structure G.
If the optimisation converges (determined by the optimisation method as described below)
to a vector x∗ such that ‖F (x∗)‖∞ (the maximum error of the constraints) is smaller than
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some tolerance t, solvable returns true indicating that the expanded system is solvable.
In this case the vector p′ in G is also permanently expanded to include any parameters for
cells which were not previously considered in the constraint system. Otherwise, the tem-
porary expansion of this vector required to run the optimisation method is removed. With
this method we select a numerically consistent constraint system. Only inconsistencies
which cause an error larger than the tolerance t are detected. But this is only important
if t is large compared to the tolerance of the solid modelling kernel. Otherwise, the error
caused by the inconsistency is too small to cause problems. For the optimisation method
various parameters which determine tolerances, step sizes, condition safeguards, etc. are
required. Given a set of these parameters that ensures convergence of the optimisation
method for a given beautification problem, no consistent regularities are removed.

We also use the same optimisation method to find the solution of the final system. This
is the solution found for the last successful call to solvable if we numerically test for
solvability. For the topological solvability test (see Chapter 6), we have to run the numeri-
cal optimisation separately. In the following we discuss further the optimisation methods,
and a method to handle numerical redundancies to avoid numerical instabilities.

5.6.1 Quasi-Newton Optimisation Methods

We only give a brief overview of the quasi-Newton methods we use. For a detailed dis-
cussion of the methods see [13, 90, 122]. Standard approaches to quasi-Newton methods
have been used, but they were chosen in particular to handle the numerical problems of
our constraint systems. As noted earlier, our general iteration formula is xl+1 = xl − σldl

with xl ∈ Rn, σl ∈ R+ and dl ∈ Rn for l = 1, 2, . . . . For each iteration step we have to
find a direction dl and then find a step size σl in this direction which sufficiently reduces
tF such that the iteration converges to a minimum. For quasi-Newton methods dl should
point approximately in the direction of the gradient of tF at xl. We have a choice for the
linear search method to determine σl and for the approximation method for the Hessian
matrix of the second partial derivatives used to find dl.

For the line-search method we considered using the Goldstein-Armijo and PWS (Powell-
Wolfe-Stepsize) methods [122]. While both perform well, PWS is more stable and more
suitable for the BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton update. In par-
ticular PWS with BFGS guarantees a sufficient rate of descent to ensure convergence for
non-convex target functions [122].

To find the direction dl we have to solve the equation system

Hldl = ∇tF (xl) (5.3)
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during each iteration, where Hl is an approximation of the Hessian matrix∇2tF of tF . For
the Hessian the BFGS update is a widely used and suitable method. Instead of the simple
BFGS iteration formula we use a formula based on the Cholesky decomposition of the
Hessian matrix related to the equation system (5.3) and a condition guard for Hl initiating
restarts of the iteration [122]. The BFGS method with the Cholesky decomposition of Hl

allows for a simple approximation of the condition of Hl (as Hl is positive definite and
symmetrical, the condition is the quotient of the largest λmax and the smallest eigenvalue
λmin). If the condition of Hl is too large (e.g. larger than 1/

√
ε where ε is the machine

precision), we cannot determine a suitable direction of descent from Equation (5.3) as the
numerical error of the solution of the linear system too large (caused by a scale problem
between the small and the large eigenvalue). For similar alternative stabilisations see [92,
140]. We also tried using the SR1 iteration formula [122] with a condition guard, but the
convergence rates and stability were in general not as good as for BFGS.

Further improvements to numerical stability, especially for cases involving inconsistent
constraints, were achieved by using a damped version of the BFGS method [83]. Using
a hybrid method switching between BFGS (or the damped BFGS) and a Gauss-Newton
step improved the convergence rates and still performed reasonably well with respect to
numerical stability [90].

When using the optimisation method for the solvability test, a numerically stable method
like the damped BFGS method is preferable, as the equation systems are more likely to
cause numerical problems. For the optimisation method it is not a problem that a solution
does not exist as it simply finds a minimum larger than 0. But the minimum may still
be close to 0, especially if we have a lot of equations, and this makes it hard to decide if
the system is actually solvable or not. Furthermore, if the constraint system is solvable
we have a global minimum and with sufficiently small tolerances it is possible to detect
when the optimisation converged. If the system is not solvable, the convergence test has
to be based on a tolerance on the step-size rather than the function value. However, as a
result the method may get trapped in a local minimum without knowing if there is a global
minimum of 0 or not. Note that for practical purposes we base the convergence test on a
limit for the step-size, and the function value or the error of the involved equations.

Using a hybrid method with damped BFGS still performs well. When trying to solve a
consistent constraint system the BFGS method using Cholesky decomposition in combi-
nation with a condition guard is faster and sufficiently stable. The performance can be
improved further by using it with the hybrid method. Note that the optimisation method
is the most crucial time factor for beautification (see Chapter 7).

During the solvability test, we also check for redundant constraints which could make the
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system numerically unstable. A redundant constraint is one which can be added to the
constraint system without changing the set of solutions. The problems are similar to those
caused by inconsistencies in the equation system. This time, however, they are caused by
the dependencies between the equations which primarily created ill-conditioned matrices.
To identify numerical redundancies we use the method described in [85]. Any selected
but redundant constraint equation is marked as such and not used for the target function
tF . When a new constraint is already satisfied by the current solution the constraint may
be redundant. In this case we disturb the constant values involved in the constraint and
try to solve the system with the modified values. If the system remains solvable, the
constraint is not redundant. Otherwise, the constraint is redundant and is not added to the
constraint system, but remains active. We first check for redundancy and then try to solve
the system with the original constants adding all new, non-redundant constraints. But note
that this redundancy test is only used for the numerical solvability test, and not for solving
the complete selected constraint system when we employ the topological solvability test.
Redundancies are determined (generically) by the topological approach without solving
any equation system.

5.7 Summary

A central element of the selection strategy is the solvability test for constraint systems. We
have discussed various direct approaches to computing solutions of constraint systems. A
common problem of such approaches is that computing a solution is an expensive opera-
tion. In order to be able to solve large constraint systems we have to decompose them into
smaller systems which can be solved by the direct solvers. A degrees-of-freedom based
approach arguing about the topological structure of the involved space can be employed.
In particular this approach can be used to determine generic solvability of constraint sys-
tems, as will be discussed in more detail in Chapter 6.

We have further presented the basic elements of the constraint systems used for beau-
tification, and how to represent the regularities and the improved model by geometric
constraints. Moreover, a numerical method for the solvability and solver problem has
been given. Using numerical optimisation methods, a constraint system can be solved
and its solvability can be deduced from the existence of a solution. While the numerical
solvability test is slow, it also computes a solution to the constraint system. In our final
approach to beautification, it is used only to solve the selected constraint system, which
cannot be done directly by the topological approach.
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Chapter 6

Topological Solvability Test for
Geometric Constraint Systems

In Chapter 5 we have given an overview of techniques available to determine the solvabil-
ity and the solution of geometric constraint systems. Given the large number of constraints
detected by our methods, we require an efficient solvability test. Our topological interpre-
tation of geometric constraint systems introduced in Section 5.4 provides such a test as it
can determine (generic) solvability without actually computing a solution. In this chapter
we present details of a method to decide if a given constraint system is solvable (i.e. has
at least one solution) based on this approach. While it is desirable to ensure that we have
a unique solution or at most a discrete set of solutions, we only check whether at least one
solution exists. In particular we accept cases where there are infinitely many solutions.
As we have an initial model, we can seek a solution close to it. Furthermore, the large
number of regularities we detect makes under-constrained systems very unlikely.

By analysing the constraint (hyper-)graph (see Section 5.4) we can determine certain
generic properties of the constraint system. We introduce our idea by using distances
between three-dimensional points as an example in Section 6.1. To verify the solvabil-
ity of a constraint system we consecutively add constraints to the graph (see Section 6.2)
and check whether the system remains solvable (see Section 6.3). This new approach
was developed by the author in the context of degrees-of-freedom analysis, and was first
presented in [73]. In our approach degrees of freedom are interpreted in terms of dimen-
sions of manifolds representing the domains of the geometric elements, and sub-manifolds
representing the restrictions to the allowed values of these elements induced by the con-
straints. This leads directly to an efficient algorithm for adding geometric constraints
as directed edges to a constraint graph indicating the dependencies and restrictions cre-
ated by the constraints. By analysing the dependencies in the constraint graph we quickly
determine whether a constraint system expanded by an additional constraint remains solv-
able in a generic sense. The mathematical background, and the scope and limitations of
this approach are discussed in Section 6.4.
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6.1 Distance Constraints Between Points

To illustrate the basic concepts of our methods for determining the solvability of a con-
straint system, we consider constraint systems consisting only of constant distance con-
straints between points in three-dimensional Euclidean space E3.

An unconstrained point in E3 can be at any location in space, i.e. its parameter domain
is R3. A distance constraint between two points v1, v2 limits the allowed values the two
points can have at the same time. One way of enforcing this is by allowing v1 to be pa-
rameterised by an arbitrary value in R3 and requiring that v2 is on a sphere of fixed radius
with centre v1. This means that v2 can be described by a parameter on the unit sphere
S2 in combination with the position of v1. Thus, for v2 we select a (lower-dimensional)
sub-manifold of the parameter manifold R3 and this sub-manifold is homeomorphic to
S2. We say this sub-manifold has the topological type S2 and often we will identify this
type space with the actual sub-manifold in the parameter manifold for simplicity (we can
always specify a homeomorphism between the type space and the actual sub-manifold).
Obviously the role of v1 and v2 can be exchanged. Hence, we can interpret a distance con-
straint as a reduction of the parameter space R3 to S2 for one of the two points involved.

For instance, consider three vertices v1, v2, v3 in E3 and three distance constraints between
them. Each vertex can be described by a parameter in R3. Thus, we can assign any
element of R3 × R3 × R3 to the unconstrained tuple (v1, v2, v3). The three unconstrained
vertices are shown in Figure 6.1(a), where each vertex is labelled with its name and its
parameter domain.

A distance constraint dist1 between the two vertices v1, v2 can be interpreted by either
putting v2 on a sphere around v1 or v1 on a sphere around v2. Taking the first case, we
select a sub-manifold of the topological type S2 in R3 for v2. Thus, the allowed values
for the tuple (v1, v2, v3) can be parameterised using the product space R3 × S2 × R3. To
indicate this we add a directed edge from v1 to v2 in the constraint graph in Figure 6.1(b)
and change the domain label of v2 to S2. We get an analogous result in the second case.

Similarly, a distance constraint dist2 between v1 and v3 can be interpreted as parameteris-
ing the allowed values of (v1, v2, v3) over the space R3 × R3 × S2 (or, analogously, over
S2×R3×R3 in the other case). If we impose both constraints at the same time, we get the
parameter space R3×S2×S2 as the selection of subsets does not interfere with each other
in the product space. This is illustrated in the graph in Figure 6.1(c) by adding another
directed edge from v1 to v3 and changing the domain of v3 to S2.

Finally, we add a constraint dist3 between v2 and v3. Again we have a choice to limit v2 or
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Figure 6.1: Distance Constraint Graph Between Three Points.

v3 to S2. However, both points are already reduced to S2. If we choose to put v3 on another
sphere, v3 has to be on the intersection of two spheres. In the generic case, two spheres
intersect in a circle, and hence v3 is now described by a parameter on the unit circle S1

(see Figure 6.1(d)). We cannot constrain the points any further with distance constraints
and in this case we actually have a unique solution modulo rotations and translations in
E3.

More generally, the two spheres may also intersect in a point, not intersect at all, or
be equal (i.e. the intersection is a sphere). In the first case the distances between the
points must be specifically chosen such that the points are collinear. In the second case
the distances must satisfy d(v1, v2) > d(v1, v3) + d(v2, v3). In the third case we have a
coincidence constraint instead of a distance constraint. In all of these cases additional
conditions are present which cannot be determined directly from the constraint graph and
certain equation systems would have to be solved in order to detect them. Due to the
special conditions they are unlikely to occur in a constraint system and we expect that in
most cases the spheres intersect in a circle. Hence, we call this case generic.

If one of the special conditions apply, the generic analysis may fail to determine the solv-
ability properly. In case the intersection is a point, the analysis would assume that the
sub-manifold of allowed parameter values for a point has more dimensions than avail-
able and we may get an over-constrained system. In case the intersection is a sphere, the
analysis would assume that the sub-manifold of allowed parameter values for a point has
less dimensions than available and we may get an under-constrained system. In case the
two spheres do not intersect at all, the analysis would actually select proper constraints,
but the constraint system is not solvable due to the involved constants. For beautification,
only the over-constrained case may cause serious problems, as an over-constrained sys-
tem is likely not to be solvable unless the constraints are consistent by chance. This may
also cause numerical instabilities for the optimisation solver due to a more complicated
objective function. In the under-constrained case, we can still look for a solution close
to the initial model. The case of inconsistent constants is unlikely to occur at all as the
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constraints are based on a valid initial model, and usually only large changes to this model
would yield inconsistent constants.

Choosing any other generic options of enforcing the distance constraints of the constraint
system in Figure 6.1 will create product spaces involving S1, S2, R3 with the total sum
of dimensions being six in the generic case. For instance, if we put v3 instead of v1 on a
sphere (choosing the parameter space S2×S2×R3 in Figure 6.1(c)), the final intersection
would be S2 × S2 × S2 representing a circular dependency between the points.

We add distance constraints to the graph by choosing one of the two points constrained to
S2 and update the parameter domain by intersecting it with S2 under the assumption that
we have the generic case. We intersect S2 with either R3, S2 or S1. In the generic case we
assume that the intersection with R3 gives S2, with S2 gives S1 and with S1 gives R0. The
intersection with S1 can actually either lead to a circle, an empty set or two points. In the
generic case we get two points, and we choose one of them, i.e. we get R0. Clearly, the
two points indicate that we have two discrete solutions. To distinguish between them we
need another constraint, e.g. an inequality constraint. As our improved model should be
close to the initial model, the assumption that we get a single point can be justified if we
take the solution which is closer to the initial model.

In the graph context we can refer to a constraint as an undirected edge between the nodes
in the graph representing the geometric elements. A constraint can usually limit the ele-
ments it constrains to sub-manifolds in various ways. Which of these options is selected
can be indicated by a directed edge pointing towards the nodes which are restricted (in
more complex cases involving hyper-edges labels for each end-point of the edge may have
to be used instead of a simple direction). We refer to adding a directed edge to a graph
for the solvability test in the above way as distributing the constraint in the graph. Thus,
the constraint can be identified with an undirected edge in the graph, which is usually not
drawn. Distributing the constraint adds a directed edge to the graph, which represents a
particular way of enforcing the restrictions of the constraint on the geometric elements.
When we choose another option for an already distributed constraint (see below), we refer
to this as redistributing the constraint, i.e. changing the direction of the edge.

The dimensions of the parameter domains of the points represent the degrees of freedom
of these objects (three for three-dimensional points). The reduction of these domains to
(lower-dimensional) sub-manifolds indicates the number of degrees of freedom removed
by a constraint (one for distance constraints). The way we distribute the constraints and
the different options for their distribution is similar to degrees-of-freedom analysis. We
interpret it in terms of the topology of the involved parameter spaces and their dimensions.

Obviously it is not always possible to distribute a new constraint in a given constraint
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system. If both points involved in a distance constraint are already R0, we cannot gener-
ically intersect either of them with S2. However, as for each distance constraint there are
two ways in which it can be added to the constraint graph, it may be possible to choose
a different distribution of constraints along some of the edges in the graph such that we
can add the constraint. Thus, we have to do a graph search starting at the edge of the
new constraint. We have the option of doing a depth-first or a breadth-first search. In
the depth-first approach we follow one particular path in the graph backwards along the
directed edges to its end before we consider any other paths. Once we find an edge which
can be changed (the constraint can be redistributed) we backtrack from that edge along the
path and redistribute all other constraints referred to by the edges in the path accordingly.
This redistribution may now allow us to distribute the new constraint. In this approach the
paths may become quite long before we can redistribute a constraint and the search grows
exponentially as we check all possible paths.

The alternative, a breadth-first search backwards along the directed edges, is more efficient
as it finds the first edge which can be changed closest to the new edge. In addition,
we do not have to consider all paths starting with the new constraint, but only find the
shortest paths to the edges referring to constraints which can be redistributed. Whenever
a constraint can be redistributed, we redistribute the constraints along the whole path to
the edge of the original constraint. We then have to repeat the breadth-first search until
we can distribute the new constraint, or all redistribution options have been exhausted.

Finding a redistribution path is similar to the distribute method used in the dense

algorithm [121]. In that method the constraint graph is converted to a bipartite graph
between nodes representing the constraints and other nodes representing the geometric
objects. The edges in this graph connect the constraint nodes with the object nodes that
they constrain. The graph is interpreted as a flow network from a source to a target.
The source is connected to all constraint nodes and the target is connected to all objects.
The capacity of an edge from the source to the constraint node indicates the degrees of
freedom removed by the constraint node. The capacity of an edge from the object node to
the target indicates the degrees of freedom of the object. The capacities of edges between
constraints and objects are infinite. The distribute method used by dense tries to
distribute a new constraint in such a flow network by finding a flow augmentation path
to distribute the newly added flow from a constraint. This is done in a similar way to
searching for the redistribution paths above. The different options we have for each edge
describe the different ways the flow can be distributed through the network. Instead of
changing the distribution of the flow, we change the direction of edges in our approach, but
the principle behind it is the same. However, by considering the topological types of the
spaces and their topological dimensions, we link the graph more closely to the constraint
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system without having to consider a flow network. This also allows us to give more details
about the scope and limitations of the technique and may eventually lead to a method to
handle more general constraint systems reliably (see Section 6.4). Also note that we
use our approach to determine the solvability of the constraint system without explicitly
identifying solvable sub-systems of the constraint system. The dense algorithm is used
to find dense sub-graphs which represent small solvable sub-systems for decomposition-
recombination planners (see Section 5.4).

However, a method to distribute a constraint does not reveal if the resulting constraint
system is solvable. We say that a system is solvable if there is at least one solution under
the assumption that the intersections are generic. If the constraint cannot be distributed,
the system is clearly unsolvable. The opposite is not true.

Consider the following simple example. If we want to determine point v3 in the constraint
system in Figure 6.1, we can do this by setting an arbitrary location for v1, choose v2

on a sphere around v1 and then determine v3 by choosing a parameter in S1, using the
locations of v1 and v2. This specifies all three points up to location and orientation in
E3. As distance constraints cannot determine the absolute location or orientation of the
point set, we cannot determine the points any further. Hence, in the general case there
must always be at least six degrees of freedom left. But note that for a zero-dimensional
point set, i.e. one point, we require only at least three degrees of freedom, and for a one-
dimensional point set, i.e. (two distinct) points on a line, we require only at least five
degrees of freedom.

The directions of the edges in a constraint graph define the dependencies between the
nodes. Given an arbitrary node n in the constraint graph and an edge e directed towards
this node, we can follow edges backwards to determine the sub-graph S(n, e) of all nodes
on which n depends due to e. To detect S(n, e) we mark n as visited and follow the edge e
backwards marking its starting point as visited. From there we continue following all (di-
rected) edges backwards which lead to unvisited nodes employing a greedy algorithm. We
stop when no further unvisited nodes can be reached by following the edges backwards.
n and all edges between n and the detected sub-graph are added to S(n, e), which we call
the dependency sub-graph of n due to e. In this sub-graph we change the parameter space
of n so that only the edges in S(n, e) are considered. The resulting S(n, e) represents a
solvable sub-graph if the sum of the remaining degrees of freedom of the nodes in S(n, e)
is at least six, five or three depending on the dimensionality of the points involved.

We have to change the parameter space of n in S(n, e) to account for the dependencies
of n over other edges not in S(n, e). Each dependency sub-graph represents a restriction
of n. We assume that the intersection of these restrictions is generic and can be done.
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Figure 6.2: Example Constraint Graph for Dependency Sub-Graphs for Point v4.

This is checked whenever we distribute a constraint and compute the dimension of the
resulting parameter space (a constraint removes a generic amount of degrees of freedom
from a node and we must not remove more degrees of freedom from a node than it had
originally). At a node we bring the geometric structures of the different dependency sub-
graphs together to form a single structure. This can be done if the structures described by
the sub-graphs have sufficient degrees of freedom left.

For example, consider the constraint graph in Figure 6.2. Node v4 has three dependency
sub-graphs. The first graph consists of the nodes v1, v2, v4 with v4 relabelled to S2 (only
one constraint is on v4 in the sub-graph). This sub-graph has 7 degrees of freedom left
indicating that it is solvable. Without relabelling v4 it would only have 5 degrees of
freedom which are not sufficient. The second sub-graph consists of v4 and v5 with v4

relabelled to S2. Without relabelling v4 to S2 in the second sub-graph the graph would not
be solvable (it would have 3 degrees of freedom, whereas we have two points on a line
which requires 5 degrees of freedom). The third sub-graph consists of v4, v7, v5, v6 with
v4 relabelled to S1 and has 7 degrees of freedom.

When we have successfully distributed a new constraint as a directed edge e in the graph,
we must test if the new graph is solvable. If distribution failed, we already know that
the constraint system is not solvable. To test for solvability we only have to consider the
changes made during distribution. Let n be the node the constraint has been distributed
to, i.e. the directed edge e points towards n. We claim that the graph remains (generically)
solvable if the dependency sub-graph S(n, e) is solvable, i.e. it has sufficient degrees of
freedom left. Originally the number of degrees of freedom of a node is the dimension of
its parameter space. By distributing constraints we select sub-manifolds of the parameter
space and intersect those sub-manifolds. This reduces the dimension of the sub-manifold
of allowed parameter values for a node. The dimension of this sub-manifold is the amount
of degrees of freedom left after constraint distribution. In general in the sub-graph S(n, e)
the sum of degrees of freedom has to be at least six (three rotational and three positional
degrees of freedom in E3) in order for it to represent a solvable system. However, note
that there are special cases of lower dimensional subsets embedded in E3 which have to
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be handled separately, e.g. two points on a line with only five degrees of freedom.

First consider the case where no redistributions are required to distribute the constraint.
In this case only node n was changed. The dependency sub-graphs which do not contain
e did not change. So we only have to check S(n, e). Under the assumption that all
intersections are generic we only have to check if there are sufficient degrees of freedom
in S(n, e). In the case of redistributions we can consider each redistribution separately.
Assume we have an edge between two points n1 and n2 which initially constrains n2.
When we redistribute the constraint this edge relates to, then n1 is constrained by n2.
The degrees of freedom are moved from n1 to n2 and this is indicated in a change of the
dependency sub-graphs of the two nodes. Initially n2 had a dependency sub-graph over
n1 with sufficient degrees of freedom. This sub-graph is replaced by a new one for n1

which includes n2. Due to moving the degrees of freedom, this new sub-graph also has
sufficient degrees of freedom.

6.2 Distributing Constraints

In this section we present the distribution algorithm for all our constraint types in detail.
We describe the geometric objects (the cells from the model and the auxiliary cells) in
terms of positions, directions, lengths, and angles as parameters. Constraints limit the
allowed combinations of the values for these features. The topological type of the domain
for positions is R3, R2 or R1 depending whether the position describes the location of a
point, a line or a plane. For directions the domain is S2, for lengths R+, and for angles
S1. Any of the constraints we consider can be interpreted as selecting a lower-dimensional
subset of these domains. There is usually more than one way in which to select the subsets.
When a geometric object is constrained by more than one subset, its allowed values lie in
the intersection of the two subsets. We assume that all the intersections are generic as is
usually done in degrees-of-freedom analysis.

In Table 6.1 we list the different options for distribution of constraints. Note that some
of the distributions do not have an explicit geometric meaning, but as the distribution
relates to local rather than global properties of the manifolds involved (see Section 6.4
for details), this can be ignored. For instance, for two parallel directions the cases where
one of the two directions is equal to the other and thus fully determined directly relates to
putting one of the two directions in S0. The case where d1 and d2 both have one degree of
freedom left is indicated as d1 and d2 lying in S1. This is sufficient locally as d1 and d2 can
be moved a short distance along a circle. However, with this labelling the global structure
appears to be the torus S1×S1, which is in fact not the case. For this type of analysis only
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Geometric Constraint Distribution

Parallel directions d1, d2 d1 or d2 in S0 or
d1 and d2 in S1

Constant angle α between two directions d1, d2 d1 or d2 in S1

Variable angle a between two directions d1, d2 a in R0 or
d1 or d2 in S1

Equal positions p1, p2 p1 or p2 in R0 or
p1 in R1 and p2 in R2 or
p1 in R2 and p2 in R1

Constant distance l between two positions p1, p2 p1 or p2 in S2

Distance between two position p1, p2 is a constant
multiple ν of a variable length l

l in R0 or
p1 or p2 in S2

Position p0 is the average of n positions pk p0 or one pk in R0 or
p0 in R1 and one pk in R2 or
p0 in R2 and one pk in R1 or
pk1

in R1 and pk2
in R2 or

pk1
in R2 and one pk2

in R1

Constant value α for angle/length parameter s s in R0

Equal angle/length parameters s1, s2 s1 or s2 in R0

Linear relation between lengths/angles sk with
constants αk

One sk in R0

Table 6.1: Distribution of Geometric Constraints.

concerned with the involved dimensions it can be ignored, though. We also distinguish
between constraints with constant and variable parameters, as only variable elements can
be used for the distribution. For instance, a variable distance constraint between two
positions with no degrees of freedom left can also be distributed to the distance parameter,
i.e. the fixed positions determine the value of the distance.

Constraints requiring positions to lie on a surface or curve are omitted from Table 6.1.
Surfaces and curves are usually described by a combination of positional, directional, an-
gular and length features. In the constraint graph we represent them by a single node.
Constraints that only relate to one of the features describing the surface can only be dis-
tributed using this particular feature, e.g. making two planes parallel only constrains their
normals. But putting a vertex on a surface or curve means that any of the involved features
can be used, e.g. putting a point on a plane can restrict its position as well as its normal.

Also note that positional features of surfaces are not always three-dimensional positions.
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For planes we only have a one-dimensional position space (its distance from the origin),
for cylinders and straight lines we have a two-dimensional position space (the position of
the axis). All other objects we consider have three-dimensional position spaces.

The issues relating to faces in the constraint graph are complicated and some more details
are discussed in Section 6.4. Here we only present as much as is required to understand
how these objects are handled by the distribution algorithm. Whenever we put a position
on a surface or a curve we reduce one of the parameter spaces of the surface or curve or the
parameter space of the position by one or two dimensions respectively. We can choose any
of the parameter spaces involved for the distribution. The types of the parameter spaces
may vary and the intersections between them can be complicated and involve other types.
We assume the generic case such that the intersections are always generated by reducing
the degrees of freedom by one. As the distribution algorithm below only relies on the
reduction of dimensions of parameter spaces a detailed discussion is omitted.

The constraints which require a line to lie on a plane or a cylinder, and those which
make a line coincident with an axis feature of a surface (central axis of cylinder, cone,
etc.; see Table 2.2) relate to issues similar to those for position-on-surface constraints.
Constraining a line to lie in a plane reduces the total amount of degrees of freedom of the
geometric elements involved by two. If we do not restrict the line, then we have the set
of all planes which contain this line, i.e. the plane has one degree of freedom left for the
direction of the normal or its position. If we restrict the line to lie on a plane, then the line
has two degrees of freedom left, one for the direction and one for the position. Putting
a line on a cylinder reduces the degrees of freedom of the involved geometric elements
by three. The axis direction of the cylinder has to be parallel to the direction of the line
and we can restrict either of the two directions to S0 (it is completely determined by the
other direction). In addition, the position of the line or the position of the cylinder has
to lie on a circle, i.e. it is parameterised by S1. Forcing a line to be an axis of a surface
reduces the total number of degrees of freedom by four. We have two parallel directions
where either of the two directions can be restricted and the position of the cell is fixed to
lie on the line (for the torus and cone we still have one positional degree of freedom left,
for cylinder and axes of planar polygonal loops we have no positional degree of freedom
left). To distribute these types of constraints we select appropriate sub-manifolds of any
of the involved parameter spaces such that the overall reduction sums up to the amount
required by the constraint type as mentioned above.

The geometric elements in the constraint graph are considered to be described by param-
eter product spaces. But this is not always the case. For instance, consider the space of
all lines in E3. A line can be described a position p and a direction d. We can form the
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moment vector l = p× d, which is independent of the position p on the line as it remains
the same when p is replaced by a point p′ = p+λd, λ ∈ R. Then the pair (d, l) represents
the normalised Plücker coordinates of the line. The pair (d, l) fulfils the normalisation
equation ‖d‖ = 1 and the Plücker relation dtl = 0. Conversely, any six-tuple which ful-
fils these two conditions represents a line in E3. Hence, the set of all lines in E3 forms a
four-dimensional manifold [106]. For our purposes we describe a line by a positional and
a directional parameter, where the positional and the directional parameter each has two
degrees of freedom. We consider the two parameters independently and hence they are
interpreted as a product manifold R2 × S2. This product manifold is locally homeomor-
phic to the manifold of all lines in E3 (they are both four-dimensional), but it is not the
same manifold. We discuss some of the underlying structures and problems related to this
in Section 6.4. For degrees-of-freedom analysis we are mainly concerned with topologi-
cal dimensions, and so the local homeomorphism property is sufficient. In particular, as
we have an existing model and seek a small, local change, we do not expect a problem to
arise because of this. However, in general, this can be a cause for singularities and special,
non-generic cases.

In general, when intersecting two subsets of the parameter space of a node to compute
the new degrees of freedom we only consider the generic case. If we have two subsets M
and N of a d-dimensional space with dimensions m and n respectively, the intersection is
of dimension m + n − d. This is true if we assume that the intersection produces a real
reduction of the dimensions, i.e. M is not a subset of N nor is N a subset of M , and the
intersection of M and N is not empty. Furthermore, the intersection has to be possible,
i.e. m + n ≥ d. Equivalent reasoning is used in degrees-of-freedom analysis. Note that
for the labelling we only indicate the topological type of the intersection which could be
interpreted as a parameter space for the intersection rather than the intersection itself.

In summary, the complete constraint distribution algorithm is listed in Algorithm 6.1. We
say that we can distribute a constraint directly if one of the distribution options listed in
Table 6.1 can be applied using the reasoning in the previous paragraph without doing any
redistribution (step I). Otherwise, starting at the constraint which should be distributed,
we do a breadth-first search of the constraint graph until a constraint has been found
which can be redistributed (steps II and III do the initialisation and step IV does the
search). The breadth-first search moves from edge to vertex to edge, and so on, following
the directed edges backwards in the graph. By remembering the search sequence with
predecessor markers we can backtrack to the original constraint to find the redistribution
path and apply the redistributions of the constraints along the path accordingly. Then
we try to distribute the new constraint directly in the graph. If this is possible we have
found a way to add the constraint and we report success. Otherwise, we try to find another
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Algorithm distribute (c, g)

Try to distribute the constraint c in a constraint graph g = (nodes, edges). g is updated
if distribution is successful, and success or failure of distribution is reported.

I. If c can be distributed directly without any redistribution, do so and return success.
II. Mark all nodes and edges as not-visited and set the predecessor of all nodes and

edges to empty.
III. Initialise a set activeE of edges (constraints) to c and a set activeN of nodes

(geometric elements) to empty.
IV. While activeE is not empty:

A. Consecutively remove all constraints e from activeE:
1. Mark e as visited.
2. Add all not-visited nodes connected by e to activeN and set their prede-

cessors to e.
B. Consecutively remove the nodes n from activeN and for all constraints e

restricting n which have not yet been visited do:
1. Check whether we can find a redistribution r of e, which can be applied

directly to the graph, such that n is less restricted than before. Remem-
ber the redistribution R which creates the largest increase of degrees of
freedom in n over all e and n.

2. Add e to activeE and set the predecessor of e to n.
3. Mark n as visited

C. If R is not empty, a redistribution path has been found:
1. Apply the redistribution in R.
2. Follow the predecessor markers and redistribute each constraint along this

path.
3. If c can be distributed directly, do it and return success.
4. Otherwise, clear all marks in g, set activeE to c, activeN to empty in

order to restart the search for a new redistribution path within the loop of
step IV.

V. No distribution has been found, return failure.

Algorithm 6.1: Constraint Distribution Algorithm.

redistribution path. For this we restart the search at the original edge in the graph modified
by the previous redistribution. This ensures that we always find the redistribution option
closest to the original edge. If we do not find a path which allows the distribution of the
original constraint, we report failure.

To see how the algorithm works, consider the constraint graph in Figure 6.3 linking four
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Figure 6.3: Example Constraint Graph of Distances Between Four Points on a Plane.

points vl and one plane s. Graph (a) has been created by adding an additional point v4

to the graph in Figure 6.1 and adding three distance constraints from the other points to
v4. All new distance constraints can be distributed directly such that v4 is now completely
constrained. The plane s is described by a distance and a direction indicated by listing
the domains R1 and S2 in the graph. In graph (b) we add three constraints placing v1,
v2 and v3 on the plane s. Each of these constraints can be distributed directly and each
time the degrees of freedom of the plane are reduced by one. This means the plane is now
completely determined, i.e. it is labelled R0 × S0. So far it was possible to add all the
constraints by direct distribution.

In graph (c) we distribute a constraint placing v4 on s as well. We search for a redistribu-
tion path in step IV of the algorithm starting at the new constraint edge. Step IV.A adds s
and v4 to activeN. In step IV.B we find three direct redistribution options to v1, v2, v3 for
s, and three direct redistribution options to v1, v2, v3 for v4. All the edges for these options
are added to activeE to continue the search. In step IV.C we choose the redistribution
with the maximal increase of degrees of freedom for s or v4. In our case this can be any of
the constraints between s and any of v1, v2 or v3, or between v4 and either v1, v2 or v3. We
choose to redistribute the constraint between s and v3, initially reducing the degrees of
freedom of s by one. We redistribute the constraint for this edge, reducing the degrees of
freedom of v3 by one and increasing the degrees of freedom of s by one. Now the original
constraint can be distributed directly and we report success with the distribution as shown
in graph (c).

Any redistribution path which does not result in adding the new constraint does not change
the solvability properties of the constraint system. While redistribution changes the distri-
bution of degrees of freedom in the graph, the dependency sub-graphs still contain suffi-
cient degrees of freedom, and only the distribution of the constraints in the graph changes.
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If the new constraint can be distributed, the number of degrees of freedom changes, so we
must check if the system is still solvable as described in the following section.

6.3 Solvability Test

Distributing a constraint adds a constraint to the constraint graph. This does, however,
not determine if the constraint system remains solvable. The solvability criterion for the
general case is similar to the one for the distance constraints. For a three-dimensional
object embedded in E3 we must have at least six degrees of freedom for the system to
be solvable in the generic case. For zero-dimensional points we must have three and for
collinear points we must have five degrees of freedom. As different types of geometric
objects are present, other special cases are possible. Constraints between directions only,
for instance, relate to arrangements on the unit sphere. For a zero-dimensional direction
set (i.e. one distinct direction) we have only two degrees of freedom. The direction space
is only two-dimensional which means if only directions are involved, the minimum num-
ber of degrees of freedom required for two or more distinct directions is three. Single
surfaces and curves may also have less degrees of freedom.

Other constraints set values for variable angular and length parameters. The presence of
variable scalar parameters does not affect the minimum number of degrees of freedom in
the three-dimensional case. The scalar parameters do not specify the location or orienta-
tion of the object in E3 and no additional degrees of freedom (e.g. a linear scaling factor)
have to be considered as we have constraints setting absolute parameter values.

After a constraint has been successfully distributed in the graph, we have to check whether
the new graph still represents a solvable system. The new constraint is distributed amongst
some nodes. If the dependency sub-graphs of these nodes over the constraint have suffi-
cient degrees of freedom we say the graph remains solvable under the assumption that we
only have generic intersections. The dependency sub-graphs can be detected efficiently by
a greedy algorithm following the directions of the edges backwards. To get the complete
dependency sub-graph we also have to relabel the start node (only for the sub-graph). For
this we collect all edges between the start node and the rest of the sub-graph and com-
pute the new degrees of freedom for the node considering only these edges. We can then
easily check the degrees of freedom in the sub-graph. But recall that special cases may
arise where the constrained objects require less than six degrees of freedom in order to be
solvable (see above).

If the solvability test is successful, then the constraint can be added to the graph without
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destroying the generic solvability of the constraint system. Note that with this process we
can only check for generic solvability as we do not have any additional information about
non-generic cases and how the degrees of freedom are affected by them.

For example, consider the graph in Figure 6.3(c). Distributing the constraint between p4

and s created this graph. We have to check the dependency sub-graph of s over p4. This
graph is identical with the complete graph and has five degrees of freedom. In order for the
graph to be solvable it has to have six degrees of freedom, i.e. the constraint between s and
p4 has made the system unsolvable. Indeed, the constraints in the graph in Figure 6.3(b)
are sufficient to determine the four points and the plane up to location and orientation.

As already noted, there are many similarities between our method and the successful
dense algorithm [121]. The main purpose of dense is to detect solvable sub-systems of
a constraint system in order to solve the system symbolically. The constraint systems it
is intended to handle usually contain only a few over- or under-constrained cases. Our
method detects the solvability of a constraint system and has to handle many cases where
the system is over-constrained. It creates a close relation between the constraint graph,
the flow distribution approach and the actual constraint system. We do not have a rigorous
proof to show that the solvability properties detected by the algorithm describe the exact
solvability properties of the constraint system under our assumptions. The theoretical
issues are still being investigated. However, we believe the approach to be sound because
of its close relation to the successful dense algorithm. Furthermore, experiments with
real constraint systems (see Chapter 7) show that the method is successful when applied
to real, albeit simple, problems.

6.4 Manifolds and Geometric Constraints

In this section we discuss some of the mathematical background for our solvability test
related to degrees-of-freedom analysis. We start with describing the topological struc-
tures present in geometric constraint systems. We show how this relates to the degrees
of freedom of the geometric elements and the reduction of degrees of freedom by geo-
metric constraints. This leads to an improved understanding of the relations between the
equation system describing the geometric constraints and degrees-of-freedom analysis of
geometric constraint systems employing constraint graphs.

A geometric constraint system consist of geometric elements and geometric constraints.
The constraints limit the combinations of values the elements are allowed to have at the
same time. Typically the constraints do not impose arbitrary limitations, but select sub-
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sets of all possible geometries with proper topological structures. We first describe the
structures of the geometries with some examples and show how these are restricted by
geometric constraints.

A geometric element is described by a geometry type and a vector of real parameters.
The geometry type can be regarded as a mapping from the parameter vector space to E3

representing the geometric realisation of the geometric element. The vector can usually be
split into small vectors describing positional, directional, etc. properties of the geometric
element. Some of these may be features used for our regularities, but not all of them
are. For instance, consider a geometric element of the type plane. It can be described
by six real parameters, where three give a position on the plane and the other three give
a direction for the normal. Only the normal is a feature of the plane, the position is
not (it does not change in a similar way to the cell under isometries). Grouping the six-
dimensional vectors describing planes by their function, we can map an element of R3×R3

to a plane in E3. But this mapping is not unique. In order to get the manifold of all planes
in E3, we have to identify the elements of R3 × R3 which give the same plane. For this
we use the equivalence relation

(p1, d1) ∼ (p2, d2) :⇔ p1
td1 = p2

td1 ∧ d1
td2 = ‖d1‖‖d2‖. (6.1)

on R3×R3. This yields a three-dimensional manifold of the form R×S2 of oriented planes
in E3 (note that we require oriented planes for the boundary representation; for unoriented
planes the manifold would be R × P2). Thus, for the plane we have a two-dimensional
direction space and a one-dimensional position space.

Now consider a conical geometric element. We can parameterise it with an apex parameter
in R3, a direction parameter in R3 and a semi-angle parameter in R. The parameter
product space R3 × R3 × R can be mapped onto the space of all conical surfaces in
E3. Obviously the mapping is not unique and we can factor R3 × R3 × R by identifying
parameters which give the same cone. This is described by the equivalence

(p1, d1, α1) ∼ (p2, d2, α2) :⇔ p1 = p2 ∧ d1
td2 = normd1‖d2‖ ∧ α1 = α2 mod

π

2
. (6.2)

The positional parameters remain three-dimensional while the directional parameters be-
come a two-dimensional space S2 (in the case of an oriented surface) and the semi-angle
space remains one-dimensional (S1). We get a product manifold of the type R3× S2× S1

for (oriented) cones.

Recall the representation of lines in E3 using Plücker coordinates mentioned in Sec-
tion 6.2. We can represent a line uniquely by a pair (d, l) ∈ R3 × R3 which fulfils the
normalisation equation ‖d‖ = 1 and the Plücker relation dtl = 0. Thus, the set of all lines
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in E3 forms a four-dimensional sub-manifold of R3 × R3. We can also describe a line by
a position and direction pair in R3 × R3 and then identify pairs which describe the same
line by the equivalence

(p1, d1) ∼ (p2, d2) :⇔ (p2 − p1)
td1 = 0 ∧ d1

td2 = ‖d1‖‖d2‖. (6.3)

This yields the same four dimensional manifold. However, in this case the position and
direction are not independent anymore, so we cannot represent it as a product manifold
of a positional and directional space. In Section 6.2 we argued that we can still treat it as
a product manifold of a two-dimensional direction space and a two-dimensional position
space, i.e. choose a position in a plane and then choose a direction from that position.
But this only works if the direction does not lie in the plane. As we can choose the plane
arbitrarily we can always make sure that this is the case locally. However, globally using
this product manifold we treat lines as being different even if they have the same geometric
realisation. But for degrees-of-freedom analysis we solely argue about the dimension of
the spaces, which is not directly affected by this — especially if we only consider small
local modifications.

In general each geometric element is described by a parameter tuple (p′1, . . . , p
′
m) ∈ Rd′

1×
· · ·×Rd′m where each parameter p′l is an element of a d′l-dimensional vector space over R.
This tuple is mapped to a set in E3 depending on the geometric type of the element, which
is not necessarily unique. We assume that each parameter tuple can be identified with
a tuple (p1, . . . , pm) as an element of a feature space product which describes a unique
geometry. Note that all pl have to be elements of feature spaces (path-wise connected,
smooth, abstract manifolds), but not all of them are features. Each of the parameters
p′l in Rd′

l relates to an element pl in a dl-dimensional feature space Pl. We say that the
topological type of p′l is Pl. We refer to the topological dimension of Pl as the degrees of
freedom of p′l.

However, not all geometry manifolds are homeomorphic to product manifolds of feature
spaces. By definition, manifolds of the same dimension are locally homeomorphic, but
their global topological structure can be different. This means that the parameters are
locally independent from each other, but globally they are not. In the context of degrees-
of-freedom analysis this is ignored, but may lead in general to singularities where degrees-
of-freedom analysis is not able to determine the structure of the constraint system. We are
only arguing generically and ignore any such singularities which may be introduced by
this system for certain geometric types. We must solve equation systems to determine
such situations, as they cannot be detected by arguing solely about the topological type.
Note that if we are arguing about local modifications to a valid model, the global structure
of the space is less important. The topological types of the parameters we require for our
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geometry types are directional feature spaces S2 (used instead of P2 as the geometries
also have an orientation), positional feature spaces R3, R2, R1, angle feature spaces S1

and length feature spaces R+. The shape of a geometric element is then described by a
product of parameter spaces which are associated with a feature space.

We consider a single geometric constraint to be between geometric elements limiting the
values certain parameters can have at the same time. This selects a subset of the product
space of all parameter spaces involved in the geometric constraint system. As it only
limits the values of the parameters directly involved in the constraints we can limit the
discussion of a single constraint to the product of the parameter spaces of the involved
elements. For our constraint systems we consider incidence constraints between features
and cells, distance constraints between features of the same type and subset constraints
between geometric elements. The constraint types we use to describe the improved model
are basically covered by these or can be analysed in a very similar way. For simplicity,
we only consider the basic types here.

First consider an incidence constraint between two features p1, p2 of the same type rep-
resented by the parameters p′1, p′2. We only have to consider the parameter spaces P ′1, P ′2
and the related feature spaces P1, P2 for these two features (as the features are of the same
type we have P ′1 = P ′2 and P1 = P2, but we keep separate parameter space instances for
each parameter). With respect to the feature space, the constraint selects the sub-manifold
S = {(p1, p2) ∈ P1 × P2 : p1 = p2} of the product feature space P1 × P2. Using the
mapping from the product parameter space to the product feature space, S is the image of
Sl = {(p′l, p′l) : p′l ∈ P ′l } for l either 1 or 2. Note that Sl is a sub-manifold of P ′1 × P ′2.
Thus, if we choose to use S1, we can express this by setting the degrees of freedom of
P ′2 to 0. This indirectly represents the condition that p1 and p2 are mapped onto the same
feature.

If we only consider the local structure of the d-dimensional feature spaces P1 and P2, we
get additional options to distribute the degrees of freedom. Locally P1 and P2 are like Rd.
Thus, locally an element of these spaces can be represented as a d-tuple and we get the
local version of S above as Slocal = {((p1,1, . . . , p1,d), (p2,1, . . . , p2,d)) ∈ Rd × Rd : p1,l =

p2,l for l = 1, . . . , d}. This means that we can arbitrarily reduce the degrees of freedom
of both P ′1 and P ′2 under the condition that the overall reduction is d.

Incidence constraints between cells can be interpreted as incidence constraints between
the relevant parameters. For each corresponding parameter pair we have the option to set
one of the two degrees of freedom to 0. Considering only the local structure in a similar
way as for the feature incidences, we can even distribute the dimension reduction between
the feature pairs arbitrarily.
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Next consider a distance constraint between two features p1, p2 of the same type. The
constraint selects a sub-manifold S = {(p1, p2) ∈ P1 × P2 : d(p1, p2) = c}. In a d-
dimensional feature space this can be interpreted as requiring that feature p1 lies on a
(d − 1)-dimensional sphere with centre p2 or vice versa. So S can be parameterised by
S1 = {(p′1, p′2) : p′1 ∈ Dd−1, p′2 ∈ P ′2} where Dd−1 is the inverse image of a unit sphere
in the feature space under the mapping from the parameter space to the feature space (for
positional features this is S2, for directional features, this is the inverse image of a unit
circle in P2 which is a cone in R3). We can express this in terms of degrees of freedom by
reducing the degrees of freedom of P ′1 by 1. Alternatively we can also do this for P ′2 in a
similar way.

Subset constraints are the only type of constraints which relate different feature spaces.
For instance, consider a constraint requiring that a point p lies on a plane q. Let p be
parameterised by p′1 ∈ R3 (topological type R3) and q be parameterised by a position
p′2 ∈ R3 (topological type R1) and a direction p′3 ∈ R3 (topological type S2). Note
that, because as not all parameters are features, we cannot argue in terms of the feature
spaces. The parameter product domain for the two geometric elements is R3 × R3 × R3

corresponding to the topological types R3, R1 and S2 respectively. If we interpret the
constraints as putting the point in the plane, we can parameterise the selected subset by
S1 = {(q′1 + Mp′1, q

′
1, q

′
2) : p′1 ∈ R2, q′1 ∈ R3, q′2 ∈ R3} where M is a 3 × 2 matrix

containing two linearly independent directions in the plane. This reduces the degrees of
freedom of the parameter space for p1 by one. It can now only be chosen from a space
which is homeomorphic to R2. We may call R2 the reduced topological type of p1.

We can also use S2 = {(p′1, q′1, q′2) : p′1 ∈ R3, q′1 ∈ R3, d(q′1, 0) = d(p′1, 0), q
′
2 ∈ R3}

which makes p′1 determine the distance of the plane from the origin and sets the reduced
topological type for q′1 to R0. Alternatively we can use S3 = {(p′1, q′1, q′2) : p′1 ∈ R3, q′1 ∈
R3, q′2 ∈ R3, (q′1 − p′1)

tq′2 = 0} which makes p′1 determine part of the normal direction
of the plane under the condition that p′1 6= q′1 (ignoring such singularities in the generic
case). This sets the reduced topological type of q ′2 to S1.

Other subset constraints can be interpreted similarly, such that the dimensions of the in-
volved parameter spaces are reduced. As we do not solve any equation system, we have
to ignore singularities, special arrangements, etc. This means that the overall reduction of
dimensions introduced by constraints can be distributed over any combination of involved
parameter spaces by reducing their degrees of freedom. As locally the geometry spaces
for the geometric elements behave like independent product manifolds of vector spaces
over R, this works properly in many cases.

In general for a geometric constraint there are multiple options for selecting some of the
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involved parameter manifolds and requiring that the parameters corresponding to these
manifolds have to lie in a sub-manifold. This also selects sub-manifolds of related fea-
ture spaces for the parameters. The reduction of the dimensions of the feature spaces by
these sub-manifolds can be expressed by reducing the degrees of freedom of the involved
parameters. For the solvability analysis we only argue in terms of degrees of freedom left
for the involved geometric elements. This avoids having to solve any equation systems,
but also means that we have to make certain assumptions about the constraints. The main
restriction is that we are arguing about locally homeomorphic manifolds rather than glob-
ally homeomorphic manifolds. This means we consider manifolds of the same dimension
to be the same or at least similar. As long as only local properties are important this is
true. But when global properties are relevant, it will fail.

Enforcing multiple constraints means that we intersect the allowed parameter value sets.
We assume that this can be done separately for each parameter, and the intersections are
always generic. As discussed in Section 6.2 this means we always get a dimension reduc-
tion when intersecting the sets of allowed parameter values. Furthermore, the reduction
represents the usual, most likely case, and not any special cases requiring special param-
eter values and constraints.

In this section we have only given a brief overview of the issues involved in degrees-
of-freedom analysis of geometric constraint systems. We have presented the degrees-of-
freedom analysis in a topological context and believe that this shows more clearly the
structures it can handle and where its assumptions do not apply. Neither are the inter-
sections of the sub-manifolds always generic, nor do we always have product manifolds
of independent parameters. But in many cases these assumptions apply in a local sense
and thus allow us to determine the solvability of a large number of geometric constraint
systems. The topological interpretation also gives a direct approach to the constraint
distribution algorithm which is similar to the successful dense algorithm [121] and con-
straint decomposition schemes based on it [51, 52]. However, more work on the theory is
required to better understand the involved structures. A more detailed analysis of the topo-
logical interpretation may eventually improve our understanding of geometric constraint
systems and help to find ways to expand existing methods to more general cases.

6.5 Summary

In this chapter we have presented an algorithm to detect the solvability of a geometric
constraint system. By adding constraints consecutively to a constraint graph using the
distribution algorithm, and checking if the expanded constraint graph remains solvable,
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we can determine the solvability of a constraint system without computing a solution. We
simply check the topological dimensions of the involved parameter spaces to verify if a
constraint can be imposed on a set of geometric objects which may already be constrained.
In order to do this without solving any equations we have to make certain assumptions
about the type of constraints. Each constraint limits the values the parameters can have
at the same time. There are multiple options to describe this limitation by restricting
different parameters to subsets of lower dimension. When enforcing multiple constraints,
the subsets have to be intersected. Without solving any equation systems, we assume that
this yields certain generic intersections, which is the most likely situation. The topological
interpretation of constraint systems allows us to investigate the underlying structures of
degrees-of-freedom analysis in more detail and identify special cases for which it does not
apply. Future research based on this may enable us to extent the methods to more general
cases.

In order to eventually solve the equation system, we use the numerical optimisation
method presented in Section 5.6. Degrees-of-freedom analysis is usually combined with a
symbolic solver and the constraint system is decomposed into small solvable sub-systems.
However, there may be sub-systems which cannot easily be solved symbolically and for
which no explicit solution is known. Furthermore, for beautification the geometric model
may not always be described completely by our geometric constraints (it is only highly
likely as we detect many regularities). Thus, using an optimisation solver starting at the
parameter values for the initial model is likely to find the desired solution. It would, how-
ever, be possible to replace the optimisation solver with a symbolic or any other type of
solver.
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Chapter 7

Experiments

In the previous chapters we discussed the analyser, hypothesiser and rebuilder compo-
nents of our beautification system. In this discussion we have concentrated on robust
detection of approximate geometric regularities, and the solvability of a constraint system
describing the model and the selected regularities. The constraint system should repre-
sent the likely, original design intent of the reverse engineered object. In this chapter we
present the results of experiments of using this system on real and simulated reverse engi-
neering data. In general, we have to be careful in interpreting results from testing reverse
engineering methods with simulated data, as the actual physical measurement may create
problems of a type not present in synthetic data. However, as we will see, the beautifi-
cation problem is quite similar for real and simulated data, mainly as the beautification
methods work solely on the initially reconstructed boundary representation models. The
experiments show that our beautification system is able to improve both types of initial
model with respect to design intent. As the initial models are approximate, there is always
some uncertainty about the actual design intent. Depending on the tolerance for the ini-
tial model, specific parameter values and minor regularities are not always reconstructed
according to the original design. But major regularities, like global symmetries, major or-
thogonal systems, etc. representing the global structure of the model, are imposed exactly
on the improved model in these test cases.

In Section 7.1 we give a brief overview of the implementation and platform used to test
our beautification algorithms. In Section 7.2 we present the results of experiments with
simulated data, and in Section 7.3 we present the results of experiments with real data.
Finally, we discuss the results of the experiments in Section 7.4

7.1 Test Platform and Implementation

In this section we briefly present details of the platform used to implement and test our
beautification algorithms. We also discuss the basic setup for the experiments.
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The algorithms were implemented using the modular structure described in Section 1.3.
For the analyser we used the algorithms described in Chapter 3. Unless otherwise noted,
we used a minimum distance tolerance ∆TA of 1◦ for angles and a minimum distance
tolerance ∆TL of 1 unit for lengths (relating to millimetres for the real objects). These
tolerances are used to indicate when two features may be different. All other parameters
were chosen as described in Chapter 3. For the hypothesiser, we used selection priori-
ties with parameters as described in Chapter 4. By fine-tuning these parameters for each
model, the results could certainly be improved as noted later. For testing solvability of the
constraint systems we only tested the topological approach as described in Chapter 6 for
all models used in this chapter. Experiments with the numerical solvability test showed
that this is clearly too slow for practical purposes (see below). The constraint systems
were solved using the numerical constraint solver from Section 5.6. Their solutions were
computed to within an error of less than 10−5 for each equation, which formed the con-
vergence condition for the solver. Note that the equations (see Table 5.3) do not indicate
an error in consistent units (not even in any angle or length units), but they were chosen
for efficient evaluation. This error bound strongly influences the time required for the
numerical solver. Using larger values, say 10−2 or 10−3, is sufficient in many cases to
construct a reasonably accurate model, and reduces the time for solving the constraint
system numerically.

Employing the numerical constraint solver to test for solvability is far too computation-
ally intensive for practical purposes. In [72] we present some timing results. For instance,
beautifying the cube model described in Section 7.2 took about 2 hours on a computer
with a single AMD Athlon MP 1200MHz with 512MB RAM. For more complex models
it could easily take about 24 hours. These very long running times are solely caused by
running the numerical solver multiple times to check whether a solution of a constraint
system exists. As most of the constraint systems are not solvable, the solver has to han-
dle numerical instabilities and thus the convergence rate is very slow. Furthermore, the
constraint system has to be solved to a low error to ensure that a solution actually ex-
ists. Beautification of the cube employing the topological solvability test took less than 4

seconds on the same platform with the same tolerance for the solution of 10−3 using the
optimisation solver. While most of this time is also used for solving the equation system,
only one consistent equation system had to be solved, which requires considerably less
time.

By specifically tuning the priority parameters for the regularity selection and the con-
stants employed by the numerical constraint solver, the running time for beautifying the
cube with the numerical solvability test could be reduced to 10 minutes, which is still
considerably longer than employing the topological test. Hence, the numerical solver is
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not suitable in practice due to either very long running times or the requirement of time
consuming fine-tuning of parameters. Moreover, we have a considerably faster method
using the topological solvability test.

For the implementation we employed the ACIS solid modelling kernel from Spatial, ver-
sion 7.0. It was used mainly for creating and displaying models, and for standard geomet-
ric modelling algorithms like surface-surface intersection when rebuilding an improved
model. The beautification system itself was build separately with a model representation
based on the boundary representation discussed in Section 2.1. This allowed a simpler,
more efficient implementation of our algorithms without having to deal with the internal
structure of ACIS. The algorithms were implemented in C++ on a GNU/Linux platform
(Debian GNU/Linux 3.0 woody) using the GNU GCC C++ compiler, version 3.0.4.

For the timing results of the experiments a dual processor Athlon MP 2600+ 2.12GHz
computer with 1.5GB RAM was used. The algorithms ran without any threading or par-
allel processing on a single processor. We ran the algorithms at least five times to obtain
timings where no time variations of more than one tenth of a second were noted for any
given data set.

7.2 Experiments with Simulated Data

In this section we present the results of beautifying models reverse engineered from simu-
lated data. By rotating and translating faces of exact models, and generating a point cloud
from these perturbed objects, we created simulated point sets. From the point cloud we
obtained initial reverse engineered models using the reverse engineering system described
in Section 1.1.1. These models were then beautified with our algorithms.

Simulated data was mainly used for initial tests of our methods, as it was easier and
faster to obtain. There were no problems related to scanner calibration, accessibility of
the object, or physical properties of the surface (colour, reflection, etc.), which make it
hard to probe real objects with a laser. We also did not have any occlusion problems
caused by deep cavities, etc. which cannot be probed by a laser scanner, and thus we
could choose from a large set of test models. In general, for reverse engineering, tests
with simulated data may yield results considerably different from results of tests with real
data. Randomly distorting a model and creating a point set by introducing some Gaussian
noise to point sets obtained from the model surface does not actually account for issues
related to physical measurements. Our simulation introduced relatively evenly distributed
noise over the whole point set. Real data often is generally very exact, but is disturbed
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locally by undesired effects causing peaks or holes in the data. Registering different views
of real objects may also introduce errors not present in simulated data. Often it is easier
to generate an acceptable initial model from simulated data than real data. Nevertheless,
simulation was useful to determine whether the reverse engineering software would be
able to handle data from a real object. If it does not work with simulated data, it is highly
unlikely to work with real data. As expected, however, the simulation never predicted all
problems arising in real data.

Our aim, however, was not to test the reverse engineering software. Instead, we wished to
test our beautification algorithms. Here we worked solely with a boundary representation
model. This model was already in a relatively high level representation and problems
relating to local inaccuracies in the point data were less important. Once we have a valid
initial model, the noise in the point data and the noise introduced by the reconstruction
process are represented by noise in the features derived from the model. While such
noise is the cause for inaccuracies in the representation of the initial model’s surfaces and
thus the cause for inaccurate features, for beautification we only deal with the inaccurate
features and not the point data. Hence, the problems in the models generated from real
and simulated data were quite similar.

In the following, we first discuss the experiments on simulated data from a simple cube
model to show the general behaviour of our system. We then present results for simulated
data from more complex models. Experiments with real data are discussed in Section 7.3.

7.2.1 A Simple Example with Simulated Data

We illustrate the general behaviour of our method using data simulated from the model
of a cube shown in Figure 7.1. This model is simple enough for us to be able to list the
regularities detected and explain the behaviour of the system in more detail. A cube with
edge length 2 was perturbed by randomly changing the plane normals by at most 3 degrees
and face positions by at most 0.1 length units. From the resulting model, a point set was
generated, and an initial model was reverse engineered.

As listed in Figure 7.1 the analyser detected 21 approximate regularities. The complete list
has been simplified for this discussion. We list the number of regularity types detected at
different tolerance levels (the tolerance levels in the table are only indicative, not precise).
The algorithms clearly detected the orthogonal system of the cube, but at a high tolerance
level due to the perturbation. This also caused the detection of two parallel direction pairs
at a lower tolerance level and a third one at a higher tolerance. We detected six angles
between the plane normals with a set of various special values close to π/2 at different
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Time taken in
Analysing: 0.02 sec.
Selecting: 1.21 sec.
Solving: 4.54 sec.
Total: 5.77 sec.

Detected Regularities Tol. Level
1 orthogonal system 3◦

2 pairs of parallel directions 1◦

1 pair of parallel directions 3◦

6 sets of special angles 0.1◦ to 3◦

2 pairs of aligned axes 1◦

1 pair of aligned axes 3◦

1 intersection of 3 axes 0.15

I 1 intersection of 2 axes 0.05

1 equality of 12 lengths 0.1

I 2 equalities of 3 and 5 lengths 0.04

3 sets of special edge lengths 0.001 to 0.1

Figure 7.1: A Simple Model from Simulated Data with Test Results.

tolerances as an alternative to the orthogonal system. Furthermore, two of the plane axis
pairs generated by the centres of opposite planar faces and the plane normals are quite
closely aligned. The third aligned axis pair is at a higher tolerance level.

The intersection of two of the aligned axis pairs is at a low tolerance value. At a higher tol-
erance level this intersection is expanded by the third axis pair. This creates a parent/child
relation in our regularity structure, indicated byI in the list. Similarly we find two groups
of three and five edge lengths close to each other which are combined at a higher toler-
ance level to a single group as indicated again by I. The group at the higher tolerance
level also contains four additional length values, which were not part of any group at a
lower tolerance. For each of the groups we also found sets of special edge length values
at various tolerance levels.

For the priority values of the regularities, which determine which regularities are chosen
in the final model, there are two basic options. We can emphasise the quality of the regu-
larities such that the orthogonal system and all regularities following from it are selected.
Alternatively we can favour small tolerances, which results in the selection of alternative
regularities where in particular one of the approximately aligned axis pairs is not orthog-
onal to the other two.

By setting the priorities to favour an orthogonal system, a cube with edge length 2 was
created as the improved model. Besides emphasising parallel directions and orthogonal
systems, we also had to take care that the special values for edge lengths strongly empha-
sised integer values to avoid choosing a different edge length.
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In contrast, if we favoured precise tolerances, integer angles different from π/2 were cho-
sen for all relations between the directions. The equal edge length groups were completely
rejected due to solvability problems and various different values for the edge lengths were
selected.

We also tried a third set of priorities which neither emphasised tolerance nor quality. In
this case we obtained three aligned axis pairs where two were orthogonal to each other,
but the third one had an angle of 88◦ to the other two. The group of three equal edge
lengths was accepted with a special value 1.9. The other edges all had separate special
length values or none set specifically by a regularity due to solvability issues.

However priorities were adjusted, the selected constraint system was solvable and the
numerical solver found a solution within a predetermined numerical tolerance (10−5 for
the experiments presented here).

Depending on our assumptions about the initial model, we can either accept high quality
regularities or regularities with small tolerances. Only a regularity for which both is true
is likely to be accepted in both cases. In this example, the third model may actually be
the most likely one if we ignore our knowledge about the original perturbation of the
model. There is some evidence in the initial model that the third axis is not part of an
orthogonal system as regularities relating to it are at a higher tolerance level. In all three
cases, selecting particular special values for lengths and angles is hard. While we can
enforce all edges to have the same length this also means that we have to accept a high
tolerance level and so various special values are possible.

The overall time required to improve the model from the initial data was 5.77 seconds on
average. The breakdown of this time for the various components of our system is shown
in Figure 7.1. Note that the time for rebuilding the model was under 0.1 seconds and is
accounted for in the solving time.

7.2.2 More Experiments with Simulated Data

We now discuss the results of experiments with more complex models shown in Figure 7.2
generated from simulated data. Models (d) and (e) were obtained from [148]. Table 7.1
lists the number of regularities detected in each case, how many of them were selected
to improve the model, and the times required for analysing the initial model, selecting
consistent regularities and solving the constraint system. Note that due to the hierarchical
clustering, counting the number of regularities found is not trivial. We did not count
clusters as regularity which consist only of a single element, but are required for clusters at
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(a) (b) (c)

(d) (e)

Figure 7.2: Example Models Reverse Engineered from Simulated Range Data.

larger tolerance levels. Furthermore, the multiple special values suggested for an angle or
length value in the model were counted as a one regularity. This is justified as the selection
rules (see Section 4.3) ensure that only the most likely special value can be selected. Note
that we can either set a special value for a scalar parameter consistent with the other
regularities or not. In case of an inconsistency caused by one special value we do not
get a generically consistent constraint system by choosing an alternative special value for
the same scalar parameter (it would at least lead to redundant constraints and more likely
to inconsistent constraints). We also list the number of equations required to describe
the constraint system in the numerical solver. These equations include those required to
describe the topology and the auxiliary cells as well as the regularities detected. In the
following we only discuss the major results relating to the main structure of the model.

Model (a) has two planar angle-regular arrangements of planes with base angle π/4 which
have been detected. However, an alternative arrangement combining both into a single
regularity with base angle π/18 has also been detected at a larger tolerance level. As
two angle-regular arrangements based on π/4 are at a lower tolerance level with a more
desirable angle, they were selected for inclusion in the model. But note that changing
the priorities or increasing the distortion of the object might favour the other regularity.
Four orthogonal systems consistent with the planar arrangement were also detected and
imposed on the model. For the angle between the two groups of planes, several special
values as angles between individual plane pairs were detected. Only one of these angles
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Model (a) (b) (c) (d) (e)

Faces 14 18 25 23 21

Regularities
Total 255 255 275 46 39

Selected 31 97 49 30 17

Sel. Equations 366 638 698 306 124

Time taken in
Analysing 0.19 sec. 0.17 sec. 0.35 sec. 0.04 sec. 0.04 sec.

Selecting 7.01 sec. 7.87 sec. 11.53 sec. 2.83 sec. 2.02 sec.

Solving 37.90 sec. 174.62 sec. 329.54 sec. 28.49 sec. 32.14 sec.

Total 45.10 sec. 182.66 sec. 341.32 sec. 31.36 sec. 34.20 sec.

Table 7.1: Number of Total and Selected Regularities, Selected Equations and Com-
puting Times for Example Models from Simulated Data.

was selected and imposed on the model; problems related to the exact angle value similar
to special value problems in the cube example again arose. Additional regularities de-
tected were conical angle-regular arrangements with cones with semi-angles close to π/2
created by the planar faces. As they were inconsistent with the planar arrangement and
had a low priority they were not considered. Further regularities included aligned axes,
axis intersections and equal edge lengths.

For model (b) slanted cylinders were cut out at the top and the bottom face of the block
where the bottom arrangement was rotated by an angle of π/4 relative to the arrange-
ment at the top. The planar angle-regular direction sets of the planar faces and the conical
angle-regular sets of the cylinder axes were detected and imposed exactly on the improved
model. Additional conical angle-regular sets of the directions of cylinder and plane axes
were detected as well. Some of these were consistent with the planar and conical angle
suggesting the same angle values and were thus selected. Those suggesting angle values
inconsistent with the main arrangements were not considered. Unfortunately, the intersec-
tion point of the axes generated from the centre of the convex hulls of the side faces was
not detected correctly, as the perturbation of the side faces moved some of the axes too far
apart. This also caused one aligned axis pair to be missed. Instead regularities specify-
ing individual angles and edge lengths were selected. However, by adjusting the priority
and detection parameters these problems could be fixed. The angle between the planar
arrangement of the planes and the conical arrangement of the cylinder axes was speci-
fied by individual angle values similar to the angle between the two planar angle-regular
arrangements in model (a).
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In model (c) the orthogonal arrangements of the planes and the conical angle-regular
arrangements of the planes at the top were detected and selected for beautification. Ad-
ditional conical angle-regular arrangements of plane normals were detected, but not all
were consistent with the above regularities. Further regularities included various aligned
axes and regular arrangements of these axes. The regular arrangement of the cylinder axes
was only partly detected with one cylinder missing from the regular axis arrangement on
another cylinder and two cylinders missing from the grid. Hence, in the improved model,
the positions of these axes was only partly determined by the regular arrangement on a
cylinder and the grid arrangement was not considered. The axis positions remained close
to their positions in the initial model, though.

Analysing model (d) resulted in detecting that all directions form an orthogonal system,
with one main axis. All axes of the main cylinders were found to be aligned, where the
axis of the top-most cylinder was aligned with the others at a higher tolerance level. These
regularities were imposed exactly on the model. Even though one of the alignments was
at a higher tolerance level, no alternative was available and so it was selected as well.
The axes of the two pairs of opposite holes in the sides of the large cylinder were also
found to be parallel and to lie in a plane with an intersection point on the central axis.
The planar angle-regular algorithm detected their symmetrical arrangement. Of the four
intersection points of the axes of the holes in the large cylinder, and the axes of the holes
in the planar surface at the bottom, only one was detected and imposed on the model.
This was sufficient to align the hole pairs properly as the angles between the axes were
determined by other regularities. However, note that this result is relatively unstable and
modifications of the parameters used could easily break it. The symmetrical arrangement
of the cylinder axes around a cylinder aligned with the main central axes was also imposed
on the model.

Model (e) is similar to model (d). It has a single main axis which was detected, but no
orthogonal system is present. The regular arrangements of the holes on a circle was found.
The remaining regularities were similar radii and angle parameters and special values for
them. It was also suggested that two cylinder radii which were close to each other may
be equal. As this required a change in the topology of the final model, it was not selected.
The main problems in the regularities selected for this model were special values. In
particular the radii and cone semi-angles for the holes were selected by separate special
value regularities, where two of them suggested the same cylinder radii. The equal length
and angle parameter regularities were consequently rejected. Only tricky adjustments of
the priorities could resolve this problem.

Further discussion of these results will be given in Section 7.4.
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7.3 Experiments with Real Data

In this section we present results of experiments using real data. For these experiments,
we scanned real objects made from an ACIS model using a simple three-axis milling
machine (with an accuracy of 0.05mm and a resolution of 0.025mm). The objects had an
approximate size of 70mm× 70mm× 40mm. The model discussed in Section 7.3.1 is an
exception, as originally we only had a real object and no CAD model (it is an accurately
machined object for the RECCAD project of an approximate size of 60mm × 60mm ×
150mm).

As already indicated in Section 7.2, the results of tests on real data are similar to the re-
sults of experiments on simulated data (This was further confirmed by using the exact
ACIS models for the real objects to create simulated data). While the inaccuracies were
different, the general behaviour of the algorithms was similar. In particular, problems with
ambiguous regularities and selection between them were the same. The main difference
is that the errors in the simulated data were more evenly distributed. Thus, for simulated
data it is more likely that the errors in the desired regularities are at about the same toler-
ance level. For real data we cannot rely on consistent tolerances levels for the complete
model, which further shows the advantages of not using a maximal tolerance (see Chap-
ter 3). (However, note that sometimes simulated data may also have desired regularities
at different tolerance levels, as we saw in Section 7.2 for the relatively large error for the
third axis of the cube).

In the following, we first discuss a relatively simple model in more detail, and then give
the results for some more complex objects.

7.3.1 A Simple Example with Real Data

Figure 7.3(a) shows a simple model used to test our beautification algorithms with real
reverse engineering data. To analyse the model we used ∆TA = 1◦ and ∆TL = 2 length
units (millimetres; approx. 1% of the length of the model), which created a good set
of regularities. We used parameters different from the ones listed in Section 7.1 as this
model was an accurately machined model from the RECCAD project, which should be
accurate to a much higher tolerance (although, the initial model from it might not be). In
the following we discuss the detected approximate regularities and which of these were
selected to improve the initial model.

The object has a single central axis, several planes with normals parallel to this axis and
two parallel planes with normals orthogonal to it. This resulted in the detection of two
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main parallel direction clusters, where one was a simple cluster representing the main
axis at the lowest tolerance level. The other one consisted of two directions representing
the plane axes orthogonal to the main axes. Even if parallel in the ideal model, the angle
between the two directions in the initial model was sufficiently far apart (about 3◦) such
that the two directions were sub-clusters of another cluster. It was also found that these
two planes were orthogonal to the main axis.

The central axis regularity was detected and imposed on the model. The two blue parallel
planes (only the one in front is visible in Figure 7.3), however, could only be made parallel
by allowing large angular tolerances (about 3◦) due to an error in the initial model caused
by the registration step. The angular error was already present after registration of the
two views for opposite sides of the object, each containing one blue plane. The common
points used to register the two views came only from cylindrical and conical surfaces,
making the rotation angle hard to determine.

Special values for the cone angle and edge lengths as well as equal edge lengths created
similar problems to those for the cube discussed above. As the two plane normals were
considered not to be parallel at a small tolerance level, some special values for the angle
between the two normals were reported. There was one suggesting some special values
for the angle between the directions, and a conical angle regularity consisting of the two
plane normals and the main axis. Both regularities would only be realisable if the two
directions were not parallel. These regularities were detected as our methods consider all
sub-clusters at different tolerance levels, in order to detect possible regularities created by
them. These inconsistencies were identified by the solvability test such that only one of
the regularities could be selected depending on the priorities. By favouring high quality
regularities, we could make the two planes parallel and also orthogonal to the main axis.
Alternatively we could look for regularities nearly exactly present in the model, which
would result in selecting some special value between the two plane normals. In that case
the normals are still made orthogonal to the main axes.

Some of the surface root point positions and vertex positions were also considered to
be equal in the position cluster hierarchy. All these regularities had tolerances above
20 length units and would require changes to the topology of the model which would
remove large surfaces. As the priorities for these regularities were quite low, they were
not considered in any case. Similarly two pairs of approximately equal cylinder radii
were detected at the lowest tolerance level, which were considered to be equal at a higher
tolerance level. Making them equal would require a change in the topology, and again
due to low priorities they were not considered. But instead, a special value for each of the
radius clusters was selected.
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(a)

(b)

(c)

(d)

Figure 7.3: Example Models Reverse Engineered from Real Range Data.

7.3.2 Other Real Reverse Engineered Objects

We now discuss the results of improving the remaining three models in Figure 7.3 which
were reverse engineered from real data. Due to the large number of regularities found in
these more complex models, we do not present them in detail: only how the major regu-
larities were handled by the system is discussed. Table 7.2 lists the number of regularities
detected, and how many of each were selected for use to improve the model, in a similar
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Model (a) (b) (c) (d)

Faces 11 19 14 25

Regularities
Total 25 329 152 287

Selected 14 43 33 45

Sel. Equations 84 469 334 586

Time taken in
Analysing 0.03 sec. 0.32 sec. 0.89 sec. 0.94 sec.

Selecting 0.11 sec. 9.13 sec. 3.75 sec. 12.05 sec.

Solving 28.52 sec. 178.37 sec. 57.29 sec. 263.89 sec.

Total 28.66 sec. 178.82 sec. 61.93 sec. 276.88 sec.

Table 7.2: Number of Total and Selected Regularities, Selected Equations and Com-
puting Times for Example Models from Real Data.

way to Table 7.1.

The priority values listed in Section 4.2 were used representing the case where quality is
only slightly emphasised over the tolerance. Thus, we prefer regularities which are either
present very accurately in the initial model or represent a regular arrangement of high
quality (as determined by certain priority parameters). If we have contradictory regulari-
ties where some are very accurate and others are of high quality, those of high quality are
preferred even if they are present at a larger tolerance. In general this resulted in the best
overall regularity selections. Fine-tuning the values for particular models could of course
improve the selection results. Changing these values to favour quality or tolerance had
effects comparable to those discussed in Sections 7.2.1 and 7.3.1.

Model (b) has two symmetrically arranged, planar direction sets based on the angle π/4.
Together with the orthogonal relation between the symmetrically arranged red and green
planes, and the blue planes, these regularities have the highest priority and were imposed
exactly on the model. Edge lengths caused similar problems to those for the cube. Even
by adjusting the priorities, only the group of short edges could be forced to have the
same length. The values in the other two groups of lengths were close to each other, but
different special values were favoured for the two groups. Special ratios between these
values also supported undesired values. The solvability test correctly determined that only
one angle between the groups of red and blue planes can be set. However, for the value
of this angle there was again a choice between choosing a special value close to the value
in the initial model and one of high quality. With our method a particular plane pair was
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chosen to select this angle. If we favoured integer degrees, the closest integer to this angle
was chosen. The angle in the original design was 10◦. The plane pair chosen had an angle
of 45◦ + 10.8◦ and thus the angle between the two plane sets was chosen to be 11◦. Note
that to select a special value of 10◦ between the two plane sets would require to select a
special value of 55◦ between the chosen plane pair. In order to prefer this special value,
the special value priorities would have to be adjusted to favour multiples of 5 rather than
10. With a more detailed analysis it might be possible to detect that all the angles between
the plane pairs should be considered to find an average value for that single angle, but
even in this case we have to consider the uncertainty in the average value and select a
likely special angle value with a tolerance.

In model (c) the normals of the green planes are arranged symmetrically in a plane, and
the axes of the red cylinder are arranged symmetrically on a cone. These regularities were
well preserved in the initial model (to within about 1◦) and are also of high quality, so
they were selected. The edge lengths and the angle chosen for the conical arrangement
had the same problems as for the other models. In addition, in this case we had no regu-
larity specifying a direct relation between the group of cylinders and the planes. Hence,
there was a small angle between the cylinder axis directions and the plane normals when
projected on the same plane. The edge length regularities and the topological constraints
ensured that the lack of a precise relation did not change the topology, i.e. the cylinders
could not be rotated in a way that they would intersect with more than one green plane.

The directions in model (d) form one orthogonal system formed by the normals of the red
faces and one conical angle regularity formed by the normals of the green faces based on
angles of π/4. The regularities were present in the model to within about 2◦. As they were
of high quality, they were selected. The π/4 rotation between the two direction sets was
slightly more ambiguous as it was represented by individual special angle values between
various direction pairs from the two sets. The relation was preserved on average to within
about 3◦. As our priority parameters favour π/4 angles, the relation was imposed exactly
on the improved model. Further regularities relate to equal edge length and cylinder radii
with problems similar to the other models. Regularity selection, however, ensured that the
two corner cutouts were congruent.

7.4 Discussion

In the following we discuss the general results of the experiments and the observed be-
haviour of the beautification algorithms. Our methods are able to improve initial reverse
engineered models, but are limited by the ambiguity caused by the fact that we only have
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approximate models. Major regularities of the model could be handled quite robustly
and were usually exactly enforced in the improved model, but minor regularities did not
always represent the intended design. In this context we refer to major regularities as reg-
ularities which involve a large number of faces of the model and usually relate to a highly
symmetric arrangement (with respect to the features). Minor regularities relate to only a
few faces in the model and usually have less symmetry.

As we have to handle an approximate model we have to accept certain tolerance levels.
If the tolerance level is small enough (say, at the machine precision level) such that the
features of interest are sufficiently distinct, we are able to identify them precisely. For
instance, if the only angle values of interest are integers in degrees, then any tolerance
smaller than 0.5◦ allows us to exactly distinguish between the values. However, for beau-
tifying reverse engineered models we usually have to work at tolerance levels where the
features cannot be clearly distinguished anymore. Hence, we get some ambiguity with
respect to the regularities. We try to eliminate some of this by looking for tolerance lev-
els at which certain properties of the features are present unambiguously in a local sense
(see Chapter 2). However, in the case of inconsistencies between these regularities, it is
not always possible to make a clear decision as there are always cases of inconsistencies
between regularities which are all about equally desirable. This applies in particular to
minor regularities relating to a small number of cells in the boundary representation, e.g.
multiple special angle values between two planar faces. This is a principal property re-
lated to approximate models, and while our methods were designed for this, the ambiguity
cannot be avoided.

In general the observed tolerances at which the regularities are present in reverse engi-
neered objects were slightly smaller than those used for the simulated data. The initial
angular errors were usually in the range of 1◦ to 2◦ and the positional error was about 0.5
to 1 length units (millimetres; scanned points were about 1 millimetre apart). The general
behaviour of our beautification algorithms were quite similar for real and simulated data.
This is mainly due to the fact that we are working solely on the boundary representa-
tion model. The major difference between the two data sources is that for real data it is
less likely to find consistent tolerance levels for the complete model. However, this was
expected and allowed for in the design of the analyser methods.

The analyser was able to detect approximate regularities for which clear, unambiguous
evidence was present in the initial model. It reported the regularities at tolerance levels
at which there was no ambiguous interpretation of the data. Most of the intended reg-
ularities were detected by the analyser in the initial models. As no maximum tolerance
value is used, and the tolerance levels for the regularities are detected automatically (see
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Chapter 3), the differences in the tolerances of intended regularities could be handled.
However, this also resulted in a larger number of regularities which had to be considered
for selection. Trying to devise detection algorithms which only detect intended approxi-
mate regularities appears to be considerably harder. While we seek unambiguous evidence
in the initial model for a regularity being present, we cannot make a decision whether the
regularity is intended without having additional information about the model, such as
other regularities, consistency with respect to design intent, and solvability of the related
constraint system.

The decision about which regularities should be used to improve the model is made in
a separate process. Major regularities could usually be identified easily by the selection
process, but minor regularities, special values, etc. related to the particular instance of a
model were not always selected correctly. This is directly caused by the ambiguity be-
tween inconsistent approximate regularities discussed above. In all cases, independently
of the chosen priority parameters, the numerical solver was able to solve the selected
constraint system up to the given numerical tolerance. This suggests that the selected
constraint systems did not contain any inconsistencies. It also provides evidence that the
topological solvability test is sufficient for the kind of models we considered (see Chap-
ter 6).

Major regularities were usually present at relatively small tolerance levels and the quality
priorities for them were high. This made selection of major regularities quite robust to
changes in the priority parameters, and they were usually selected to improve the model.
The priority order for the selection of special values and local relations between faces
is more unstable and closely related to the selected priority parameters. The larger the
tolerances required to detect and select the major regularities, the higher the uncertainty
for minor regularities like special values. This makes it hard to determine the intended
minor regularities and often special values different from the ones in the original model
were selected.

It is expected that for more complicated models, the ambiguity between the regularities
will increase, and selection of correct design intent will be harder. Furthermore, this may
create situations where the topological solvability test is not sufficient. Thus, we may
get an inconsistent constraint system, for which no solution can be found. But unless
regularities at very large tolerances are accepted the regularities still relate to a model
close to the initial model and usual engineering models are quite robust with respect to
small changes. As we are using a numerical optimisation method for solving the constraint
system, we are also able to still find parameters describing some model, which may be
close to the original parameters. Thus, it is still likely that we will rebuild a valid model.
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But this model may not be better than the initial model with respect to design intent.

The same parameters for regularity detection and priority computation were used for all
the experiments. In all cases, adjusting the parameters to suit a particular model improved
the results. While there are no regularity detection parameters which only select desired
regularities, it is possible to adjust the parameters individually for each model such that
the number of undesired regularities is minimised. Similarly for priority parameters, the
type of selected regularities could be adjusted between values favouring quality and values
favouring high accuracy. We may prefer high quality models which exhibit high symme-
try (with respect to their features), but which may require a relatively large change to the
initial model. Alternatively, we may try to create improved models very close to the initial
model, which may be less regular, however. Furthermore, the priority computation can
be adjusted to favour different regularity types. While we tried to keep the number of pa-
rameters small, there are still probably too many, and finding optimal values is non-trivial
and time consuming. Using the same set of parameters for all experiments, however, was
suitable to improve the models. This suggests that there is a set of parameter values for a
particular reverse engineering system which can improve the models, even if the results
are not optimal. Of course this requires a robust reverse engineering system for creating
initial models with consistent tolerance levels.

The time required to improve a model is no more than a few minutes. This is acceptable
considering the time required for the whole reverse engineering process, particularly the
initial data acquisition. Most of the time spent in beautification is used in numerically
solving the constraint system.

The evidence gathered so far suggests that our beautification system can be used to im-
prove reconstructed models even if there has not yet been sufficient testing for a final
evaluation. In particular, our regularity selection method creates consistent geometric
constraint systems. Additional experiments would require improvements of the robust-
ness and consistency of the reverse engineering system used to obtain the initial models
in order to handle more complex models.

The tests show that major regularities, if they are only weakly related to other major
regularities, can easily be identified and imposed on the model. However, ambiguities
between major approximate regularities which cannot be imposed on the model at the
same time (usually involving similar sets of faces) are hard to resolve. No clear decision
can be made if the tolerances and the quality of such regularities do not differ distinctively.
Only in cases where there is a clear major regularity relating to many faces in the object
a clear decision can be made. In other cases there may be alternative models which are
about as likely as the chosen one. This is caused by the current selection strategy to
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select likely, intended regularities based on priorities. A more intelligent method instead
of simple priorities may improve this situation. To make more consistent choices, the
decision method should also consider the global structure of the model and the relations
between the regularities.

We cannot guarantee to produce specific instances of a model having the desired special
values for lengths and angles. In general there is always a choice between high quality
regularities and relations close to those in the initial model. Note that a chosen special
value is always subject to a tolerance. If the special value is within the tolerance chosen in
the original design this should not cause a major problem. Our system allows the setting
of various tolerances for the precision present in the initial model. Higher precision can
be achieved only by creating a more exact initial model.

Finally, there may be hidden relations in the model which are broken if they are not de-
tected explicitly as a regularity. For instance, for the model in Figure 7.3(c), the rotational
angle between the directions of the cylinder axes in the conical angle-regular arrangement
and the plane normals in the planar angle-regular arrangement is zero. This was not con-
sidered by our regularity detection and consequently not enforced in the improved model.
To fix this, additional regularity detection methods are needed.

7.5 Summary

In this chapter we have presented various experimental tests of our beautification algo-
rithms using real and simulated reverse engineering data. The experiments show that our
algorithms are able to improve the initial reverse engineered models. But as discussed
in detail in Section 7.4, approximate models contain a certain degree of ambiguity be-
tween inconsistent approximate regularities, which depends on their complexity and the
involved tolerances. This means that minor regularities and special values, etc. are not
always selected as originally intended. Our algorithms may also have to be expanded
for more complex models with many interacting major regularities. However, in order to
handle such models, the robustness of the other reverse engineering algorithms also has
to be improved.
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Chapter 8

Conclusions

The aim of beautification is to improve the quality of reverse engineered geometric models
such that they exhibit exact intended geometric regularities. In this thesis we have pre-
sented an approach to beautification as a post-processing step which tries to improve an
initial boundary representation model generated by a state-of-the-art reverse engineering
system using only that model. For this we have investigated detection of approximate ge-
ometric regularities and selection of consistent regularities such that the improved model
is more likely to represent the original design intent. Furthermore, the selection requires
an efficient method to determine whether a constraint system describing the regularities
is solvable. We also presented methods for solving geometric constraint systems numeri-
cally and rebuilding an improved model from the solution of a constraint system.

In Section 8.1 we give an overview of the issues involved in beautification as a post-
processing step and evaluate our particular approach. Then we discuss the research con-
tributions made in this thesis (see Section 8.2) and give some recommendations for future
work (see Section 8.3).

8.1 Evaluation

We have split beautification into three main modules: analyser, hypothesiser and rebuilder
(see Section 1.3). In the following we discuss the different issues involved in these three
modules and evaluate our particular approach.

The analyser’s task is to detect approximate geometric regularities in the initial model
generated by the reverse engineering software. In Chapter 2 we introduced a new defi-
nition of approximate geometric regularities. It is based on approximate symmetries of
discrete feature sets derived as special properties of the boundary representation elements.
By linking combinatorial symmetries (distance preserving permutations of features in a
metric feature space) with geometric symmetries that induce them, an effective concept
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for approximate symmetries has been derived. The concept does not rely on arbitrary tol-
erance values, but allows efficient computation of exact answers to the question at what
tolerance levels certain symmetries are present. By surveying a range of engineering parts
we have confirmed that our chosen types of regularities are those commonly present in
such parts. Our experiments with engineering objects have also shown that many such
regularities can be detected, and that they represent the intended design of the objects.
The concept is capable of being expanded to more general types of parts and different
surface types. But for parts of completely different natures such as artistic objects, our
approach may have to be altered substantially or a completely different regularity concept
may have to be developed.

Our general concept of geometric regularities leads to various efficient regularity detection
algorithms in Chapter 3. The algorithms were designed to allow for efficient detection of
particular types of approximate symmetries of particular feature types. Our experiments
have shown that the regularities covered by our definition were detected. Most of the time
these were the same regularities as those expected by an engineer. However, additional,
undesired regularities were found, and some regularities were not detected. The addi-
tional, undesired regularities can be explained by the fact that we have an approximate
model. Even for relatively simple approximate models, there are ambiguous approximate
regularities, and which regularities are actually part of the intended design has to be de-
termined separately. While our methods give a robust, exact answer to the question of
whether an approximate geometric regularity is present in a model, they cannot determine
whether it is intended. This decision is made by the hypothesiser later in the process.

The intended regularities which we did not detect are mainly due to errors in the initial
model. As our detection methods seek regularities which are present at certain tolerance
levels in an exact sense, there are also other approximate regularities which cannot be
determined. For instance, consider a random collection of a large number of points in a
limited volume of space. With some probability this collection will contain eight points
that exhibit approximate cubic symmetry (in some not exactly defined way). If these
eight points are not sufficiently distinct from the other points, we are unable to detect this
symmetry reliably, i.e. it is equally likely that some of the eight points should actually be
matched with other points. In the case of random points the symmetry is also very unlikely
to be intended. Our particular definition of approximate symmetries does not include
such cases. Instead, we require that at least in a local sense the approximate regularity
is present in an exact sense without equally likely alternative interpretations at a similar
tolerance. Allowing a more ambiguous definition of approximate regularity would mean
that the detection problem would be computationally more intense. See Chapter 2 for
a detailed discussion. Overall, however, most intended major regularities were actually
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detected. Only cases for which there is no clear evidence for the regularity in the model
were missed.

There are certain regularities relating to general partial and incomplete symmetries for
which we did not develop detection methods. The problem of general partial symmetries
is that there are many ways to define partial symmetries of a feature set, and the situa-
tion is considerably more ambiguous than for general global symmetries. For incomplete
symmetries, it is often hard to decide when to expand a feature set to be fully symmetric.

The task of the hypothesiser module is to select a subset of all detected approximate
geometric regularities. We consider this to be a separate issue from approximate regularity
detection. The selected subset should be likely to represent the original design intent,
and the related constraint system has to be solvable. Thus, we split this module into a
constraint selection subtask responsible for selecting likely regularities, and a constraint
solvability subtask responsible for testing the solvability of the constraint system. Both
subtasks cannot be completely separated from each other as selection depends on intent
and solvability. A selection representing a likely design intent which is not solvable is
as undesirable as a solvable constraint system which does not represent a likely design
intent.

Our general selection strategy in Chapter 4 considers geometric regularities sequentially
in order of a priority. It checks in sequence whether adding a regularity to the set of
selected regularities would create an inconsistency in the related constraint system. Each
priority indicates how likely the regularity is to be part of the original design, based on the
accuracy to which it is present in the initial model, and its general desirability with respect
to the regularity type and the associated elements of the model. While we do not need to
tune the parameters for computing the priorities for each model individually to achieve an
improvement to a model, it is not a simple task to find appropriate generally applicable
parameter values. Furthermore, to achieve an optimal improvement, the parameters have
to be selected carefully for each individual model.

Our experiments show that our selection strategy works reasonably well for simple to
medium complexity objects. Major regularities are selected correctly. Minor regularities
and relations between individual faces, etc. are less reliably selected. The main reason for
this appears to be the fact that we consider the regularities individually. Each regularity
is assigned a priority independently of the other regularities. Major regularities relating
to many parts in the object are clearly likely to be given high priority values and they
are quite likely to be inconsistent with other major regularities. Often, if a given major
regularity is selected, all other major regularities cannot be selected. Regularities relating
to a small number of elements of the model are harder to handle in this context. We
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ought to consider which other regularities have been selected and if the combination is
desirable. Sometimes additional information about the structure of the model should also
be examined so that we are able to consider the impact of selecting a particular regularity
on the whole model. For instance, sometimes an angle between two planes may simply
determine that angle without further implications on the model. In other cases it may
determine the relative orientation between two symmetrical sub-parts of the object, which
can also be determined by other angles (see example model (b) in Figure 7.3). Either
having a reason for choosing a particular angle or considering all relevant angles to find
the relative orientation between the two sub-parts may improve the selection.

In the case of multiple major regularities, which can be selected simultaneously, it is likely
that they are all selected due to having high priorities. However, such regularities usually
appear in larger objects, and this makes it likely that we will also detect a lot of additional
undesired regularities. These are either caused by relations between the desired major
regularities or by relations between individual faces. The larger the model, the harder it is
to make a clear decision without considering additional information like the topology of
the model. For this reason we limited ourselves to models having only a few independent
simultaneous major regularities. Dependent major regularities cause additional problems
similar to those caused by additional minor regularities — it is no longer clear which
combination of major regularities is actually desirable.

In order to improve the selection of regularities more intelligent methods are required.
The selection of regularities has to be considered as a whole, not one by one. It may also
be required to consider alternative consistent regularity sets until one of them becomes
more likely. As we can only test for solvability consecutively by adding constraints to a
constraint system, the regularity sets have to be built sequentially, but it may be possible
to avoid considering all combinations using heuristics, geometric reasoning and design
intent knowledge.

The other part of the hypothesiser is the solvability test for the constraint system as dis-
cussed in Chapters 5 and 6. We considered both a numerical and a topology-based solv-
ability test. As the numerical test has to solve a constraint system numerically for each
added regularity, it is clearly too expensive. It was a simple first approach used to test
the general system. The solution provided, however, is also still useful for rebuilding the
model.

The topological solvability test developed is based on degrees-of-freedom analysis. Rather
than arguing in general about degrees of freedom, we have given such an approach a more
precise topological background. This has identified some of the problems with degrees-
of-freedom analysis and its limits. In particular, without solving any equation systems, we
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have to assume that the intersections between the sub-manifolds of the geometry mani-
folds are always generic. This worked well for our models and the final constraint systems
could always be solved. As this solvability test does not have to solve any equation sys-
tem, and uses an efficient distribution algorithm operating on the constraint graph, it is
considerably faster than the numerical approach.

However, we do not yet have a proof that the solvability test actually works, even though it
seems to in practice. Many questions relating to handling non-generic cases are still open.
Nevertheless, it provides the framework to study these cases in more detail. In order
to handle non-generic cases and more general constraint types, an algebraic component
which can solve certain equation systems cannot be avoided, however.

The final step consists of rebuilding the model from the selected constraint system. If
the topological solvability test has been used, we still have to compute a solution to the
constraint system. This takes most of the time used by the beautification process, and is
done using the numerical constraint solver. A more sophisticated implementation of the
optimisation algorithms which makes, for instance, extensive use of BLAS (Basic Linear
Algebra Subprograms) [146] and LAPACK (Linear Algebra PACKage) [147] functions
optimised for the particular computer architecture may increase the speed of the solver.
For further improvement, the numerical solver could be replaced by one which is more
closely linked to the structure detected by the topological solvability test. Decomposition-
recombination planners as briefly presented in Section 5.4 could be used for this.

As discussed in more detail in Section 7.4, our experiments have shown that the system
can improve simple to medium complexity objects. Using our algorithms, weakly de-
pendent major regularities can be identified and imposed correctly on the model. The
regularities are always selected in such a way that the corresponding constraint system
is consistent in generic terms. Experiments show that generic solvability is sufficient to
find solutions to the constraint system which can be employed to successfully improve the
model. More complex models with many separate major regularities as well as models
with many dependent regularities require a more sophisticated approach. Nevertheless, it
may be possible to expand our concepts and methods for this.

Adding the beautification step as a post-processing step instead of integrating it with the
other reverse engineering steps did not cause any serious problems. Our regularity de-
tection method created sufficient regularities to specify the complete improved model in
terms of geometric constraints. Thus, the improved model could be created simply by
solving a constraint system. Whenever insufficient regularities are present, the condi-
tion that the solution should be close to the initial model should suffice to avoid large,
undesired modifications. The property of the optimisation solver converging towards a
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solution close to the initial value has been observed experimentally and appears to be a
general property of this type of numerical optimisation. However, an explicit proof or
simple condition to ensure that we always stay close to the original model would be de-
sirable.

8.2 Contributions

In this thesis we have presented an approach to automatically improve reverse engineered
geometric models with respect to design intent, in a post-processing step working solely
with the boundary representation model. To our knowledge this is the first time this partic-
ular approach has been investigated. Alternative approaches focus on constrained fitting
algorithms where information about the design intent is obtained from the user. In the
following we present the contributions to the solution of this problem made in this thesis.

We have developed a theoretical framework for a certain type of approximate geomet-
ric regularities. Features were introduced as properties of boundary representation cells,
which change in a similar way to the cell under isometric transformations. Symmetries of
these features can be used to describe various common geometric regularities. As features
can be handled as discrete points in a metric space we were able to combine their com-
binatorial and geometric properties to devise a novel concept of approximate symmetries
to describe approximate regularities. Compared to other approaches to approximate sym-
metries, our concept allows for their efficient and robust detection. Various sub-types of
geometric regularities in terms of which symmetries are involved could be derived, which
created a basis for devising different detection algorithms. In general our concept is a
strong basis for investigating methods to handle approximate geometric regularities.

For the detection of approximate regularities we considered algorithms for approximate
congruences, repetitions, global symmetries and special values. For approximate congru-
ences it was sufficient to modify an existing hierarchical clustering algorithm. As partial
and incomplete symmetries are hard to detect we limited ourselves to common repetition
regularities. This resulted in a new algorithm for detection of approximate repetitions
which can be used for many regularity types. We also presented a novel, efficient algo-
rithm for the detection of approximate global symmetries. All these methods use our gen-
eral approximate regularity concept to automatically determine tolerance levels at which
certain symmetries are present. We also presented an approach to detect special values for
a given scalar parameter in terms of simple fractions. It can be interpreted as an expansion
of the continued fraction approach where we try to find a few simple fractions rather than
a fraction very close to the scalar.
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As the regularities are only approximately present in the reverse engineered model it is
likely that they are not mutually consistent. Therefore we investigated ways to select an
appropriate set of regularities. Selection during detection is hard as we do not have all
regularities in order to consider the different options nor are we able to tell if a constraint
system describing the regularities is actually solvable. Hence, we introduced a selection
step to determine a set of regularities which is likely to represent the original design intent.
Moreover, the related constraint system has to be solvable such that an improved model
can be created solely from the solution of the constraint system.

To select likely regularities we investigated the use of a sequential selection strategy based
on priorities. In experiments we showed that this strategy works for simple to medium
complexity models. It is able to select the intended major regularities of these models such
that a real improvement of the models with respect to design intent is possible. However,
the experiments also showed that more sophisticated strategies are required to handle
minor regularities and more complex models which are likely to exhibit more ambiguous
regularities.

To ensure that the constraint system for the selected regularities is consistent, we devised
a solvability test based on the topological properties of the domains of the geometric
elements. The basic approach is quite similar to degrees-of-freedom analysis, but the
topological interpretation links the actual equations or constraints closer to the constraint
graph. The assumptions made for degrees-of-freedom analysis become more clear, and
the types of non-generic cases, which cannot be handled properly, can easily be identified.
Our experiments suggest that the method is indeed able to determine generic solvability
of constraint systems and that this is sufficient to beautify the types of models considered
in this thesis. We expect that the general approach can be used to improve geometric
constraint solving techniques.

Overall we presented a framework for beautification of reverse engineered objects with
respect to design intent as a post-processing step. There is some evidence that beautifi-
cation can be used to improve reverse engineered models. Our regularity detection and
selection algorithms are suitable for simple to medium complexity objects and provide a
strong basis for advanced beautification methods for more complex cases.

8.3 Future Work

Based on the results of this thesis we recommend the following topics for future work.

We have presented some algorithms for the detection of geometric regularities based on
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approximate symmetries. We deliberately did not devise algorithms to detect general
partial and incomplete symmetries due to the high computational costs involved. It is,
however, desirable to have such methods in order to detect further approximate regularities
in the models. For partial symmetries, an appropriate notion of interesting subsets which
should be considered is required in order to avoid checking all possible (or a very large
number of) subsets. This could either be done using heuristics to only consider interesting
parts of the object, using its topology and other structural information, or by considering
a hierarchy of subsets and ways to expand small symmetric subsets to larger symmetric
subsets. Furthermore, it may be interesting to expand the detection method to handle
more general surface types with different properties. In particular, regularities of free-
form surfaces are of interest, e.g. nice reflection lines or minimal surfaces, as well as
special directional, positional or shape features which can be derived from the free-form
surface representation. It is unknown at this time how far artistic regularities or simply
the human notion of a beautiful shape could be included, too.

Furthermore, methods to handle regularity detection in more complex models are re-
quired. Algorithms for partial symmetry detection address this from the viewpoint of
finding symmetric subsets, i.e. determining subsets in the model such that it may be de-
composed based on the detected regularity. Another approach would be to decompose
the model first into sub-parts and then detect regularities of these sub-parts. This could
be based on machining feature detection adjusted for approximate models and focused on
design intent rather than machining. The sub-parts could then be improved independently.
However, further methods are required to combine the sub-parts properly, which includes
detection of appropriate regularity types and selection strategies.

Our current beautification algorithms almost certainly could be improved by investigating
more sophisticated selection strategies. This may in particular improve the handling of
minor regularities and ambiguities between many major regularities in complex models.
Rather than considering each regularity individually, different combinations of regulari-
ties need to be considered. This could yield a globally more consistent regularity selection
with respect to design intent. One approach would be to use belief networks or probability
distributions and treat the detected regularities with their tolerances, etc. as evidence to
support certain hypotheses about the design intent. Alternatively, more advanced artificial
intelligence techniques may be employed, such as neuro-fuzzy networks which combine
the ability of neural networks to learn with the explicit rule representation of fuzzy sys-
tems. Alternatively, incorporating evolutionary techniques and the explicit representation
of design knowledge in terms of rules may also be of use.

We have investigated a topological interpretation of geometric constraints in the context
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of degrees-of-freedom analysis. This may provide a basis for a better understanding of
degrees-of-freedom analysis and consequently lead to improved algorithms. It may in
particular be suitable to expand existing algorithms to consider more than just the topo-
logical dimension of the manifolds (i.e. their topological types) and to handle non-generic
cases. This cannot be done solely by arguing about the topological dimensions and spaces
involved, but requires the consideration of algebraic aspects. Yet solving simple equa-
tion systems may be sufficient. It may also be suitable to study inequality constraints.
Many types of inequality constraints may be interpreted as limiting the allowed values of
the geometric elements involved to a sub-space. This sub-space has the same topologi-
cal dimension than the parameter space used to describe the geometric element. But the
boundary of the sub-space forms a proper sub-manifold of lower dimension. For instance,
an inequality constraint on the distance between two points limits one point to lie in a ball
around the other point with an S2 boundary.

Rather than working solely on the boundary representation, it may also be of interest to use
the regularity detection and selection algorithms in combination with a constrained fitting
algorithm. Currently these methods require the constraints to be specified manually. But
after building an initial model using an unconstrained fitting algorithm, regularities could
be detected and selected for a constrained fitting step. In particular the selection has to be
adapted here to focus on major regularities and avoid specifying the model completely.
Otherwise, the model would already be completely determined by the constraints and
the point set could not be considered anymore. This may in particular help to resolve
some of the ambiguity problems related to selecting minor regularities such as certain
special values as these could still be determined directly from the point set rather than from
constraints. But it may also take considerably more time to compute than our approach.

In this thesis we also did not consider any issues relating to the topology of the model. One
topological issue is to repair a broken topology of a model, e.g. close holes in the boundary
description of the model. Another issue is to actually beautify the topology, i.e. change the
topology of a model such that it represents the original, intended topology. This may, for
instance, mean to detect that a set of faces should intersect in a single vertex, rather than
in multiple vertices with short edges between them, which may even create an additional
small undesired face (e.g. at the top of a pyramid). An approach which tries to correct the
topology of the initial model before it is beautified by the presented system is considered
in [40]. However, at this stage it is hard to determine whether the suggested topology can
be realised. Often, this is only possible by checking it with our solvability test during
the regularity selection step, and we have to restart the process with a different topology.
To some extent this problem can be avoided by making only relatively simple topological
modifications which are unlikely to cause problems later. Changes in the topology require
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to change the geometric elements in the constraint system and thus alternative topologies
are harder to handle for the solvability test during regularity selection. But our approach
may be expanded for this. Furthermore, a notion of regularities suggesting topological
changes and suitable detection and selection methods are required.

Finally, we note that our methods are not necessarily limited to reverse engineering ap-
plications. They may in general be useful for CAD applications which involve the design
intent of approximate geometric models. Such approximate models may be generated
from reverse engineering systems, sketch input systems or other imprecise user input, e.g.
in three-dimensional virtual environments. Applications which detect automatically that
models have certain intended regularities are able to provide more robust model mod-
ification operations and ensure that intended regularities are not broken. Furthermore,
approximate regularities can be enforced exactly on the model and thus the application
can ensure that they are present for analysis and manufacturing of the model. The ability
to automatically detect the design intent in approximate geometric models may allow for
user interfaces on a higher abstraction level simplifying the use of such systems.
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Version 1.2, November 2002

Copyright c© 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You
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accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revis-
ing the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transpar-
ent if used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
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text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
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If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. Modifications

you may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.



GNU Free Documentation License 179

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties — for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.
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The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining Documents

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sec-
tions with the same name but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various orig-
inal documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements.”

6. Collections of Documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

10. Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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