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Abstract

Current reverse engineering systems can generate boundary repre-
sentation (B-rep) models from 3D range data. Such models suf-
fer from inaccuracies caused by noise in the input data and algo-
rithms. The quality of reverse engineered geometric models can be
improved by finding candidate shape regularities in such a model,
and constraining the model to meet a suitable subset of them, in a
post-processing step called beautification. This paper discusses al-
gorithms to detect such approximate regularities in terms of similar-
ities between feature objects describing properties of faces, edges
and vertices, and small groups of these elements in a B-rep model
with only planar, spherical, cylindrical, conical and toroidal faces.
For each group of similar feature objects they also seek special fea-
ture objects which may represent the group, e.g. an integer value
which approximates the radius of similar cylinders. Experiments
show that the regularities found by the algorithms include the de-
sired regularities as well as spurious regularities, which can be lim-
ited by an appropriate choice of tolerances.

Keywords: Beautification; Shape Regularities; Similarity; Re-
verse Engineering; Geometric Interrogations and Reasoning.

1 Introduction

Reverse engineering shape has a variety of applications in design
and manufacturing, such as redesign. We aim to create a system
that reconstructs a boundary representation (B-rep) model from a
simple engineering object with a minimum of human interaction. It
should be suitable for naive users and non-specialists as well as en-
gineers. The generated model should have all the intentional shape
regularities present in the original design.

A valid B-rep model can be generated from dense 3D range
data obtained from multiple views of an object using a laser scan-
ner [1, 2]. The multiple views are merged into a single 3D point
set, which is triangulated and segmented into subsets representing
the faces of the object [3]. To each subset, a surface approximating
the points is fitted. These surfaces are stitched to form a valid B-rep
model. For this project we only consider planar, spherical, cylin-
drical, conical and toroidal surfaces which either intersect at sharp
edges or are connected by fixed-radius rolling ball blends. Reli-
able surface fitting methods exist for these surfaces [4] and many
interesting engineering objects can be generated using only such
surfaces [5]. For our current project we focus on objects with up to
about 200 primary faces, which is a realistic limit achievable with
current reverse engineering technology.

Sensing errors from the data acquisition and numerical errors
arising from the successive algorithmic steps distort the created
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model. We must also consider additional errors introduced by pos-
sible wear of the object and the particular manufacturing method
used to make the object. Even with increased accuracy of sens-
ing techniques and surface fitting methods, some errors may still
remain.

Our approach to creating an ideal model from an approximate
initial model uses geometric reasoning to detect approximate shape
regularities and impose them on the model. One way of doing this
is to use constrained surface fitting methods [6, 7]. This might, for
instance, require that two planes are fitted simultaneously under the
constraint that they are orthogonal. A second approach is to identify
features like slots and pockets whose approximate location and type
are provided by a human being and use this information to improve
the results of the segmentation and surface fitting phase [8].

Our approach tries to improve the approximate models without
human assistance in a post-processing step called beautification. In-
stead of improving the model during surface fitting, we analyse the
generated B-rep model to find approximate regularities and adjust
the model accordingly (see Fig. 1). Given sufficient constraints gen-
erated from the regularities, an ideal model may be deduced from
the constraints without further use of the measured point data.

This paper presents methods to find approximate shape regulari-
ties in B-rep models. Later work will address the constraint imposi-
tion strategy. Our shape regularities are defined in terms of similar-
ities between properties of B-rep model elements, and similarities
between these properties and special properties. For instance, we
look for approximately equal radii of cylinders. We also try to find
a special value, e.g. an integer, which is approximately equal to the
average radius. The regularities are local in the sense that they re-
late to single properties of one or a small number of B-rep model
elements. A different approach takes a global view of looking for
symmetries of the complete model [9].

We assume that the desired regularities in the initial model are
sufficiently distinct from the noise in the model. Our methods pro-
duce a large set of possible regularities the ideal model might pos-
sess instead of a small set of very likely regularities. These potential
regularities will probably contain mutually inconsistent constraints,
so a subsequent decision process must choose a maximal, consis-
tent set of regularities to enforce on the model.

The following section introduces the types of regularity detected
by our methods. Then we discuss the notion of similarity as the
fundamental concept used by our methods. In the remaining sec-
tions we describe our algorithms for finding regularities, and show
how they perform using several examples.

2 Shape Regularities and Feature Objects

We express shape regularities in terms of properties of face, edge
and vertex groups of the B-rep model. A property of a group of one
or more of these elements is represented by a typed feature object.
The type of a feature object depends on the property it represents.
Feature objects are stored as vectors of some dimension d depend-
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Shape Parameters Equal shape parameters. 5
Special values for shape parameters. 3
Simple integer relations between shape parameters. 4

Axis Directions Parallel axis directions. 5
Sets of axis directions with the same angle relative to a special direction (axis directions on planes and cones). 4
Symmetrical arrangements of axis directions. 4

Axes Axes intersecting in a point. 3
Aligned axes. 3
Parallel axes arranged along lines and grids with regular distances between them. 3
Parallel axes arranged symmetrically on cylinders. 2

Positions Equal positions. 2
Regular distances between positions arranged on a line, a 2D grid or a 3D grid. 3
Equal positions under projection. 3

Table 1 Shape Regularities
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ing on the type. For example, the axis of a cone or cylinder forms a
feature object of type axis represented by a direction and a position.
The radius of a cylinder and the semi-angle of a cone are two other
types of feature object. A single B-rep model element can generate
several different feature objects of various types. Note that further
feature objects can be created from groups of feature objects, or
from groups containing feature objects and B-rep model elements.
For instance, axis feature objects may generate intersection points
as further feature objects.

The regularities we seek are derived from a survey [5] identifying
those commonly present in simple engineering parts. An overview
is given in Table 1. The number in the last column indicates how
common the regularity is, with 5 meaning very common to 1 mean-
ing rare.

We seek approximately equal shape parameters from surfaces
and edges, such as radii, lengths and angles. Further we try to find
special values for these parameters, like integers and integer mul-
tiples of π, and simple integer relations of the form n2p1 = n1p2

between shape parameters pl with integers nk.
Directions in a B-rep model such as surface normals and direc-

tions of axes (referred to as axis directions) are clustered into par-
allel sets. In addition we look for special directions with which all
elements of a set of axis directions make the same angle. Sets gen-

erated in this way are axis directions lying in a plane or on a cone.
Furthermore they may be arranged symmetrically (see Fig. 2).

For axes, i.e. axis directions associated with a position, we seek
common intersection points and aligned axes. For parallel axes, we
seek regular arrangements of these axes along a line or on a grid
with regular spacing. Parallel axes may also be arranged symmetri-
cally on a cylinder.

We check if positions obtained from vertices, centres of spheres
and tori, apices of cones, axis intersection points, etc. have approxi-
mately equal locations or are regularly arranged on a 2D or 3D grid.
We also seek positions which are equal after projection onto a spe-
cial plane or line derived from the main axis directions present in
the model.

3 Similarity and Special Feature Objects

We define similarity measures indicating how close two feature ob-
jects are to each other. They are used by our hierarchical clustering
algorithm to find similar feature objects and to find special feature
objects similar to a given feature object. For a set X of feature
objects of the same type, a similarity measure is a symmetric, non-
negative function δ : X × X → R

+

0 , such that x1 = x2 implies
δ(x1, x2) = 0. We call two feature objects x1, x2 ∈ X ε-similar
(with respect to δ) if δ(x1, x2) < ε, (ε ∈ R

+).
This definition suffices as a measure to decide if a feature object

is close to a special feature object. However, for the clustering al-
gorithm δ should be a similarity metric, i.e. it should also fulfil the
triangle inequality and δ(x1, x2) = 0 should imply that x1 = x2.
Appropriate similarity measures and metrics are defined later for
the different regularities.

To represent groups of similar feature objects by a single feature
object, we need an averaging method avg to merge similar feature
objects of the same type. Given two ε-similar feature objects x1 and
x2 of the same type and two positive weights ω1, ω2, we generate
a new average feature object xavg = avg(x1, ω1, x2, ω2), which
represents x1, x2 such that δ(xavg, xl) < ε, (l = 1, 2).

We use a hierarchical clustering algorithm to find similar feature
objects of the same type. Given a set of feature objects X = {xl}, a
similarity metric δ, and an averaging method avg, we create a par-
tition {Ck} of X such that each cluster Ck contains feature objects
which are ta-similar for some tolerance ta. Ck is represented by
some feature object ck and a tolerance tk as the maximum distance
between ck and the elements of Ck. Note that we do not limit the
number of clusters Ck, but generate as many clusters as required by
the tolerance ta, which limits the width of the clusters.

To form a hierarchical structure, we create a nested subset struc-
ture for the clusters Ck. We partition a Ck further into disjoint

2



ASME Journal of Computing and Information Sciences in Engineering

Element (a) Shape Parameter (b) Type (c) Axis Direction

plane — — normal
sphere radius length —
cylinder radius length direction of the axis
cone semi-angle angle direction of the axis
torus major radius length direction of the axis

minor radius length
straight edge distance between end points length direction of the line between the end-points
circular edge radius length normal of plane in which the circle lies

angle of the circle segment angle
elliptical edge — — normal of plane in which the ellipse lies

Table 2 Shape Parameters and Axis Directions

sub-clusters Sj represented by feature objects sj and with a toler-
ance tj such that δ(sj , xl) < tj for xl ∈ Sj . The sub-clusters must
be sufficiently distinct from each other, i.e. for each pair Sj1 , Sj2 ,
(j1 6= j2), the condition δ(sj1 , sj2) − tj1 − tj2 ≥ td must be ful-
filled for some tolerance td satisfying 0 < td ≤ ta. The sub-clusters
are again partitioned recursively if possible.

The hierarchical clustering reveals groups of feature objects in
a cluster which are considerably closer to each other than to the
other elements of the cluster. This can be used in the subsequent
steps to decide which regularities should be enforced and makes
the tolerances maximal rather than optimal. Maximal tolerances
ensure that all intended regularities are found, but they also cause
the detection of regularities which are not present in the ideal model
and which could be avoided by an optimal choice of tolerances.

Various approaches to the clustering problem exist [10]. The
most common is the agglomerative technique, which starts with the
smallest value of δ(cl, ck), and combines the two elements to form
a new element ĉ which replaces cl and ck. Clusters and sub-clusters
are repeatedly formed until only one cluster remains, or the distance
between the clusters is too large. A brute force solution searching
for the closest elements each time requires O(n3) time.

To improve this method, we use a matrix containing the distances
between feature objects of the same type, and maintain a quad-tree
like data structure to keep track of the closest pair [11]. The dis-
tances δ(cl, ck) between the elements cl and ck representing clus-
ters are stored in a matrix D for l < k. The clusters are grouped
arbitrarily into pairs (Cl, Cl+1) and the distance between two pairs
is defined to be the minimum distance between the four clusters of
the two pairs. These pairs define a new closest pair problem of half
the size, which can be solved recursively. The closest pair in D is at
the root of this recursive data structure. After initializing, each up-
date operation needs to update at most two rows and two columns
of each of the matrices. Thus, the clustering requires O(n2) space
and time assuming that δ and avg require constant time and space.

Additional methods find special feature objects similar to an av-
erage feature object, e.g. the average radius of a group of similar
cylinders could be approximately an integer. Note that there might
be more than one such value within a given tolerance. In the fol-
lowing sections details of clustering and finding special values are
given for different types of feature object.

4 Shape Parameters

The first feature objects we consider are shape parameters (see Ta-
ble 2(a)). These describe the shape of an element independently of
its location and orientation. Each shape parameter is treated as a
separate feature object and more than one shape parameter feature
object may arise from a single element.

To find similar parameters we use our hierarchical clustering al-
gorithm. It is not very useful to compare parameters like the semi-

Fig. 2 Planar and Conical Angle-Regular Directions

angle of a cone with the radius of a sphere, so we assign a type to
each parameter (see Table 2(b)) and only cluster parameters of the
same type. The values for angle and length parameters are in differ-
ent units, so the tolerances used depend on the parameter type. We
use tla and tld for lengths and taa and tad for angles. The averaging
method computes the weighted average of real numbers indepen-
dent of the parameter type.

We assume that fixed-radius rolling ball blends are identified in
the B-rep model, and thus we handle them as edge attributes and
not as surfaces. We treat blend radii as separate shape parameters
of type blend and find similar and special values for blend radii.

Note that the parameters from edges can depend on surface pa-
rameters. For example, the radius of a circle which is the boundary
of the top of a cylinder has to be equal to the cylinder radius. Such
relationships are better handled in the constraint solver phase where
they should become obvious.

Clustering shape parameters results in a hierarchical structure
of similar shape parameters sorted by type. In the following sub-
sections we present methods to find special parameter values and
special integer relations between parameter values. Both problems
reduce to finding a simple fraction approximating a real number.

4.1 Special Parameter Values and Integer Relations. For
each average shape parameter for a cluster or sub-cluster we try to
find a simple fraction approximating its value. As there might be
more than one special value within a given tolerance, we create a
list of appropriate special values for each shape parameter.

Let v be an average shape parameter from a cluster or sub-
cluster. Depending on the parameter type we also have a tolerance
ta (either tla or taa) and we choose a family of functions fl : R → R

which represents the scales on which we look for simple fractions.
For angle parameters we use the two functions fπ : v 7→ vπ and
ft : v 7→ arctan(v). For length parameters the family is defined
by fKl

: v 7→ vKl where the Kl are base units for length measure-
ments like 1.0, 0.1 or 2.54 (cm to inch conversion).

To find special values for v, we look for integer pairs nk, mk

such that v ≈ fl(nk/mk) for all specified functions fl. sk =
fl(nk/mk) is a valid approximation of v if |sk − v| < ta. Hence,
to find a special value for v, we try to find fractions nk/mk which
approximate wl = f−1

l (v) for each function fl within a tolerance

3
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I. The function has been called as rec frac(x,n,m,neg frac,M)where x is the value which has to be approximated by a fraction,
n, m are the two integers representing the fraction n/m found so far, neg frac indicates if x has to be added or subtracted from n/m
and M is the maximum denominator allowed at this recursion level with the initial limit being M0.

II. Let b = 1.
III. While the denominator a = round (b/x) is not larger than M :

1. If a > b:
A. Let r = x − b/a.
B. If r is negative, set neg r to true and r = −r. Otherwise set neg r to false.
C. If neg frac is true, then the new numerator is p = na − mb, otherwise p = na + mb.
D. The new denominator is q = ma.
E. If r < t, then add p/q to the list of special values, if it is not already in it.
F. If r > trmin and p/q was not already in the list of special values, call rec frac(r,p,q,neg r,M0M).

2. Let b = b + 1.

Algorithm 1 Recursive Algorithm rec frac for Finding Simple Fractions

0.63 = 1/2 + 0.13 = 1/8 [→ 5/8] + 0.005
= 2/15 [→ 19/30] − 0.003333
= 3/23 [→ 29/46] − 0.000435

= 2/3 [→ 2/3] − 0.036667
= 3/5 [→ 3/5] + 0.03

Table 3 Finding Special Values for 0.63 with t = 0.05, M0 = 5 and trmin = 0.01

t derived from ta. For linear fl : v 7→ vKl we use the toler-
ance t = ta/Kl. For ft, we use taa as tolerance with the condition
| |v| − π/2| > taa assuming that v ∈ [−π, π]. The algorithm for
determining simple fractions for wl with tolerance t is described
in Section 4.2. Note that when considering multiple functions fl,
we have to compare the results for different functions and eliminate
duplicates, e.g. arctan(1) = π/4.

The algorithm to find simple fractions approximating a real num-
ber can also be used to find integer relations between shape param-
eters. For each pair of clusters Ck and Cj represented by ck and
cj , we look for a set of integer relations nl/ml which approximate
w = ck/cj . To have consistent input for the algorithm, we order
the clusters such that ck > cj . If |nl/ml − w| < tra for some
tolerance tra, we accept nl/ml as a valid approximation for w. To
avoid finding equality relations, i.e. 1/1 relations, we only generate
relations between clusters and sub-clusters which do not belong to
the same cluster.

4.2 Finding Simple Fractions. The previous subsection re-
duced finding special parameter values and special integer relations
between parameters to finding a list of special fractions for a real
number w in the open interval (w − t, w + t) with tolerance t. We
assume that integer values are always special for w and that w is
non-negative.

Although finding integer relations between real numbers [12]
and recognizing numerical constants [13] are well studied related
problems, such methods assume that the real numbers are exact or
that a very close approximation is required. We try to find special
fractions which lie in an interval containing w.

If 1/ (2t) < m, then more than one n/m for a fixed m could be
in the interval (w − t, w + t). To avoid this ambiguity we set the
maximum allowed value for m to M0 = floor (1/ (2t)). To limit
the number of possible special fractions found, M0 should not be
larger than Mmax, say 10. Also note that if t is larger than 1/2, we
would ignore the integers, so M0 should at least be 1. Optionally, if
we have to work with large t, we can set a minimum Mmin for M0

which is larger than 1.
If M0 is small, we could simply multiply w by each m ≤ M0

and check if |w − n/m| < t with n = round (wm), i.e. check if

the relation n/m is within the tolerance limits. However, for large
M0, this becomes expensive as we must check many fractions for a
large number of real numbers w.

To overcome this problem, we expand the simple method with
a continued fractions approach [14] as listed in Algorithm 1. We
start by approximating w by a0 + x0 where a0 = round (w). The
error x0 is approximated by using the simple method recursively.
Starting with bl = 1 at recursion level l, we get xl = bl/al +
xl+1 for al = round(bl/xl) and error xl+1. We get additional
approximations by increasing bl by one, until al is larger than some
limit M . The process is repeated recursively for each error xl+1

until the error is smaller than some tolerance trmin. Table 3 contains
an example for 0.63 with t = 0.05, M0 = 5 and trmin = 0.01
where the special values generated are marked with [→ ·]. For
the intermediate result 1/2 we do one recursion step to find special
values for the error 0.13.

To use this method for an arbitrary real number, we must do some
preprocessing. First its sign and the closest integer a0 to w have to
be found. If x0 = |w − a0| < trmin, the integer is the only special
value for w and we stop immediately. Otherwise we continue with
x0. To process small denominators, we seek simple fractions for
1 − x0 if x0 < 0.5, as functions of the type b/x0 − round(b/x0)
used in the recursive algorithm are more likely to generate small
denominators for x0 ∈ (0.5, 1). Based on the tolerance t for w,
we also generate an initial limit M0 for the allowed denominator as
explained earlier.

To find simple fractions for x0, we call the recursive algorithm
rec frac listed in Algorithm 1, where we must take into account
the preprocessing steps to find the final special values. In recursion
step l we solve the problem to find simple fractions p/q for a real
number xl with q < M using the simple method, where the limit
M for the denominator depends on the recursion level starting with
M = M0. For x0 we already have a simple fraction n/m such that
x0 = n/m ± xl. Whether xl has to be added or subtracted from
n/m is indicated by the flag neg frac. For each b = 1, 2, . . .
we check the denominator a = round (b/x) until a > M . The
fraction b/a is an approximation for xl. Depending on neg frac
we add or subtract it to n/m, generating a new approximation p/q
for x0. If this approximation is close enough, it is added to the list

4
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of special values. If the error r = |x − b/a| is still larger than
some tolerance trmin, and p/q was not already in the list of special
values, we call rec frac for r recursively with a new limit M0M
for the denominator. By multiplying M with the initial limit M0,
we ensure that we can still find fractions for a smaller real number
within the denominator limit. We always reduce fractions n/m to
simplest terms, in order to keep the values small and to ensure that
we add simple fractions to the list of special values.

Note that the algorithm can only miss special values close to w if
their denominator is larger than M0. The precision increases with
the depth of the recursion.

5 Axis Directions

Directions arising from the B-rep model, like plane normals, pro-
vide the basis for another class of regularities. Note that some direc-
tions are also associated with a position. In this section we are only
interested in the angular arrangement of the directions. Directions
with positions are covered in Section 6.

We extract unit vectors representing direction feature objects
from B-rep model elements (see Table 2(c)). Opposite directions,
i.e. the unit vectors d and −d, are identified. This space of direc-
tions is the real projective plane P2 and can be represented by the
unit sphere with antipodal points identified. We call its elements
axis directions. Regular arrangements of the axis directions corre-
spond to points and circles in P2. The way in which the directions
are arranged on the circles might create further regularities.

By using the hierarchical clustering algorithm, we can find par-
allel axis directions represented by points in P2. As a similar-
ity measure, we use the smaller angle between axis directions
d1 and d2, ∠(d1, d2) = arccos(|d1

td2|). The weighted aver-
age between two axis directions d1 and d2 with weights ωl is
(

ω1d1 + sign(d1
td2)ω2d2

)

/ (ω1 + ω2). The two tolerance val-
ues required for clustering are taa and tad defined earlier. The re-
sulting parallel axis direction clusters represent the main directions
present in the model. Even if the number of directions is large, we
expect to find only a limited number of different directions.

The following subsections discuss the arrangements represented
by axis directions lying on circles in P2 and regular arrangements
on these circles. Axis directions that are on a great circle of the
sphere lie in a plane. Axis directions that are on a small circle of
the sphere represent axes that are on a cone. The arrangement of the
axis directions in the plane or the cone can be symmetric, which we
call planar or conical angle-regular (see Fig. 2).

5.1 Regular Arrangements of Axis Directions. A set of
axis directions {dl} on a circle satisfies the equation system
|dl

tx| = a, where x ∈ P2 is the centre of the circle. For a = 0, the
directions lie in a plane with normal x, which we call an axis plane.
For a ∈ (0, 1), we have a cone with axis x, which we call an axis
cone. Note that for a plane, taking the absolute value of dl

tx is not
required, and we can drop it for a cone if all axis directions have the
same orientation relative to x.

To find the sets of axis directions dl lying in an axis plane, we
cluster the normals representing all axis planes generated from each
pair of linearly independent axis directions. The clustering is done
in the same way as clustering parallel axis directions, but we em-
ploy the clustered parallel axis directions instead of all axis direc-
tions. This not only reduces the number of normals generated, but
also avoids approximately linearly dependent axis directions. We
also only consider the main clusters of parallel axis directions and
not the sub-clusters.

A similar method is used to find axis cones. For each triple d1,
d2, d3 of axis directions representing parallel axis direction clusters,
we generate an axis cone with axis direction c and semi-angle α by
solving the linear equation system dl

tx = 1, (l = 1, 2, 3), from
which we get α = arccos(|xtd1|/‖x‖) and c = αx. We have

to avoid flat axis cones that actually represent axis planes or axis
cones that represent parallel axis directions by rejecting axis cones
for which α < taa or |π/2 − α| < taa, as the dl are not exact.

The axis cones represented by pairs (cl, αl) are clustered using
√

∠(c1, c2)2 + (α1 − α2)2 as similarity measure and the toler-
ances taa and tad. The averaging method for two cones generates
an average cone from the weighted average of the axis directions
and the weighted average of the semi-angles.

Note that we cluster the description of the axis planes or cones,
and not the axis directions used to create them. For instance, three
axis directions d1, d2 and d3 generate three axis planes p(d1, d2),
p(d1, d3) and p(d2, d3). If p(d1, d2) and p(d1, d3) are combined
into a single cluster, p(d2, d3) is not automatically added to the
same cluster. As p(d1, d2) and p(d1, d3) are only approximately
the same plane, p(d2, d3) is not necessarily the same plane. Hence,
the way the axis planes are generated creates dependencies between
them and the clusters might not have a transitive structure with re-
spect to the generating axis directions. We get similar dependencies
for the axis cones.

Any reasonable choice of tolerances should ensure that depen-
dent axis planes or cones are in the same main cluster even if they
are in a different sub-cluster. If this is not so, then the tolerances
are too restrictive for the errors in the model or they are too relaxed,
causing the combination of axis directions which are not related.

Handling these dependencies in the clustering algorithm is rather
expensive as it requires adding all other clusters dependent on the
new cluster when combining two clusters to form a new one, and
combining the clusters could no longer be done in constant time.
Instead, the dependencies are handled by a post-processing step
which combines dependent (sub-)clusters.

We can further improve the approximation representing the reg-
ular arrangements once we know the sets of axis directions forming
them. Given a set of axis directions dl which are approximately
on a circle in P2, we get a linear equation system dl

tc = α for
l = 1, 2, . . . , n. For α 6= 0, i.e. for axis cones and parallel axes,
we can solve the above system in a least-squares sense [15]. Us-
ing this approach for axis planes creates a constrained optimization
problem ‖[d1

tc; . . . ; dn
tc]‖2 → min for c subject to the condition

‖c‖2 = 1 (or at least ‖c‖2 � 0) which is more difficult to solve.

5.2 Angle-Regular Axis Directions. Examining axis planes
and cones further can reveal symmetrical arrangements of the di-
rections (see Fig. 2). Given a set of axis directions in a plane or on
a cone, we look for subsets such that the angles between the axis
directions are integer multiples of a base angle β. The subsets can
be incomplete, i.e. not all multiples of β have to be present. The
problem is to identify appropriate subsets of multiples which ap-
proximately satisfy this condition. We first describe the problem
for axis planes, then generalise it for axis cones and other regulari-
ties introduced later.

Let {dj} be a set of m axis directions in an axis plane and let
αlk be the angle between dl and dk. We call the dj angle-regular
if there is a β ∈ {αlk} such that β = π/n for n ∈ N and for each
αlk there is an integer p such that αlk = pβ. This means that the
angle between some reference direction dj0 ∈ {dj} and each other
direction is an integer multiple of π/n. As we identify opposite
directions, we only consider angles in the interval (0, π]. Based
on which multiples of β are present, we decide whether an angle-
regular set is considered to be a regularity. We avoid too small
base angles β by setting a maximum Nmax for n, which should be
smaller than π/ (2taa). Note that in the approximate case the base
angle β = π/n is only close to some αlk.

At this stage we do not look for base angles which are not ap-
proximately present as an angle between axis directions. For in-
stance, if we have two approximate angles 2/6π and 5/6π relative
to some direction, the underlying base angle π/6 is not detected.

5
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I. Let {dl} be a set of m objects for which distance-regular subsets with respect to the condition regn are sought.
II. Compute the distances αlk between objects dl and dk for l < k < m.

III. For all reference objects dj0 with j0 < m and for all distances αlj0 with j0 < l < m:
1. Find the candidates βj0n for some n ∈ N such that regn(βj0n, αlj0) is true.
2. Add βj0n to the list of candidates for dj0 unless it is an integer multiple of one of the βj0n0

already in the list.
3. If βj0n has been added to the list, remove any βj0n0

from the list which are integer multiples of βj0n.
IV. For each reference object dj0 with j0 < m − 1 consider the subset {dj0 , . . . , dm} and for each candidate βj0n with n = 1, . . . , Nj0 :

1. For each object dj with j0 < j ≤ m:
A. If for f = αlj0/βj0n, we have | round (f) βj0n − αlj0 | < ta, then do:

a. Record object dj to be the multiple round (f) of the base distance. It is stored as a multiple round (f) under the
following conditions.

b. If there is already an object o as the multiple round (f) and o is the parent of dj , then only replace o by dj if dj is
sufficiently closer to the multiple as indicated by tpd.

c. If there is already an object o as the multiple round (f) and dj is the parent of o, then only replace o by dj if o is not
sufficiently closer to the multiple as indicated by tpd.

d. If there is already an object o as the multiple round (f) and dj is not related to it in the hierarchical structure, then
replace o by dj if dj is closer to the multiple.

e. If there is no object o as the multiple round (f), then make dj this object.
2. If the arrangement in the distance-regular subset for βj0n is regular (see text), note it as a regularity. In addition remove integer

multiples of βj0n from the base distance candidate list for the reference objects dl which are in the current regular subset.

Algorithm 2 Finding Distance Regularities

PSfrag replacements
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djv

1π
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2π

n

3π
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Fig. 3 Planar Angle-Regular

An efficient implementation for these cases is left as future work.
One might, for instance, use approximate integer relations.

From an abstract point of view, the {dj} are objects which can
be ordered with respect to an arbitrary reference object dj0 such
that we get a set of distances αlj0 between dj0 and dl for all l. To
find a base distance β similar to the base angle in the approximate
case, we look for all β fulfilling a regularity condition regn(β, α)
for an α ∈ {αlk}. This condition depends on the object type. In
this more general case we call the set distance-regular.

Given a set of m objects {dj} we seek a minimum number
of subsets which are approximately distance-regular with respect
to regn (see Algorithm 2). First we compute all distances αlk,
(k < l < m), between the objects, where a column j0 in that ma-
trix with elements below the diagonal represents the distances to
the reference object dj0 . From these distances we derive a set of
possible βj0n for each dj0 using the condition regn. Because we
seek approximate distance-regular arrangements, a single αlk can
generate more than one base angle candidate depending on the tol-
erances. Finally we try to find distance-regular subsets by checking
the distances αlj0 for each reference object dj0 and all base dis-
tance candidates βj0n.

The distances between the objects used in the first step depends
on the object type. For axis directions in a plane, αlk are the angles
between the axis directions dl and dk. We must take care to choose
the angle that lies consistently to the right of the reference object
dl with respect to the normal q of the axis plane (see Fig. 3). With
v = q × dk we have αlk = arccos(dk

tdl) if vtdl ≥ 0 and αlk =
π − arccos(dk

tdl) if vtdl < 0. This also allows us to identify
which of the kπ/n, (k = 0, . . . , n − 1), directions a particular dj

occupies for some n ∈ N.
In the next step, candidates βj0n for base distances are derived

from each αlj0 such that regn(βj0n, αlj0) is satisfied for some

n ∈ N. A particular βj0n is added to the list of base angle
candidates for dj0 unless it is an integer multiple of some other
βj0n0

already in the list. If any βj0n0
in the list is an integer

multiple of βj0n, we remove βj0n0
. This ensures that only the

smallest βj0n is used to produce a minimum number of distance-
regular subsets. For the axis planes, we use the regularity condition
|βj0n − αlk| < taa as regn(βj0n, α) to find all βj0n = π/n such
that n < Nmax.

In the final step we check each set {dj0 , . . . , dm} for j0 ≥
m − 1 for distance-regular subsets with respect to the candidates
βj0n. The reference object is always an element of a distance-
regular subset. Therefore, for each βj0n we search for objects in
{dj0+1, . . . , dm} that form an approximately distance-regular sub-
set. A dl for l ∈ {j0 + 1, . . . , m} belongs to the distance-regular
subset if | round (fl) βj0n − αlj0 | < ta for fl = αlj0/βj0n. How-
ever, we only allow one object for each multiple of βj0n, as the
objects were already clustered. Thus, if we have two objects dl1

and dl2 for the same multiple, we use the one closer to p, unless
one of the objects is a parent of the other in the hierarchical cluster-
ing structure. Then we take the parent, even if the child is closer, if
the difference between the two tolerances is smaller than some tpd.

Before we accept a distance-regular subset of objects as a regu-
larity we consider which multiples of βj0n are present. We accept
a planar angle-regular subset as a regularity if either all multiples,
or at least every second one is present, or at least three consecutive
multiples are occupied. If a set is accepted, we must remove mul-
tiples of βj0n in the list of candidate base distances for all objects
dl in the distance-regular subset, otherwise subsets of the distance-
regular subset found will be identified as distance-regular later.

For axis planes we check in addition if the angle between two
axis directions, which is not involved in any angle-regular subset,
has a special value (see Section 4.1).

To find angle-regular axis directions on an axis cone, we again
use Algorithm 2. The definition for a conical angle-regular subset
is similar to the planar case. We project the axis directions from the
cone onto the plane through the origin orthogonal to the axis of the
cone. After projection, opposite directions on the plane represent
different axis directions on the cone, and so we must use base angles
of the form 2π/n. However, each axis direction on the cone can still
point in one of two directions. Thus, we always project the direction
pointing to the same side of the plane defined by cone normal c, i.e.
dl

tc > 0. Note that three axis directions forming an orthogonal

6
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system generate a special conical angle regularity with a base angle
π/2 on a cone with semi-angle arccos(1/

√
3).

6 Axes

Axis directions which are also associated with a position represent
axes. For these, we consider the arrangement of the positions as
well as the direction information. We seek approximate intersec-
tions of axes and regular arrangements of parallel axes.

For cylinders, cones and tori we use the root point of the surface
as the position. The root point of a cone is its apex and the root point
of a torus is its centre. The root point of a cylinder is an arbitrary
point on the central axis. For elliptical edges we choose the centre
of the ellipse, and for straight edges we choose an arbitrary point
on the edge as the associated position.

Planar faces do not have an obvious root point, but one can be
defined by considering the boundary loops. Reasonable choices for
root points are the average of the vertex positions for each loop and
the centre of the convex hull of each loop. Note that these define
multiple axes for a planar face. Other possibilities exist for defining
root points of planar surfaces and more general types of edges.

First we search for intersection points of axes. The approximate
intersection point of each axis pair is found by computing the mini-
mum distance between them. If it is smaller than tla, we say the axes
intersect and use the mid-point of the shortest line between them as
the approximate intersection point. These intersection points are
clustered to find sets of axes intersecting approximately in a point,
where we use actual axes and not axis direction clusters. We only
intersect axes belonging to different axis direction clusters to avoid
trying to intersect approximately parallel axes.

Furthermore, we seek regular arrangements of parallel axes. For
each cluster of parallel axis directions we extract the elements hav-
ing a root point. In addition we consider the axes from conical
angle-regular arrangements if an intersection position for such axes
has been found. To explore regular arrangements of the parallel
axes, we project the locations for the axes onto a plane through the
origin orthogonal to the axis direction.

Finding regular arrangements of axes is now reduced to finding
regular arrangements of points in a plane. By clustering the points
using the tolerances tla and tld we detect approximately equal axes.
The resulting clusters are examined further to detect if the points lie
on a line, a grid or a circle, and are regularly spaced.

6.1 Regularly Arranged Parallel Axes. We detect regular
arrangements on lines and grids by generating a line for each pair of
points, clustering these lines into approximately parallel lines and
finding approximately equal lines in the parallel line clusters. The
equal line clusters are then checked for regular point arrangements.
By examining pairs of approximately orthogonal groups of parallel
lines, we find the grids.

First we generate a line for each pair of points p1, p2 in the plane,
represented by the vector d = p2−p1. To cluster the lines into par-
allel groups, given two such vectors d1, d2 with ‖d2‖ > ‖d1‖,
we use the similarity measure δ(d1, d2) = ‖d1 − (d1

tu)u‖ with
u = d2/‖d2‖. By using the distance between d1 and its projection
onto d2 instead of the angle between the two vectors, we also take
the distance between the points into account. If we used the angle
between the vectors alone, two points which are on different par-
allel lines in a grid and sufficiently far apart might generate a line
which is approximately parallel to the grid lines. Similarly, we also
define the weighted average between the directions,

avgpl(d1, ω1, d2, ω2) =
‖d1‖ω1 + ‖d2‖ω2

(ω1 + ω2)2
(

d1

‖d1‖
ω1 + sign(d1

td2)
d2

‖d2‖
ω2

)

.

(1)

Each of the resulting clusters of approximately parallel lines is
again clustered to get groups of equal lines. To do this, the lines
in a cluster of parallel lines are represented by the two points p1,
p2. The tolerance used is tla, and the similarity measure between
two lines represented by p1, p2 and q1, q2 is based on the average
distance between two corresponding end-points. If (q1−q2)

t(p1−
p2) ≥ 0, the points p1 and q1, and p2 and q2 correspond to each
other. Otherwise p1 and q2, and p2 and q1 correspond. Let d1 and
d2 be the two distance vectors between corresponding points and
d be the unit vector representing the direction of the parallel line
cluster. Then the similarity measure between the two lines is (‖d1−
(d1

td)d‖ + ‖d2 − (d2
td)d‖)/2, i.e. the average of the orthogonal

distance with respect to d between the corresponding points. The
weighted average of these two lines is the line with end-points rl =
pl + ω2/ω1(dl − (dl

td)d), (l = 1, 2).
For each group of approximately equal lines we seek base dis-

tances such that the distances between a subset of the points on the
line can be represented as integer multiples of a base distance, anal-
ogously to the angle-regular arrangements using Algorithm 2. The
main difference is that base distances are not regular values such as
π/n, but any distance can be a base distance. This simplifies the
algorithm as we get at most one possible base distance per distance
between the points. Note that we split approximately equal lines
into different lines if we find different base values such that each
line represents one base value.

After these steps we have sets of parallel lines, where a line
might be marked as distance-regular. To generate grids we search
for orthogonal pairs of distance-regular parallel line sets. Lines
which are not distance-regular or for which we cannot find an or-
thogonal partner are noted as simple regularities. For the orthogonal
pairs of line sets we try to find regular grids.

Each orthogonal pair is handled separately. First the two sets
of parallel lines in the pair are grouped into lines with compati-
ble distance-regular arrangements. Two parallel lines belong to the
same distance-regular group if one of the base distances is approxi-
mately a multiple of the other, and the distance between the two ref-
erence points on the line in the parallel direction is approximately
an integer multiple of the smaller base distance. This produces two
lists of groups containing compatible distance-regular lines. Cor-
responding elements of each group generate grids in such a way
that the distances between the lines in one group fit on the distance-
regular arrangement of the other group and vice versa.

The generated grids are not unique because various diagonals of
a grid can form a distance-regular line and combining orthogonal
pairs of these diagonals can form additional grids. We must thus
find and remove these diagonal lines and grids and add additional
points on them to the fundamental grid. A line is a diagonal of a
grid if the reference point of the line lies on the grid and the base
distance dl of the line can be generated from the two base distances
d1 and d2 of a grid. Let Dj be the unit vector representing the
directions for the distance dj in the grid and Dl be the direction of
the line. The line is a diagonal of the grid, if

dlDl ≈ round

(

dlDl
tD1

d1

)

d1D1 +

round

(

dlDl
tD2

d2

)

d2D2.

(2)

Another grid with base distances d3, d4 and corresponding direc-
tions D3, D4 is a diagonal of the grid if its reference point is on the
grid and the distances are compatible. Without loss of generality,
we assume that d2

1 + d2
2 < d2

3 + d2
4, i.e. the diagonal of the second

grid is longer than the diagonal of the first one. Then the second grid
is a diagonal if Eq. (2) holds for dl = d3, Dl = D3 and dl = d4,
Dl = D4. The grid with the shorter diagonal is the fundamental
grid and we eliminate the one with the longer diagonal.
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(a) (b) (c) (d) (e)
Faces: 26 14 29 53 88
Time (sec.): 0.145 0.155 0.550 0.621 1.553
R: 33 52 22 104 140
U: 0 11 2 21 27
M: 0 0 0 7 5

Fig. 4 Example Objects

Any distance-regular lines not on a grid and not removed as diag-
onals of a grid are noted as regularities. In addition we also check
whether the base distances have a special value for all distance-
regular lines and grids (see Section 4.1).

Parallel axes arranged along a circle can be found by generating
all circles formed by triples of points in the plane and clustering the
circles.

7 Positions

This section briefly discusses regularities of positions such as ver-
tices, root points of surfaces, and axis intersection points. Using
the hierarchical clustering algorithm for this points with tolerances
tla and tld, the Euclidean distance as similarity measure, and the
weighted average between points, we get approximately equal po-
sitions.

The resulting position clusters could be examined further for
distance-regular arrangements on lines and 2D and 3D grids us-
ing a similar approach to the previous section. However, as the
points are in R

3, many additional options are present, and a general
search for such arrangements is expensive. Furthermore, finding
unintended approximately regular arrangements is likely to happen
often. Thus, we limit the search to special lines and grids. If a B-rep
model has one or more orthogonal systems, we search for distance-
regular arrangements on lines and grids build from the directions of
the orthogonal system(s). If the model has a main axis without an
orthogonal system, we search for distance-regular arrangements on
lines parallel to the main axis and on 2D grids orthogonal to it.

These directions are used further to find partially equal positions,
i.e. positions which are equal under projection. We cluster positions
projected on a plane through the origin orthogonal to a special axis
direction. Adding a second orthogonal axis direction, we project
the positions further onto a line to find partially equal positions with
respect to two axis directions.

8 Examples

The methods described in this paper were implemented1 on a
GNU/Linux platform (with a 450Mhz Pentium III and 256MB of
RAM), and tested using various simple objects and more complex
objects from [16]. Errors induced by the reverse engineering pro-
cess were simulated by translating and rotating faces of the ex-
act models before generating a point cloud. Models reconstructed
from point clouds from both exact models, and models perturbed

1The sources are available at <uri: http://www.langbein.
org/software/sil/>.

by varying amounts, were analysed. A test was considered to be
successful if all the intended regularities in the model were found
when using tolerances agreeing with the amount of perturbation.

Some examples are shown in Fig. 4. Execution times for models
with up to 200 faces range from a few seconds up to a few minutes.
R gives the total number of regularities found by the methods. U is
the number of unwanted regularities detected, i.e. those which are
not part of the design and conflict with the desired regularities. M
is the number of important regularities missed by our algorithms
as identified by a human being. These values were determined for
objects with angles perturbed by 3◦ and positions perturbed by 0.3
units, with angle tolerances of 5◦ and length tolerances of 0.5 units;
the number of unwanted regularities can be reduced by more care-
ful tolerance value selection. It appears that all tolerances for the
methods can be expressed in terms of angular and positional toler-
ances which could be derived for a particular reverse engineering
system from the errors in the reconstruction of a known test object.
We now briefly describe the main results for the example objects.

The planar angle-regular axis directions with base angle π/4 of
object (a) were detected. Axes of the slots at the top and the bot-
tom, and the axes of the planar faces were found to intersect; the
intersection points are partially equal. Various aligned axes, and
two orthogonal systems, were also found as conical angle regular-
ities. Object (b) consists of a five-sided truncated pyramid with a
six-sided truncated pyramid cut out of it. Both conical angle regular
arrangements were found. Some of the planar faces of the two pyra-
mids were considered to be parallel depending on the perturbation
and the tolerance values. In the perturbed model additional conical
angle-regular arrangements were found involving either the top of a
pyramid and its sides or a combination of the faces of the two pyra-
mids. Those caused by the perturbation were easily identifiable as
they contradicted the two main conical angle regularities.

The main axis for each of objects (c) and (d) was detected as
a set of parallel axis directions and aligned axes. For object (c),
the axes of the holes arranged on a circle and the axes of the holes
intersecting on the main axis were detected as well as some other
axis intersection points. Some cylinder radii were unwantedly con-
sidered to be equal. In object (d) two planar angle regularities of
the faces orthogonal to the main axis with base angle π/2 and the
angle π/6 between the two arrangements were detected. A number
of vertices and intersection points of axes close to each other were
unwantedly considered to be equal. Some regular arrangements of
axes of planar faces were not detected or incorrectly determined;
some parameters were considered to be equal, causing some spe-
cial parameter values not to be found. Object (e) was found to have
a single orthogonal system; multiple distance-regular arrangements
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of axes along lines were also found. The type of regularities which
caused problems were very similar to those for object (d). Never-
theless, nearly all expected regularities were correctly found.

Preliminary tests of partial models actually reverse engineered
from point data gave similar results to the simulated data. Suit-
able tolerance values for real data appear to depend mainly on the
reverse engineering system and not on the particular object.

Generally, all regularities found were either present in the model
or could be understood by considering the perturbation and the tol-
erance values used. With small tolerance values, only a small set
of very accurate and thus very likely regularities are found. With
bigger tolerance values, at some point we get all the desired regular-
ities. However, the number of unwanted regularities also increases,
so that when all desired regularities are found, we also get some
unwanted regularities. An automated decision about which regu-
larities should be used to improve the model has to be made by a
subsequent step. For the analyser the user has to supply the tol-
erances, which should be maximal rather than optimal due to the
hierarchical structure of the regularities.

9 Conclusions

We have presented algorithms to find local shape regularities in
terms of similarities between feature objects derived from B-rep
model elements. Tests with various perturbed mechanical compo-
nents were promising in the sense that the main approximate regu-
larities of the parts were found quickly while few unwanted regu-
larities were reported. Thus, the analysis methods provide a strong
basis for our subsequent beautification steps.

In future work we will develop a constraint solving strategy for
finding and imposing a maximal, consistent set of constraints con-
taining the main regularities of a part to generate an ideal model.
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