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Abstract

A model to represent continuously differentiable functions on geometrically smooth
surfaces, including trimmed surfaces, using biquadratic splines is presented and the
main algorithms for the program LiLit, which has been implemented as part of this
diploma thesis, are discussed.

The geometrically smooth surfaces are generated by using biquadratic g—splines.
Initially, a semi-regular control net represented as a compound of polygons is oriented
using the orientation of the polygons. Then the control nets for the rectangular, biquad-
ratic Bézier patches are computed from the control points, where geometrical smooth-
ness conditions are used near the irregularity and the standard continuity condition
is used elsewhere. The semi-regular control nets can be generated by the Doo—Sabin
subdivision algorithm, which can be used to refine a control net of arbitrary topology.
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Figure 1: Doo—-Sabin subdivision to create a g—spline surface

To represent a function by splines, we first consider two Bézier patches joined in a
geometrically smooth manner along a common boundary curve. Two functions defined
on these patches can be combined to a continuous differentiable function if they satisfy
conditions formally equivalent to the geometric smoothness conditions for the patches.
Thus, continuously differentiable functions can be represented as splines by adding a
function control point to each surface control point. The function control points can
be treated just like the surface control points by the algorithms. The functions can be
visualized by spikes on the surface, by a grid over the surface, by color values on the
surfaces or by color values on a surface over the surface.

Surface integrals of scalar and vector fields over the functions represented as splines
can be computed as sum of the integrals of the Bézier patches. These integrals are
evaluated numerically using the bivariate Romberg algorithm. In particular the area
and the volume of closed surfaces can be determined.



An alternative way to represent functions on surfaces are iso-lines, i.e., lines on the
surface are drawn connecting points that have the same function values.

The algorithm for this divides the parameter space adaptively using a square mesh,
so that there is at most one iso-line cutting each edge of the squares. These lines can
then be drawn for each square by linear interpolation. The number of lines drawn
per square is limited by a maximum number of lines drawn in the smallest squares.
These iso-lines are useful for drawing reflection lines on a surface. For this application,
parallel light sources with a fixed distance on a plane are reflected on the surfaces using
some viewing point. The points on the surface for which the reflection ray hits the same
light source belong to the same iso-line.

A surface and with it the functions defined on it can be trimmed by volumes in the
space of the surface as well as by curves in parameter space. The volumes are described
implicitly by quadratic forms, which always cut out parts of the surface. The curves
in parameter space are bound to a control point of the biquadratic surface. They can
be described as a polygon or, for geometrically smooth, quadratic curves, by control
points.

The spline curves are transformed into polygons, where it is assumed that the points
of the polygon are traversed clockwise. If the spline curve is not closed, it is expanded
suitably by the boundary of the parameter space. If the trim areas in parameter space
overlap, a point is cut out if it is part of an odd number of trim areas. The trimming
algorithm divides the parameter space of a Bézier patch adaptively by a square mesh.
Depending on how many corners of a square are cut out, the square is either handled
like in the non—trimmed case, or only a triangle is handled, or the square is cut out
completely.

Figure 2: Reflection lines close to an Figure 3: Function on a trimmed sur-
irregularity of order 5 face



