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Abstract
Boundary representation models reverse engineered from 3D range
data suffer from various inaccuracies caused by noise in the mea-
sured data and the model building software. Beautification aims to
improve such models in a post-processing step solely working with
the boundary representation model. The improved model should
exhibit exact geometric regularities representing the original, ideal
design intent. We present a set of algorithms for a complete beau-
tification system which improves the topology and geometry of a
reverse engineered boundary representation model with respect to
design intent. This includes practical methods to correct localised
topological defects such as holes and pinched faces, and algorithms
to reliably detect approximate regularities such as approximately
aligned cylinder axes, approximate symmetries and congruences.
Furthermore, as the detected regularities are likely to be mutually
inconsistent, an efficient method to select and impose a consistent
set of regularities is discussed. Experiments show that simple to
medium complexity models can be improved with respect to design
intent.

Keywords: Beautification; Topological Defects; Approximate Ge-
ometric Regularities; Reverse Engineering.

1 INTRODUCTION
Reverse engineering extracts sufficient information from physical
objects to reconstruct CAD models for a particular purpose like re-
design, reproduction or quality control. Ideally, for applications like
redesign, the reconstructed model should exhibit exactly the same
geometric properties present in the original, ideal design. Rather
than trying to create a description of the exact measured physical
object, suitable for creating an exact copy or for inspection pur-
poses, we are interested in reverse engineering the shape of an en-
gineering object such that the description represents the original
design intent. For this purpose we use a state-of-the-art reverse en-
gineering system which can create a valid boundary representation
(B-rep) model of the object’s natural surfaces from dense 3D range
data. However, due to inaccuracies in the measured data, approxi-
mation and numerical errors during the reconstruction process, and
possible wear of the scanned object, the model is approximate in
the sense that it exhibits intended regularities such as symmetries
only approximately. We present a system to automatically improve
such models in a post-processing step, which we call beautification.

For an overview of reverse engineering systems see [28]. Firstly,
3D range data from multiple views of the object is collected. In a
registration step these views are combined to give a single 3D point

set [5, 24]. The most crucial phase of the process is segmentation
and surface fitting, where the natural surfaces of the object have to
be determined and surfaces of suitable geometric types have to be
fit. We first create a triangular mesh for the object surface [12]. The
mesh is segmented into subsets representing natural surfaces of the
object. For each of the subsets, one or multiple analytic surfaces are
fitted [3, 29]. However, segmentation and surface fitting cannot be
separated completely from each other, and the methods have to be
carefully chosen to work together. During segmentation, we already
have to consider the surface types to be fitted to the subsets. Finally,
a complete B-rep model is created by stitching the fitted surfaces.

The system described can only handle certain object types ro-
bustly. Therefore, we consider here engineering objects composed
only of planar, spherical, cylindrical, conical and toroidal surfaces
that either intersect at sharp edges or are connected by fixed ra-
dius rolling ball blends. There are reliable surface fitting methods
available for these surfaces [3, 29] and many realistic engineering
objects can be described using only these surface types [22, 25].
We ignore blends in this paper, but Kós et al. [13] present a method
to determine the radius of fixed-radius rolling ball blends. We can
store such information as edge attributes ,and instruct the modelling
kernel to construct appropriate blends after the beautification step.

Instead of fitting surfaces individually, there are alternative ap-
proaches which fit surfaces simultaneously under certain condi-
tions. Thompson et al. [27] consider feature-based reverse engi-
neering of mechanical parts. In their system a human identifies
features like slots and pockets in the 3D point set interactively. The
system requires user identification of the type and the approximate
location of each feature. This information can then be used to re-
construct the model by fitting parametric feature models instead of
simple surfaces to the 3D point set, which improves the accuracy of
the generated models.

Alternatively we can fit multiple surfaces to 3D point sets under
geometric constraints [2, 30]. So, rather than fitting surfaces indi-
vidually, they are fitted simultaneously using the constraints as a set
of conditions which the surface parameters have to fulfil in addition
to providing a good fit to the 3D point data.

Both approaches require human interaction because low-level in-
formation about an object’s surface in form of point sets is often
not enough to make decisions about higher-level design intent. We
try to avoid the necessity for human interaction by first extracting
a higher-level B-rep model with analytic, natural surfaces. From
this representation, further information about the actual design in-
tent can be derived automatically. By trying to improve the B-rep
model without further reference to the point data we also signifi-
cantly reduce the computing time.

Beautification is a final step in producing a solid model from the



range data. It has to address defects in the topology as well as ad-
just the geometry. For example, if we reverse engineer a four-sided
pyramid, we expect all four sloping faces to meet at a single vertex
at the top. Equally important is that the sloping faces are arranged
symmetrically to form a regular pyramid. We address both prob-
lems in sequence. First we detect and fix topological defects. Then
we seek potential geometric regularities. Typically, a large num-
ber are found, not all of which need be mutually consistent. Thus,
a consistent subset of these regularities, which is likely to repre-
sent the original design intent and describes the complete improved
model, is selected. Our overall beautification process consists of
the following main steps:

I. Detecting topological defects: small faces, sliver faces, short
edges, gaps in the model arising from missing scan data, etc.,
are identified.

II. Adjusting the topology: isolated small faces and short edges
are replaced by a single vertex, and surrounding topology is
adjusted to meet it; existing faces are extended to cover gaps
left by missing data, by removing the edges and loops bound-
ing gaps; etc.

III. Detecting approximate geometric regularities: symmetric
arrangements of faces, other regular arrangements, etc. which
are approximately present in the geometry are detected; exact
conditions for approximate regularities are used rather than
arbitrary tolerances, and the methods aim to detect sufficient
regularities to determine the improved model.

IV. Selecting geometric regularities: a consistent set of geomet-
ric regularities is selected which is likely to describe the de-
sign intent of the model; to do this, the regularities are ex-
pressed by constraints, and methods to determine the solv-
ability of constraint systems and the likelihood of a regularity
being part of the ideal design are employed.

V. Rebuilding an improved model: from the solution of the
selected constraint system, an improved model is rebuilt also
using the updated model topology; here remaining topological
defects have to be detected and either fixed immediately or the
process has to be restarted at step II.

Using this approach, the topological changes desired may not be
geometrically realisable; this is only determined when the geome-
try is adjusted after the topology. Hence, model rebuilding may fail.
In this case we can either try to fix the model during rebuilding, e.g.
fill holes with additional faces, or return to the topological beautifi-
cation phase and choose an alternative topology. For typical reverse
engineered objects, the topological defects are localised in the sense
that the interaction between multiple topological defects is limited
to local faces rather than the global structure. This allows us to fix
topological defects of different types in a well-defined sequence,
and limits the possible inconsistencies between topological and ge-
ometric adjustments. Also note that we aim to change the model by
a relatively small amount—just enough to impose approximate ge-
ometric and topological regularities on the model which are present
within a small tolerance. But unless we have an unstable model that
can only be realised by a very particular set of parameters, small
topological and geometric adjustments are likely to be compatible.

In the following we describe our algorithms for topological and
geometric beautification. We then present the results of some exper-
iments and conclude with a discussion of the abilities of the current
system. As will be shown, our system is able to improve models of
simple to medium complexity with respect to design intent.

2 TOPOLOGICAL BEAUTIFICATION
We first detect and fix topological defects occurring in reverse engi-
neered B-rep models. The following tasks are carried out for fixing
defects arising during earlier model building processes:
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Fig. 1: Repairing a Face Gap and an Edge Gap
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Fig. 3: Repairing a Spiking Pinched Face

(a) A chain of small faces (b) becomes a chain of small edges

(c) and is replaced by an edge

Fig. 4: Removing a Chain of Small Faces

• Removing gaps in a single face: A loop of half-edges may
exist in the interior of a face, with nothing on the other side
of the loop. Such a case may arise, for example, where the
scanner did not collect any data from within a deep concavity
in the face. Here the loop of half-edges should be removed,
extending the face (see A in Fig. 1).

• Removing gaps crossing an edge: A loop of half-edges may
span two faces, with nothing on the other side of the loop. The
edge between the faces is divided into two pieces by the gap.
The gap should be removed, the existing faces extended, and
the two edge pieces joined (see B in Fig. 1).

• Removing gaps spanning multiple faces: A loop of half-
edges may span multiple faces, with nothing on the other side
of the loop. Existing faces and edges must be extended to fill
the gap, and new vertices and edges must be added as needed
(see A in Fig. 2).

• Adjusting pinched faces: If a face narrows to a very thin part
it is pinched. Other parts of the model should be adjusted to
remove the thinning, resulting in a change in connectivity of
the face (see Fig. 3).

• Merging adjacent faces with the same geometry: Two ad-
jacent faces may share the same geometry across a contiguous
edge sequence. Edges and vertices as appropriate should be
removed, and the faces merged.

• Merging adjacent edges with the same geometry: Two con-
secutive edges may share the same geometry, and are the only
edges meeting at a vertex. The vertex should be removed, and
the edges merged.

• Removing chains of small faces: Faces should meet in an
edge, but instead a chain of small faces may separate them.



Modification order 1 2 3 4 5 6 7 8 9 10 11
Fixing → Face Edge Multi-face Pinched Small face Sliver Small edge Adjacent Adjacent Small Small

can cause ↓ gaps gaps gaps faces chains faces chains faces edges faces edges
Face gaps No No No No No No No No No No No
Edge gaps No No No No No No No No No No No

Multi-face gaps No No No No No No No No No No No
Pinched faces No No No No No No No No No No No

Small face chains No No Yes Yes No No No No No No No
Sliver faces No No Yes No No No No No No No No

Short edge chains No Yes Yes Yes Yes Yes No No No No No
Adjacent faces No No No Yes Yes Yes No No No No No
Adjacent edges No Yes No Yes Yes Yes Yes No No No No

Small faces No No Yes Yes Yes No No Yes No No No
Small edges No Yes No Yes Yes Yes Yes Yes Yes Yes No

Table 1: Sequence of Topological Repair

The chain of small faces should be replaced by an edge (see
Fig. 4, where the first step is to reduce a chain of small faces
to a chain of short edges).

• Removing chains of short edges: Several consecutive short
edges may need to be replaced by a single long edge (see
Fig. 4).

• Removing isolated small faces: Several edges should meet
in a single vertex, but instead they meet at several distinct
vertices, joined by several short edges which surround a small
face. The small face should be replaced by a vertex connected
to the existing edges.

• Removing isolated short edges: Several edges should meet
at a single vertex, but instead they meet at several distinct ver-
tices, joined by one or more short edges. These short edges
should be replaced by a vertex.

• Removing sliver faces: Two faces should meet in an edge,
but instead a long very thin face (a sliver face) may separate
them. The sliver face should be replaced by an edge.

Topological beautification may thus involve the local addition or
removal of faces, edges and vertices, and other updates to nearby
topology to ensure that a correct, valid model results. For example,
edges may need to be disconnected from an existing vertex, and
connected to a new vertex.

Topological beautification as outlined above has some simi-
larities to, but also some differences from, CAD model heal-
ing [4, 21, 23]. Healing, like topological beautification, aims to
improve the topology, but the differences are that (i) it starts with in-
valid models, not valid ones, and (ii) it makes changes whose main
aim is to ensure a valid model is the result. For example, healing
may have to cope with problems such as physically impossible ge-
ometry, incorrectly oriented surfaces, faces with no defined geom-
etry, self-intersecting edges, faces whose boundary is not a closed
loop, and incomplete topology even though all individual faces are
present. Note that such problems of validity are not expected to
occur in beautification. Approaches to healing usually distinguish
between topological and geometric problems and often involve user
interaction to resolve difficult cases.

2.1 Tolerances and Processing Order
In our algorithm, we use a tolerance to determine which faces are
small or pinched, which edges are short, etc. This tolerance can
be detected automatically by a consistent clustering method as de-
scribed in Section 3. It may also be provided by the user based on
the magnitude of errors expected in the model (for example, from
knowledge of the scanner and reverse engineering algorithm char-
acteristics). All tolerances we require can be computed from a tol-
erance for vertex distances. In the following we implicitly assume
that phrases like “a face is small” mean that an appropriate toler-
ance is used to make the corresponding decision.
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Fig. 5: A necessary Small Face

When choosing a tolerance, we should be careful that small but
significant parts of the model are not deleted. For example, in
Fig. 5, face f may be small, but is necessary, and we should not
attempt to remove it. Thus, the length tolerance should be larger
than the size of any small face or short edge which is to be deleted,
but smaller than any part of the model which is to be retained. For
simplicity, we assume here that a single global tolerance value is
used, satisfying this requirement. However, if, for example, dif-
ferent regions of the object were scanned at different resolutions,
or if large features exist for which the scanner could not capture
high quality data, a more sophisticated approach with an adaptive
tolerance might be needed.

In a raw reverse engineered model, multiple topological defects
of multiple types will usually coexist. To efficiently resolve these
problems, we need to detect and modify the defects in the right or-
der. In particular, to avoid having to use a loop which considers dif-
ferent defect types repeatedly, we need to fix some types of defects
earlier than others. For example, fixing a gap spanning multiple
faces may produce a sliver face, but fixing a sliver face can never
produce a gap.

Table 1 lists all the cases in which solving a topological defect
of a given type may create further topological defects of a different
type. The columns are topological defects to be solved in order, and
the rows are new problems which may arise from solving them, as-
suming the ordering given. As items above the diagonal in Table 1
are all “No”, no repair in the sequence shown can cause a problem
of a type already fixed earlier. Note carefully the logic. Given this
particular ordering, certain defect types are known not be present at
each stage, having been fixed earlier. Thus, certain potential com-
plex interactions between multiple defect types can be ignored as
“cannot arise”. Table 1 shows just one self-consistent ordering in
which defects of the various types can be solved sequentially. Other
orderings may also be possible.

2.2 Fixing Topological Defects
We detect and fix the topological defects in the order given by Ta-
ble 1. We first detect the topological defects of a given type, then
immediately fix these problems, and continue with the next type of
topological defect. For efficiency, the information gathered when
detecting earlier problems may be reused when detecting later prob-



PSfrag replacements

e1

e2

f1

f2
f3

=⇒

PSfrag replacements

e1 e2

f1

f2

f3

Fig. 6: Fixing a Pinched Face Creates a Small Face

lems. For instance, to find face gaps, we seek edges bounding only
a single face. Such edges are relevant for face, edge and multiple
face gaps, depending on how many faces are involved.

In detail, topological fixing is carried out as follows; brief justi-
fication of the order used is also given:

1. Face gaps: Fixing all types of gaps is done first—no other
topological changes introduce new gaps. Fixing face gaps
also decreases the number of edges in the model, speeding
up subsequent processing. Fixing face gaps does not produce
any new problems, and fixing a face gap may also prevent a
face from being considered to be pinched at a later stage.

2. Edge gaps: When we remove a gap lying across an edge, it
may create a short edge, as shown in Fig. 1: removing gap B
produces an edge e which may be short. Other considerations
are similar to those for face gaps.

3. Multiple face gaps: Fixing a gap across multiple faces can
create a small face or a sliver face, as shown in Fig. 2. Fixing
such gaps adjacent to a small face may also create new small
faces and short edges. New sliver faces may also arise, e.g.
when gap A in Fig. 2 is fixed.

4. Pinched faces: Fixing pinched faces may produce problems
such as small faces (see f3 in Fig. 6(b)), short edges (see e2 in
Fig. 6(b)), adjacent faces with the same geometry (see f1 and
f2 in Fig. 3(b)), and adjacent edges with the same geometry
(see e1 and e2 in Fig. 3(b)). Thus, we fix pinched faces after
removing gaps, but before fixing other problems.

5. Chains of small faces: Chains of small faces should be pro-
cessed as a whole, rather than face by face. Removing a
chain of small faces results in a chain of short edges (see
Fig. 4). Processing the resultant chain of short edges can lead
to adjacent faces with the same geometry. We also need to
remove chains of small faces before single small faces, and
short edges. Thus, chains of small faces are handled now.

6. Sliver faces: Removing a sliver face can produce adjacent
faces or edges with the same geometry. It may also produce
short edges, or even a chain of short edges in some cases.

7. Chains of short edges: Chains of short edges should be pro-
cessed as a whole, rather than edge by edge (see Fig. 4). Re-
placing a chain of short edges by an edge may produce a new
short edge, or adjacent edges with the same geometry.

8. Adjacent faces with same geometry: Merging adjacent
faces with the same geometry creates adjacent edges with the
same geometry. It may also result in new small faces and
edges.

9. Adjacent edges with same geometry: Fixing adjacent edges
with the same geometry can produce a new short edge if, e.g.,
the adjacent edges are short, and the new edge formed is still
short.

10. Small faces: Removing small faces can create new short
edges.

11. Short edges: Fixing short edges is the final step, which can-
not produce any further problems.

The input to our topological beautification algorithm is a raw,
reverse-engineered B-rep model, together with a tolerance value.
The output is a B-rep model with modified topology. The geometry
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Fig. 7: Modifying a Complex Model

is adjusted to meet the new topology (and geometric regularities
enforced) in the geometric beautification phase.

Detecting the topological defects can in principle be done by a
linear scan of the faces and/or edges in the model by checking a
simple condition which depends on the defect type. Note that this
only applies to local topological defects, which are typical for re-
verse engineered models. Defects relating to the global structure,
e.g. chains of small faces along all natural edges of the model, can-
not be handled in this way. However, such cases arise due to poor
range data, and the problem should be solved by obtaining more
accurate data.

Fixing topological defects requires relatively simple local adjust-
ments of the topology like adding/removing some vertices, edges or
faces and connecting the resulting structure appropriately. Hence,
overall the linear scan of the model determines the time order of
the algorithm which increases linearly with model complexity, as
justified in detail in [8].

2.3 Topological Beautification Example
A raw model illustrating topological beautification is shown in
Fig. 7(a). In this model, cylindrical boss 1 is near the edge of face
f , causing it to be pinched. Problems 2–5 are gaps of various kinds.
Problem 6 is a chain of several small faces. 7 is another small face,
while the faces adjacent to edge 8 have the same geometry.

We first detect gaps by finding edges with only one coedge. We
then find loops of such edges, which gives four loops for gaps 2, 3,
4 and 5. There are no edges adjacent to 2 so it is a face gap. There
are two edges connected to 3, so it is an edge gap. 4 and 5 are mul-
tiple face gaps. Each face gap is removed by extending the face.
Each edge gap is removed by extending the faces and connecting
the edges meeting the gap. For each multiple face gap, we extend
faces adjacent to the gap and intersect them as appropriate, possi-
bly adding a new face as well as new edges and vertices. For gap
4, a new long and thin face (a sliver face) is created. For gap 5, the
faces intersect in a single point, so we simply insert a new vertex,
as shown in Fig. 7(b). Next, we fix pinched faces addressing prob-
lem 1 and remove chains of small faces, 6, as shown in Fig. 7(c).
Then we replace the sliver face arising from gap 4 by an edge as
shown in Fig. 7(d). The chain of short edges arising from the chain
of small faces 6 is replaced by a single edge (see Fig. 7(e)). Next
we seek adjacent faces having the same geometry; faces adjacent to
edge 8 with approximately the same geometry are detected. After-
wards, we find and merge adjacent edges with the same geometry,
which were produced by merging the edges on either side of edge
8. Finally, the remaining small face 7 is removed (see Fig. 7(f)).



3 GEOMETRIC BEAUTIFICATION
After topological beautification we still have to adjust the geome-
try to agree with the new topology. Furthermore, we also wish to
adjust the geometry so that the model exhibits exact intended geo-
metric regularities which were possibly only approximately present
in the raw model. For this we generate a constraint system which
completely describes the geometry of the beautified model for re-
building.

We present a general concept for approximate geometric regular-
ities based on an exact notion of approximate symmetry. As we aim
to detect a large number of regularities, it is likely that they are not
all mutually consistent. Hence, we have to select a set of consistent
regularities which completely describes the likely design intent of
the model. In our current approach we consider adding constraints
describing the regularities one-by-one, in order of a priority, to a
constraint system. A regularity is only selected if the constraint
system remains solvable after adding the regularity. We give here
an overview of the core concepts of geometric beautification; for
details see [14].

3.1 Approximate Geometric Regularities
A large class of common regularities can be described in terms of
feature symmetries. By features we do not mean machining fea-
tures like slots, but properties of B-rep elements (called cells in
the following) which change in a similar way to the element under
isometric transformations. Each feature has a type such as posi-
tion or direction. For instance, the radii of a torus are length fea-
tures, and the direction of the axis is a direction feature. We require
that the relations between features of the same type from different
cells are preserved when transformed by the same isometry. For
instance, length features do not change under isometries at all, so
the relations are automatically preserved. While rotations and re-
flections may change the direction of symmetry axes, isometries do
not change the angle between directions, so the relations between
such directions are preserved.

Following Klein’s Erlanger Program, a geometric property of a
cell (or a group of cells) is any property which remains invariant un-
der isometric transformations. For a straight edge, the length, for a
sphere, the radius, are such properties. Now, for instance, consider
two orthogonal planes. The π/2 angle between the plane normals
does not change when we transform both planes by an isometry.
However, as we intend to detect such arrangements for all direc-
tions from the cells, this approach is not suitable. We would have to
generate features for each plane pair, and more general for each pair
of cells with suitable directions. Instead, we choose to define direc-
tion features (e.g. plane normals) for individual cells. These are no
longer invariant under isometries, but they change in the same way
than the cell when transformed by an isometry. This means the rela-
tions between the features of different cells is preserved, and we can
use such features to determine regular arrangements between cells
(e.g. symmetrically arranged directions where the angles between
the directions are integer multiples of some angle π/n).

Table 2 lists some examples of features we consider. One prin-
ciple for defining features is to concentrate on basic properties of
cells. For instance, for finite cylinders the sum of the radius and
the length in the direction of the axis is a length feature, but it is
unlikely to have any useful meaning. For similar reasons we do
not consider features like the area of a face, which may depend on
functional purposes.

Table 3 lists the types of common regularities which we can de-
termine in terms of feature symmetries. The regularities are mainly
distinguished by the type of symmetry involved. Note that we also
consider special values (e.g. a length exactly equal to an integer) not
related directly to symmetries. In the following we first describe
exact symmetries in this context, and then consider approximate

Cell Feature Type

Vertex Location Position
Straight Edge Edge length Length
Planar Face Normal Direction
Spherical Face Centre Position

Radius Length
Cylindrical Face Axis direction Direction

Axis Axis
Radius Length

Conical Face Apex Position
Axis direction Direction
Axis Axis
Semi-angle Angle

Toroidal Face Centre Position
Direction Direction
Axis Axis
Major radius Length
Minor radius Length
Sum of radii Length
Difference of radii Length

Table 2: Some Features

Feature Type Regularity Symmetries

Direction Parallel directions Identity
Symmetries of directions Isometries
Rotational symmetries of directions
like in regular prisms and pyramids

Rotations

Axis Aligned axes Identity
Parallel axes arranged equi-spaced
along lines and grids

Translations

Parallel axes arranged symmetri-
cally on cylinders

Rotations

Axes intersecting in a point Identity
Position Equal positions Identity

Point set symmetries Isometries
Equi-spaced positions arranged on
a line or a grid

Translations

Positions arranged symmetrically
on a circle

Translations

Equal positions when projected on
a special line or plane

Identity

Length/ Equal scalar parameters Identity
Angle Special scalar parameter values (special value)

Simple integer relations between
scalar parameters

(special value)

Table 3: Some Common Geometric Regularities

symmetries.
The simplest regularity type is formed by cells with identical

features, e.g. parallel directions. In this case we say the features
remain invariant under identity of the feature space (the space of all
values for a feature type). More generally, a feature set which re-
mains invariant under isometries or a sub-group of isometries in the
feature space represents a regularity. Usually it is not the whole set
of features of a particular type which remains invariant. We have to
find appropriate, maximal subsets. For instance, we may have eight
positional features from a model. These may exhibit the symmetry
of a cube and we cannot add additional positional features from the
model such that the expanded set still has cubic symmetry. So we
distinguish between global and partial symmetries.

Let f1, . . . , fn be a set of n mutually distinct features which
remains invariant under a groupG of isometries. The isometries are
associated with permutations of the features. Each g ∈ G induces
a permutation σ of the labels 1, . . . , n: for g(fk) = fl we get
σ(k) = l. In order to avoid ambiguities we have to assume that the
features are mutually different. Otherwise g induces more than one



permutation. Hence, identity regularities are a special case, and
must be detected first. We can then replace identical features by
a single feature, which can be used to find non-trivial symmetries
as permutations. Note that the permutations preserve the distances
between the features.

For instance, for n points p1, . . . , pn arranged in sequence sym-
metrically around a circle in E2, the permutation σ : l 7→ (l +
1) mod n is induced by a 2π/n rotation around an appropriate
point. By detecting all distance preserving permutations of the
points we find these rotations.

There are also feature sets which would be symmetric if certain
additional features, which are not present, are added. We call such
cases incomplete. However, note that any set can be expanded to be
invariant under any transformation group, so we require additional
conditions. The basic idea is that there is sufficient information in
the feature set such that sufficient isometries can be detected.

In particular, repetitions are a suitable basis for incomplete and
partial symmetries. We say a symmetry is a repetition if all isome-
tries can be constructed by concatenating a single transformation g,
i.e. G = {gr : r ∈ Z}. For instance, a π/n rotation around a point
generates the group of kπ/n rotations. Given n points p1, . . . , pn
arranged in sequence symmetrically on a circle, the regularity is
created by k2π/n, k ∈ Z rotations. After removing one of the
points, a 2π/n rotation still maps some of the remaining points
onto each other and we still detect some k2π/n rotations between
the points. The more points we remove the less often we find these
rotations.

For beautification, we require a concept of approximate geo-
metric regularities. In the approximate case the features are only
matched approximately by an isometry. This generates a relation on
the feature set which is reflexive and symmetric, but not necessarily
transitive. The lack of transitivity generates ambiguous situations
where global information is required for algorithms to work cor-
rectly. But under certain conditions such a relation can be transitive
when restricted to the relevant features, and we can use concepts
similar to the exact case for efficient detection algorithms. Essen-
tially we detect tolerance levels at which a transitive matching of
the features is possible.

There is a variety of approaches to approximate symmetry. One
approach is to compute a measure of asymmetry [31]. Such mea-
sures suffer from calibration problems and the precise threshold at
which an object is declared to be symmetric is arbitrary, based on
supposition and subjective evaluation. Another approach is to find
a symmetric object with a small distance (e.g. using the Hausdorff
metric) from the object in question. Alt et al. [1] determine a group
of transformations such that the images of the set under the trans-
formations remain approximately equal. The time order for this ap-
proach is high-polynomial depending on the precise context; from
the transformation alone we also do not immediately know which
features are matched. Iwanowski [11] detects a symmetric set ap-
proximately equal to the original set, which is potentially more use-
ful. However, as a consequence of producing more information, the
computation is NP-complete.

In the exact case, symmetries relate to distance preserving per-
mutations which can be detected by checking whether the features
match locally, which automatically implies a global match. We
define approximate symmetries such that we retain this behaviour
for the features in question. We detect approximately distance-
preserving permutations at tolerance levels where a local match im-
plies a global match.

Let R = {r1, . . . , rn} be a set of n features of the same type.
Let s =ε t if and only if |s − t| < ε for s, t ∈ R and let D(R) =
{d(rl, rk) : l, k ∈ L} for L = {1, . . . , n}. A permutation σ
is an approximate symmetry of R at tolerance level ε, if =ε is an
equivalence relation onD(R), and |d(fl, fk)−d(fσ(l), fσ(k))| < ε
for all l, k ∈ L (see [19]).

Another type of regularity can be detected if we have a struc-
ture in the feature space which explicitly selects special values. For
lengths we have a special point 0 and from there we can detect spe-
cial distances from this point as special length values, similarly for
angles and the special angle 0. In the approximate case we look for
some special values close to the approximate feature value.

3.2 Detecting Approximate Regularities
The first, basic type of regularities we consider are identity regular-
ities like approximately parallel directions. Based on these regular-
ities, we determine regular arrangements either as global symme-
tries or partial and incomplete symmetries. For partial regularities
we have to first determine appropriate subsets and for incomplete
regularities we require rules telling which sort of sets we accept.
Due to the computational costs of detecting such regularities we
only consider repetitions like equi-distant positions on a line. In the
following we only give a brief overview of our regularity detection
(for details see [7, 15, 16, 17, 19, 20]).

For identity regularities we have to find relations =ε on the fea-
ture set which are an equivalence. This can be done using a hier-
archical clustering algorithm. We have to ensure that each of the
clusters represent an equivalence class—at least for a subset of all
features. Hence, we call a cluster consistent if all the distances be-
tween its elements are smaller than a tolerance and the distances to
other features is larger than this tolerance.

By seeking consistent clusters at multiple tolerance levels we
avoid the requirement of setting a maximum tolerance which is
hard to find. Under the condition that all desired regularities are
detected, the number of unwanted regularities can in general only
be minimised, but not completely avoided, if we use a maximum
tolerance. A hierarchical structure of consistent clusters more ac-
curately represents the structures present in the raw model.

For clustering we use Eppstein’s closest pair algorithm [6] which
requires O(n2) time. The clusters are formed by starting with each
feature in its own cluster. Then clusters are merged in sequence
from the smallest distance between two features to the largest one.
Depending on whether the clusters fulfil the consistency condition
from above or not, they are added as a sub-cluster or merged to form
a single cluster. If we keep track of how many distances between the
features in a cluster have been considered, we can easily determine
if all distances have been considered (consistency condition). From
the cluster hierarchy we get different tolerance levels at which the
clusters are either locally or globally consistent.

The cluster hierarchy describes identity regularities (depending
on the feature type) and it forms the basis for global symmetries
and repetitions. We replace the clusters by their centroids at each
consistent tolerance level and compute with these new features to
detect further regularities.

First consider global symmetries (see [19, 20]). Following
our definition of approximate symmetries, we seek approximately
distance preserving permutations at consistent tolerance levels.
Checking all permutations of the features would be computationally
too expensive. But note that an isometry in d-dimensional space is
determined by specifying the mapping for only d + 1 features (a
simplex). Hence, it is sufficient to select d + 1 features and try all
possible mappings of these features to all available features in turn.
One of the d+1 features can be the centroid of the feature set which
has to be mapped onto itself. The remaining d points are selected in
sequence starting with the feature furthest away from the centroid.
The third point is the one giving the largest triangle area with the
first two, and so on. As the centroid is always mapped onto itself,
we only have to check all possible mappings from the d remaining
features to all features in the set.

Once we have found a valid mapping for the simplex, mapping it
onto another feature simplex within tolerance, we know the isome-
try within tolerance. Due to the consistent clustering we know that



a match between features within this tolerance is unique. Hence, for
our purposes we have sufficient information about the transforma-
tion. Thus it is sufficient to compute distance preserving permuta-
tions for the d+1 features, and then check directly if the remaining
features are mapped approximately onto another feature in the set.
Given a non-degenerate simplex, the distances between the features
in the simplex and another feature f uniquely determine the posi-
tion of f . Thus, given a distance preserving permutation between
two simplices of points in the feature set, we can check whether it
induces a distance preserving permutation on all points by match-
ing the distances from the two simplices. The matching has to be
unique as we are only checking this for consistent tolerance levels.

By choosing a large simplex as described above, relations be-
tween features close together may not be detected immediately. For
long thin prisms, the algorithm may not detect the rotational sym-
metry, but only detect the mirror symmetry between the end-points.
In retrospect, as a first analysis this is justified. The rotational sym-
metry can be detected in a second pass after the object has been
expanded orthogonally to its longitudinal axis. In a similar man-
ner an object whose primary structure is planar can be expanded
orthogonally to the plane to examine its secondary symmetries.

The time complexity of the symmetry detection method for a
single set of n consistent clusters is O(n2.5 log4 n) in E3 [19]. The
clustering method requires O(n2) time. Each time the symmetry
detection is called the clustering method has made the partition of
points coarser. Thus, an immediate limit to the number of calls is
n, which can be reached by a collection of points built up one at a
time, adding each point a bit further away each time. So the order of
global symmetry detection in the worst case is O(n3.5 log4 n). For
practical objects with reasonably limited complexity we actually
expect it to take O(n2 log4 n).

A similar approach for detecting approximate congruences by
matching a simplex from one feature set with a simplex in the other
feature set is described in [7].

In order to efficiently detect partial, incomplete repetitions, we
first have to determine suitable feature subsets fulfilling some con-
dition. For instance, for rotational symmetries of directions as in-
duced by a prism, we compute an orthogonal vector for each di-
rection pair and then create a consistent cluster hierarchy for such
vectors which are approximately parallel. We can then look for the
repetitions in each consistent cluster separately. For symmetrically
arranged directions, we check the angles between the directions,
and determine sets of directions where the angles are approximate
integer multiples of some base angle. The base angle itself has to
be present as an angle between two directions. However, not all
integer multiples of the base angle have to be present for us to be
able to detect incomplete repetitions. For a detailed discussion of
the methods for different feature types see [17].

The overall regularity detection process starts by extracting all
features from the cells of the raw model. Then for each feature type
separately, we first create a consistent hierarchical clustering struc-
ture. This is used to determine global symmetries and repetitions
at different tolerance levels. This gives us geometric regularities
at different tolerance levels describing regular arrangements of fea-
tures. Due to the consistency condition, we only determine regu-
larities for which we have unambiguous evidence in the raw model.
The regularities are distinguished by the symmetry type and the
features involved. In addition we can determine special values for
any scalars involved in these regularities (see [17]). The expected
time for regularity detection is roughly O(n2) for typical reverse
engineered objects, where n is the number of faces in the model.

3.3 Selecting Geometric Regularities
Regularity detection determines a large set of approximate regular-
ities present in the raw model at various tolerance levels. Various
relations between the cells are considered to find potential regulari-

ties, and not all of these are likely to be mutually consistent. As we
do not use a strict tolerance limit, we get some regularities which
only exist at rather large tolerances. Moreover, the detection meth-
ods seek multiple relations between the same features. Hence, the
set of detected regularities is likely to contain many inconsistencies
and a suitable subset has to be selected. The selected regularities
must be mutually consistent and should be likely to represent the
original, ideal design intent.

The regularities in terms of symmetries can easily be expressed
by sets of geometric constraints. Essentially the constraints relate
the features, which in turn describe the geometry of the cells. In or-
der to use only simple constraints, additional auxiliary objects may
have to be included. These are only used to express the regulari-
ties, e.g. an auxiliary direction for a parallel direction cluster. In
this section we assume that we have a solvability test available to
determine if a given set of regularities described by constraints is
solvable (see Section 3.4).

Using a sequential selection method which tries to add regulari-
ties in order of a priority is suitable as a means for improving sim-
ple to medium complexity models. We build a constraint system in
sequence by adding constraints describing the regularities in order
of a priority. For each constraint, we check if adding it preserves
the solvability. If not, the regularity it describes is rejected and
the corresponding constraints are removed from the constraint sys-
tem. Instead of a method to determine the overall desirability of a
selected set of regularities, we use priorities only to decide which
regularity to choose in case of an inconsistency. This way we get a
selection of regularities with high priorities by at most considering
each regularity once for the solvability test.

Even if the topology has been adjusted earlier, we require a de-
scription of the topology in order to enforce the dependencies be-
tween the features, and to ensure that a valid model is generated
from the regularities. The features not only have to fulfil the reg-
ularity constraints, but also have to describe the cells such that the
geometric intersections of the cells are consistent with the topol-
ogy, e.g. a vertex position must lie on all faces the vertex belongs
to. Such regularities must always be present in the constraint sys-
tem and thus they are added first.

The priority of a regularity is computed by taking a weighted
average of: a measure of the numerical accuracy to which the reg-
ularity’s constraints are satisfied in the raw model, a figure of merit
expressing the quality or desirability of the regularity depending
on specific arrangements and constants involved, and a constant
describing a minimum desirability for each regularity type. This
average is weighted by a merit function which indicates how com-
mon the regularity is (determined by surveying a range of engineer-
ing components). All weights and merits have values in the inter-
val [0, 1]. For a detailed description of the priority computation,
see [14, 18].

While the order of the regularities can be adjusted by varying
the constants in the priority function, their large number makes it
hard to predict the effect of changes. Currently the priorities used
are sufficient to improve the model, but a sophisticated decision
process considering more complex relations between regularities
and the model, globally, could improve regularity selection with
respect to design intent.

3.4 Solvability of Constraint Systems
Besides the priority computation, an efficient constraint system
solvability test is crucial for the selection process. Interpreting con-
straints in a topological context leads to a method similar to the
usual degrees-of-freedom analysis [9] where the degrees of free-
dom become the topological dimensions of the involved spaces. For
more details of the solvability test see [14, 18]. While it is desir-
able to ensure that we have a unique solution or at most a discrete
set of solutions, we only check whether at least one solution exists.



In particular we accept cases where there are infinitely many solu-
tions. We can seek a solution for the geometry of the final model
close to that of the raw model. The large number of regularities we
detect makes under-constrained systems very unlikely.

To verify the solvability of a constraint system, we consecutively
add constraints to a constraint graph and check whether the system
remains solvable. Our topological interpretation leads directly to
an efficient algorithm for representing geometric constraints as di-
rected edges in a constraint graph indicating the dependencies and
restrictions created by the constraints. By analysing the dependen-
cies in the constraint graph we quickly determine whether a con-
straint system expanded by an additional constraint remains solv-
able in a generic sense.

From a set-theoretical point of view we can say that an uncon-
strained feature may have any value in the feature space. By adding
a constraint we limit the allowed values the involved features can
have at the same time, i.e. we select a subset of the direct product
of feature spaces. When adding multiple constraints the features
have to lie in the intersection of these subsets. For instance, an
unconstrained point in E3 can be at any location in space, i.e. its
parameter domain is R3. A distance constraint between two points
v1, v2 limits the allowed values the two points can have at the same
time. One way of enforcing this is by allowing v1 to be param-
eterised by an arbitrary value in R3 and requiring that v2 is on a
sphere of fixed radius with centre v1. This means that v2 can be
described by a parameter on the unit sphere S2 in combination with
the position of v1. Thus, for v2 we select a (lower-dimensional)
sub-manifold of the parameter manifold R3 which is essentially S2.
Obviously, the roles of v1 and v2 can be exchanged. When a 3D
point is constrained by two such distance constraints, it has to lie in
the intersection of two spheres. In general this intersection may be
empty, a point, a circle or a sphere.

We can interpret a distance constraint as a reduction of the pa-
rameter space R3 to S2 for one of the two points involved. Essen-
tially this reduces the topological dimension of the parameter do-
main by one. Also when intersecting the different sub-manifolds,
in most cases we get a dimension reduction. In the context of dis-
tance constraints the most likely case is that the intersection is a
circle, i.e. each constraint takes one degree of freedom away and
the point has one degree of freedom left. To get the other intersec-
tion cases, the distances have to fulfil special conditions. Hence, a
circular intersection is the generic case. Without solving any equa-
tion systems, we cannot in general determine any of the non-generic
cases. We use a similar reasoning for all types of intersections. If
a feature with d degrees of freedom has to lie in the intersection
of an m- and an n-dimensional sub-manifold, the dimension of the
generic intersection is m+ n− d.

This basic principle can be applied to other geometric constraints
as well. We have constraints between the features of a model. Each
feature can initially have an arbitrary value in a feature space which
is a smooth manifold. The constraints between the features select
sub-manifolds of the feature spaces. There is usually more than one
way of selecting such sub-manifolds. This makes constraints edges
in a hyper-graph between the feature nodes. We can interpret a
constraint as a directed hyper-edge depending on how the constraint
selects sub-manifolds. We refer to selecting the direction of an edge
in a graph as distributing the constraint in the graph. Distributing
the constraint adds a directed edge to the graph, which represents a
particular way of enforcing the restrictions of the constraint on the
features. When we choose another option for an already distributed
constraint, we call this redistributing the constraint, i.e. changing
the direction of the edge.

Obviously it is not always possible to distribute a new constraint
in a given constraint system. If both points involved in a distance
constraint are already R0, we cannot generically intersect either of
them with S2. However, as for each distance constraint there are
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Fig. 8: Constraint Graph of Distances between 4 Points on a Plane

two ways in which it can be added to the constraint graph, it may be
possible to choose a different distribution of constraints along some
of the edges in the graph such that we can add the constraint. Thus,
we have to do a graph search starting at the edge of the new con-
straint. A breadth-first search backwards along the directed edges is
used to find the first edge which can be changed closest to the new
edge. We do not have to consider all paths starting with the new
constraint, but only find the shortest paths to the edges referring
to constraints which can be redistributed. Whenever a constraint
can be redistributed, we redistribute the constraints along the whole
path to the edge of the original constraint. We then have to repeat
the breadth-first search until we can distribute the new constraint, or
all redistribution options have been exhausted. Finding a redistri-
bution path is similar to the distribute method used in the dense
algorithm [10].

However, a method to distribute a constraint does not reveal if
the resulting constraint system is solvable. The directions of the
edges in a constraint graph define the dependencies between the
nodes. Given an arbitrary node n in the constraint graph and an
edge e directed towards this node, we can follow edges backwards
to determine the sub-graph S(n, e) of all nodes on which n depends
due to e. To detect S(n, e) we mark n as visited and follow the
edge e backwards marking its starting point as visited. From there
we continue following all (directed) edges backwards which lead to
unvisited nodes; we use a greedy algorithm for this. We stop when
no further unvisited nodes can be reached by following the edges
backwards. n and all edges between n and the detected sub-graph
are added to S(n, e), which we call the dependency sub-graph of
n due to e. In this sub-graph we change the parameter space of
n so that only the edges in S(n, e) are considered. The resulting
S(n, e) represents a solvable sub-graph if the sum of the remaining
degrees of freedom of the nodes in S(n, e) is at least six, five or
three depending on the dimensionality of the object involved. As
our constraints only specify relative relations between the geomet-
ric elements it is not possible to fix the location or the orientation of
the resulting object. In E3 this means that there should be in general
six degrees of freedom (three for location and three for orientation)
left, e.g. consider three or more points which do not all lie on a line.
If we have a lower-dimensional object in 3D (e.g. two points on a
line), we only have five degrees of freedom left to fix the position
and the orientation of the object. Similarly for a single point we
require three degrees of freedom.

When we have successfully distributed a new constraint as a di-
rected edge e in the graph, we must test if the new graph is solvable.
If distribution failed, we already know that the constraint system is
not solvable. To test for solvability, we only have to consider the
changes made during distribution. Let n be the node the constraint
has been distributed to, i.e. the directed edge e points towards n.
We claim that the graph remains (generically) solvable if the depen-



dency sub-graph S(n, e) is solvable, i.e. it has sufficient degrees of
freedom left. Originally the number of degrees of freedom of a node
is the dimension of its parameter space. By distributing constraints
we select sub-manifolds of the parameter space and intersect those
sub-manifolds. This reduces the dimension of the sub-manifold of
allowed parameter values for a node. The dimension of this sub-
manifold is the amount of degrees of freedom left after constraint
distribution. In general in the sub-graph S(n, e) the sum of de-
grees of freedom has to be at least six (three rotational and three
positional degrees of freedom in E3) in order for it to represent a
solvable system. However, note that there are special cases of lower
dimensional subsets embedded in E3 which have to be handled sep-
arately, e.g. two points on a line with only five degrees of freedom.

As an example, consider the constraint graph in Fig. 8 linking
four points vl and one plane s. Graph (a) represents six distance
constraints between four points, three of which are constrained to
lie in a plane. Each of these constraints could be distributed directly
by taking one degree of freedom away as indicated by the directed
edge. The plane s is described by a distance and a direction, i.e.
its domain is R1 × S2 which has been reduced to R0 × S0 by the
constraints. In graph (b) we distribute a constraint placing v4 on
s as well. We search for a redistribution path starting at the new
constraint edge. For s We find three direct redistribution options
to v1, v2, v3, and three direct redistribution options to v1, v2, v3

for v4. Suppose we choose to redistribute the constraint between
s and v3, initially reducing the degrees of freedom of s by one.
We redistribute the constraint for this edge, reducing the degrees of
freedom of v3 by one and increasing the degrees of freedom of s by
one. Now the original constraint can be distributed directly and we
report success with the distribution as shown in graph (b).

Distributing the constraint between v4 and s creates the graph in
Fig. 8(b). We have to check the dependency sub-graph of s over v4.
This graph is identical with the complete graph and has five degrees
of freedom. In order for the graph to be solvable it has to have six
degrees of freedom, i.e. adding the constraint between s and v4 has
made the system unsolvable. Indeed, the constraints in the graph in
Fig. 8(a) are sufficient to determine the four points and the plane up
to location and orientation.

4 MODEL REBUILDING
The regularity selection process results in a list of consistent regu-
larities as determined by the solvability test which in general have
high priorities. They are represented by constraints which describe
the improved model. As the final beautification step we have to re-
build a beautified model from this constraint system and some addi-
tional information from the updated model topology. The first step
is to find a solution to the constraint system. (Note that the topolog-
ical solvability test does not actually compute a solution and thus
we still have to solve the system).

We do not decompose the constraint system which would allow
a symbolic solution. Instead, we simply call a numerical solver to
find a solution. Note that for beautification the geometric model
may not always be described completely by our geometric con-
straints (it is only highly likely as we detect many regularities), this
making a symbolic approach unsuitable. Furthermore, not all con-
straint systems can be readily solved symbolically. We use a least-
squares optimisation method on an error target function based on
a numerically robust implementation of the BFGS quasi-Newton
method [26]. We start at the feature values from the raw model,
which makes it likely that we find a solution close to it.

From the numerical solution of the constraint system, an im-
proved model is rebuilt using the beautified topological informa-
tion from the raw model with the feature values obtained from the
solution. We create new faces using the solution of the constraint
system and re-intersect them to obtain the complete model. The

solution of the constraint system gives the vertex positions and the
faces. We get sharp edges by using a standard surface-surface inter-
section algorithm for the adjacent surfaces. If the result is a closed
curve, the intersection gives the edge immediately. Otherwise we
have to limit it with vertices to get the edge. If multiple solutions
arise for the intersection, the information in the raw model is used
to determine which part of the intersection curve is required, e.g.
to distinguish between a convex and concave cylindrical surface.
Smooth intersection edges (i.e. ones at which the adjacent faces
meet tangentially) have to be handled separately as special cases;
this is straightforward as we only consider certain analytic surface
types. Note that in general it may also be useful to explicitly com-
pute other certain intersections in order to get analytic representa-
tions of the intersections rather than free-form curves.

4.1 Consistency between Topology and
Geometry

In our beautification system we make decisions about adjusting the
topology before we adjust the geometry of the model. Because dur-
ing selection, the topology is included by special constraints, the
resulting constraint system cannot be inconsistent unless it is nec-
essary to consider non-generic cases. These non-generic cases are
unlikely for usual engineering objects. In order to avoid selecting
invalid topologies, we can already check the topological constraints
during topological beautification. This avoids creating inconsistent
topology.

However, note that we do not use general constraints requiring
two surfaces to simply intersect without specifying the desired re-
lation (this cannot be done with our interpretation of constraint sys-
tems). As we consider a large variety of geometric relations be-
tween intersecting faces, the relation between the surfaces is speci-
fied by the geometric regularities. Hence, it is unlikely that we have
to handle cases where two faces do not intersect. However, should
this happen we can always insert another face in a similar way to
that used for filling gaps.

The more important problem of splitting topological and geo-
metric beautification is that we do not consider whether the topo-
logical and geometric changes are consistent with respect to design
intent. Topologically, we may decide to remove a small face, but
this small face may be required in order to realise a complicated
geometric regularity. If we remove the face first, then we cannot
realise this regularity later. Such issues rarely arise in practice, and
methods to handle topological and geometric decisions at the same
time are left as future work.

5 EXPERIMENTS
The system presented has been tested using a variety of simple to
medium complexity reverse engineered models. Our experiments
show that it is able to improve raw models with respect to design
intent. As the raw models are approximate, there is always some
uncertainty about the actual design intent. Depending on the toler-
ance settings, specific parameter values and minor regularities are
not always reconstructed according to the original design. How-
ever, major regularities, like global symmetries, major orthogonal
systems, etc. representing the global structure of the model, are
imposed exactly on the improved model. Depending on our as-
sumptions about the raw model, we can either accept high quality
regularities, or regularities with small tolerances. Only a regularity
meeting both requirements is likely to be accepted in both cases.

In the following we briefly discuss the results of beautifying the
models shown in Fig. 9. Due to the large number of regularities
found, we do not present them in detail: only how the major reg-
ularities were handled by the system is discussed. For more tests
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Fig. 9: Geometric Beautification Examples

Model (a) (b) (c) (d) (e) (f)
Faces 11 19 14 25 6 10

Regularities
Total 25 329 152 287 55 144

Selected 14 43 33 45 17 23
Sel. Constraints 84 469 334 586 108 153
Time in sec.
taken by

Detecting 0.03 0.32 0.89 0.94 0.09 0.05
Selecting 0.11 9.13 3.75 12.05 1.21 2.28

Solving 28.52 178.37 57.29 263.89 24.37 39.23
Total 28.66 178.82 61.93 276.88 25.67 41.56

Table 4: Experimental Results for Geometric Beautification

with more detailed results see [8, 14, 15, 18]. Table 4 lists the num-
ber of regularities detected, and how many of each were selected
for use to improve the model in the geometric beautification phase.

In general, when selecting regularities we have a choice between
regularities with small tolerances or regularities which are of high
quality. Regularities at small tolerances represent arrangements
which are nearly exactly present in the raw model. Regularities
of high quality relate to common regularities or very desirable reg-
ularities, e.g. a completely symmetric arrangement of faces. Note
that some regularities may be present at a small tolerance and be
of high quality. The priorities for selection were chosen to slightly
prefer high quality to small tolerance regularities. If we have con-
tradictory regularities where some are very accurate and others are
of high quality, those of high quality are more likely to be selected
even if they are present at a larger tolerance. In general this resulted
in the best overall regularity selections. Fine-tuning the values for
particular models could of course improve the selection results.

The example models in Fig. 9 all had the correct topology and
only geometric beautification was required. The topological beau-
tification phase took under 1 second for all the models and in the
following we only describe the issues relating to geometric beauti-
fication.

For object (a) the single central axis, several planes with normals
parallel to this axis were correctly detected and imposed on the im-
proved model. There are also two parallel planes with normals or-
thogonal to the central axis (coloured in blue, only one is visible).
The orthogonal relation was exactly imposed on the model. How-
ever, the angle between the normals of the two planes was set to
3◦. The normals of the two planes were combined into a cluster
at a high tolerance level. Even if parallel in the ideal model, the
angle between the two directions in the raw model was sufficiently
far apart (about 3◦) such that the two directions were sub-clusters
of this cluster. Using our standard priority setting this regularity
was not selected, but rather a special value for the angle between
the normals was chosen.

Model (b) has two symmetrically arranged, planar direction sets
based on the angle π/4. Together with the orthogonal relation
between the blue planes, and the symmetrically arranged red and
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Fig. 10: Topological Beautification Examples

green planes, these regularities have the highest priority and were
imposed exactly on the model. Choosing proper special values for
the edge lengths and clustering them in sets of edge lengths was
considerably harder. While the equalities were detected in the clus-
ter hierarchy, they were not selected due to the priorities. Even
by adjusting the priorities, only the group of short edges could be
forced to have the same lengths. The values in the other two groups
of lengths were close to each other, but different special values were
favoured for the two groups. As we only have an approximate av-
erage edge length for each selected cluster of approximately equal
edge lengths, it is hard to find the original special value for the
length. Only a special value which appears to be desirable with
respect to the priorities can be selected (e.g. the closest integer if
there is one within acceptable tolerance).

The solvability test correctly determined that only one angle be-
tween the groups of red and blue planes can be set. However, for
this angle, there was a choice between a special value close to the
value in the raw model, and one of high quality. With our method a
particular plane pair was chosen to select this angle. If we favoured
integer degrees, the closest integer to this angle was chosen. The
angle in the original design was 10◦. The plane pair chosen had an
angle of 45◦ + 10.8◦ and thus the angle between the two plane sets
was chosen to be 11◦. Note that to select a special value of 10◦

between the two plane sets would require the selection of a special
value of 55◦ between the chosen plane pair. In order to prefer this
special value, the special value priorities would have to be adjusted
to favour multiples of 5 rather than 10 as at present. With a more
detailed analysis it might be possible to detect that all the angles be-
tween the plane pairs should be considered to find an average value
for that single angle, but even in this case we would have to con-
sider the uncertainty in the average value and select a likely special
angle value with a tolerance.

In model (c) the normals of the green planes are arranged sym-
metrically in a plane, and the axes of the red cylinders are arranged
symmetrically on a cone. These regularities were well preserved in
the raw model (to within about 1◦) and are also of high quality, so
they were selected. The edge lengths and the angle chosen for the
symmetrical cylinder arrangement had the same problems as for the



other models. In addition, in this case we had no regularity specify-
ing a direct relation between the group of cylinders and the planes.
Hence, there was a small angle between the cylinder axis directions
and the plane normals when projected on the same plane. The edge
length regularities and the topological constraints ensured that the
lack of a precise relation did not change the topology, i.e. the cylin-
ders could not be rotated in a way that they would intersect with
more than one green plane.

The directions in model (d) lead to one orthogonal system
formed by the normals of the red faces, and one regularity describ-
ing the pyramidal arrangement of the normals of the green faces,
with an angle of π/4. The regularities were present in the model to
within about 2◦. As they were of high quality, they were selected.
The π/4 rotation between the two direction sets was slightly more
ambiguous as it was represented by individual special angle values
between various direction pairs from the two sets. The relation was
preserved on average to within about 3◦. As our priority param-
eters favour π/4 angles, the relation was imposed exactly on the
improved model. Further regularities relate to equal edge length
and cylinder radii with problems similar to the other models. Reg-
ularity selection, however, ensured that the two corner cutouts were
congruent.

The models shown in Fig. 10 also exhibit topological defects be-
sides approximate geometric regularities. Object (e) was originally
a five sided, regular pyramid, but the sloping faces do not properly
intersect at the top. This was detected and corrected by topologi-
cal beautification in 0.92 seconds, which reduced the 7 faces and
15 edges to 6 faces and 10 edges. Geometric beautification conse-
quently determined the structure of the regular pyramid which was
imposed exactly in the improved model.

The raw model (f) contains 21 faces and 40 edges (and is de-
scribed further in [8]). It contains pinched faces (2 and 9), a chain
of small faces (3), an edge gap (4), two face gaps (5 and 7), two
small faces (6 and 11) and a sliver face (8). In the model, 1 is a
conical boss and 10 is a spherical boss. Note that sliver face 8 is
adjacent to multiple face gap 5 and small face 11. The topologi-
cally improved model has only 10 faces and 15 edges left. It took
1.59 seconds to improve the model. Geometric beautification de-
tected and correctly imposed the central axis of the object and an
orthogonal system of planes in combination with the central axis.

5.1 Discussion
Our methods are able to improve reverse engineered models, but
are limited by the ambiguities caused by the fact that we only have
approximate models. Major regularities of the model can be han-
dled quite robustly and are usually exactly enforced in the improved
model, but minor regularities do not always represent the intended
design. In this context we refer to major regularities as regulari-
ties which involve a large number of faces of the model and usually
relate to a highly symmetric arrangement (with respect to the fea-
tures). Minor regularities relate to only a few faces in the model
and usually have less symmetry.

As we have to handle an approximate model, we have to work
with certain tolerance levels. If the tolerance level is small enough
that the features of interest are sufficiently distinct, we are able to
identify them precisely. For instance, if the only angle values of
interest are integer numbers in degrees, then any tolerance smaller
than 0.5◦ allows us to exactly distinguish between the values. How-
ever, to beautify reverse engineered models, we usually have to
work at tolerance levels where the features cannot be clearly distin-
guished in such a way. Thus ambiguities result with respect to the
regularities. We try to eliminate some of these by looking for tol-
erance levels at which certain properties of the features are present
unambiguously in a local sense. However, in the case of incon-
sistencies between these regularities, it is not always possible to
make a clear decision between them, as there are always cases of

inconsistencies between regularities which are all about equally de-
sirable. This applies in particular to minor regularities relating to
a small number of cells in the boundary representation, e.g. multi-
ple special angle values between two planar faces. This is a fun-
damental property of approximate models, and while our methods
were designed to take this into account, such ambiguities cannot be
avoided.

Our system is able to detect approximate regularities for which
clear, unambiguous evidence is present in the raw model. It reports
the regularities at tolerance levels at which there is no ambiguous
interpretation of the data. Most intended regularities are detected
in the raw models. As no maximum tolerance value is used, and
the tolerance levels for the regularities are detected automatically,
the differences in the tolerances of intended regularities can be han-
dled. However, this also results in a larger number of regularities
which have to be considered for selection. Trying to devise detec-
tion algorithms which only detect intended approximate regularities
appears to be considerably harder. While we seek unambiguous ev-
idence in the raw model for the presence of a regularity, we cannot
make a decision whether the regularity is intended without having
additional information about the model, such as other regularities,
consistency with respect to design intent, and solvability of the re-
lated constraint system.

The decision about which regularities should be used to improve
the model is made in a separate process. Major regularities can
usually be identified easily by the selection process, but minor reg-
ularities, special values, etc. related to the particular instance of a
model are not always selected correctly. This is directly caused by
the ambiguity between inconsistent approximate regularities dis-
cussed above. In all cases we have tested, independently of the
chosen priority parameters, the numerical solver was able to solve
the selected constraint system up to the given numerical tolerance.
This suggests that the selected constraint systems did not contain
any inconsistencies. It also provides evidence that the topological
solvability test is sufficient for the kind of models we considered.

In our examples, major regularities were usually present at rel-
atively small tolerance levels and the quality priorities for them
were high. This made selection of major regularities quite robust
to changes in the priority function, and they were usually selected
to improve the model. The priority order for the selection of spe-
cial values and local relations between faces is more unstable and
closely related to the choice of priority parameters. The larger the
tolerances required to detect and select the major regularities, the
higher the uncertainty for minor regularities like special values.
This makes it hard to determine the intended minor regularities and
often special values different from the ones in the original model
were selected.

The same parameters for regularity detection and priority com-
putation were used for all the experiments. In all cases, adjust-
ing the parameters to suit a particular model improved the results.
While there are no regularity detection parameters which only se-
lect desired regularities, it is possible to adjust the parameters in-
dividually for each model such that the number of undesired reg-
ularities is minimised. As for the priority parameters, the type of
selected regularities could be adjusted between values favouring
quality and values favouring high accuracy. We may prefer high
quality models which exhibit high symmetry (with respect to their
features), but which may require a relatively large change to the raw
model. Alternatively, we may try to create improved models very
close to the raw model, which may be less regular. Furthermore,
the priority computation can be adjusted to favour different regular-
ity types. While we tried to keep the number of parameters small,
there are still probably too many, and finding optimal values is non-
trivial and time consuming. Using the same set of parameters for
all experiments, however, did allow us to improve all of the models.
This suggests that there is a set of parameter values for a particular



reverse engineering system which can improve the models, even if
the results are not optimal. Of course, this presupposes a robust
reverse engineering system for creating raw models with consistent
tolerance levels.

The time required to improve a model is no more than a few min-
utes. This is acceptable considering the time required for the whole
reverse engineering process, particularly the initial data acquisition.
Most of the time spent in beautification is used in numerically solv-
ing the constraint system.

6 CONCLUSION
The aim of beautification is to improve the quality of reverse en-
gineered geometric models so that they exhibit exact intended geo-
metric regularities. We have presented an approach to beautification
as a post-processing step which tries to improve a raw model gen-
erated by a state-of-the-art reverse engineering system, using only
that model as input.

Topological beautification can be done in a straightforward ap-
proach in linear time. The new topology is enforced in combination
with geometric beautification, which requires roughly quadratic
time for detection and selection of geometric regularities. Most of
the time for beautification is spent on rebuilding the model. In par-
ticular solving the constraint system numerically is computationally
expensive.

Our experiments show that our system works reasonably well
for simple to medium complexity objects. The topology is adjusted
appropriately and major regularities are detected and selected cor-
rectly. Minor regularities and relations between individual faces,
etc. are less reliably selected. The main reason for this appears to
be the fact that we consider the regularities individually: each reg-
ularity is assigned a priority independently of the other regularities.
Major regularities relating to many cells of the object are clearly
likely to be given high priority values and they are quite likely to be
inconsistent with other major regularities.

In future work we will address handling more complex models.
This will include decomposing the model into suitable sub-parts,
expanding the regularity detection to more general regularities and
in particular regularities between individual sub-parts. We will also
investigate more intelligent selection methods which consider com-
binations of regularities, and can combine topological and geomet-
ric beautification in the context of the decomposed model.
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[2] P. Benkő, G. Kós, T. Várady, L. Andor, R. R. Martin. Constrained fitting in
reverse engineering. Computer-Aided Geometric Design, 19(3):173–205, 2002.
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