
Constructing Regularity Feature Trees for Solid
Models

M. Li, F. C. Langbein, and R.R. Martin

School of Computer Science, Cardiff University, Cardiff, UK
{M.Li,F.C.Langbein,R.R.Martin}@cs.cf.ac.uk

Abstract. Approximate geometric models, e.g. as created by reverse
engineering, describe the approximate shape of an object, but do not
record the underlying design intent. Automatically inferring geometric
aspects of the design intent, represented by feature trees and geometric
constraints, enhances the utility of such models for downstream tasks.
One approach to design intent detection in such models is to decompose
them into regularity features. Geometric regularities such as symmetries
may then be sought in each regularity feature, and subsequently be com-
bined into a global, consistent description of the model’s geometric design
intent. This paper describes a systematic approach for finding such regu-
larity features based on recovering broken symmetries in the model. The
output is a tree of regularity features for subsequent use in regularity
detection and selection. Experimental results are given to demonstrate
the operation and efficiency of the algorithm.

1 Introduction

Reverse engineering creates a geometric model from measured 3D data [25].
This model is not necessarily suitable for applications which need to modify or
analyse it: it suffers from inaccuracies caused by sensing errors, as well as ap-
proximation and numerical errors arising during reconstruction. Such models are
approximate in the sense that intended regularities like symmetries, congruent
sub-parts, aligned cylinder axes, etc. within the model are not exactly repre-
sented. Furthermore, even if a regularity is preserved to within a sufficiently
small tolerance, it can easily be destroyed by later editing operations, if it is
not explicitly denoted as a property to be preserved. It is thus desirable to ex-
plicitly determine the geometric design intent of such models, as embodied by
regularities. In this paper we consider the first step of this process, decompos-
ing boundary representation (B-rep) models into regularity feature trees (RFTs).
Note that such models may have come from reverse engineering, but could also
be any other model whose design intent is not explicitly known or has been lost.

Our overall goal is to represent the geometric design intent of a model us-
ing a feature tree augmented with geometric constraints describing regularities,
for processing with a feature-aware constraint solver such as Frontier [23]. Reg-
ularities are geometric properties the designer may have desired, e.g., global
symmetries of vertices, or congruent sub-parts arranged in a regular manner, or

S

(a)

S0

S1 S3
S2

(b)

U

S4

S5

(c)

S

US2

S S54

(d)

Fig. 1. A simple model and its regularity feature tree.

V

V2

V1

E

F
0

e2

e1E1

E

E3
E

D

4

2

(a)

C

V2

VV1

V2

V
V1

+−B0 B1

E0

E1

E

E3

E2

4

(b)

Fig. 2. Expressing a simple face with regularity features and CSG primitives.

plane normals and other directions forming an orthogonal system. We do not
consider higher-level functional or aesthetic intent, nor do we look for features
specifically useful for purposes such as machining.

Previous work proposed beautification of approximate reverse engineered ge-
ometric models to improve them with respect to design intent [3, 7, 8, 14]. This
approach determines candidate regularities of the whole model based on sym-
metries, and then imposes a consistent subset of these regularities by solving a
geometric constraint system. This works well for models with a limited number
of ambiguous interpretations in terms of regularities, e.g. models with a major
rotational symmetry axis where the rotational symmetry is only broken by a
few features. However, complex models often have too many alternative plausi-
ble approximate regularities for decision methods to be able to determine which
regularities represent the original design intent of the whole model. Thus, in
this paper we consider the construction of an RFT to simplify the problem by
decomposing the whole model into manageable parts, hierarchically. Subsequent
work will consider the regularity analysis in each regularity feature separately,
so these can be combined gradually to form a global description of the intended
overall shape. Furthermore, we will analyse the relations between regularity fea-
tures to detect, e.g., congruences and symmetries. As a simple example, consider
a rectangular block with many prisms attached to its faces. Analysing the whole
model without finding the prismatic features creates many candidate plausible
angles to enforce between planes in the model. By first identifying the individual
prisms as features, we can detect their approximate prismatic symmetries, and
separately determine potential regular arrangements of the prisms on the block.
Only considering parts of the model at any one time will increase the speed of
regularity analysis and provide more reliable results.

By regularity features, we mean simple volumes derived from the model which
expose hidden approximate regularities in the model. Just like machining fea-
tures [4], they are not a class of pre-defined simple geometric primitives, but
are determined by the model’s geometry. However, in this case, they are con-
structed to expose intended regularities in the model, rather than describing
how to manufacture it. For example, in Fig. 1, the entities of the model S are
grouped into volumes S0 to S3, whose union gives an updated model U . U is
further grouped into S4 and S5. As explained in detail below this groups S into
regularity features S2 and U , and U further into S4, S5 as shown in Fig. 1(d).

As many regularities can be expressed in terms of symmetries [8], our method
for finding regularity features relies on recovering broken symmetries. While this
means that some regularity features may become more symmetric, others may
just represent the symmetry break in the model, i.e. some part which reduces
the model’s symmetry. To find regularity features, we look for recoverable edges
and recoverable faces. A recoverable face is a newly generated face, with the
same underlying geometry as an existing face, but different boundaries, and
which, when added to or removed from the existing face, allows us to recover
the broken symmetry of the face. We recover the symmetry of a face by modifying
its boundary within its underlying geometry.

In order to find recoverable faces, we first detect recoverable edges: newly
generated edges based on symmetry expectations derived from faces of the ap-
proximate model. The recoverable faces are bounded by a combination of original
and recoverable edges. E.g. in Fig. 2(a), using the broken symmetry hints, the
two recoverable edges V1V and V2V are first constructed. From these we can
then determine the recoverable face D to produce the rectangular face B0. The
asymmetry of F with respect to B0 is represented by D.

Once detected, the recoverable faces are used together with appropriate orig-
inal faces of the model to find regularity features as cells, closed volumes which
do not contain any (new or original) faces in their interior. This leads to negative
and positive regularity features: a regularity feature is negative if the orienta-
tion of its faces is inverse to any original faces with the same geometry in the
model. E.g. for model S in Fig. 1(a), recoverable edges and faces illustrated
by dot-dashed lines in Fig. 1(b) are detected and four regularity features are
constructed: blocks S0, S1, S2 and S3; S2 is negative and the others positive.

Using these regularity features, a more symmetric updated model is con-
structed which exposes partly recovered symmetries of the original model. Vol-
umes corresponding to negative regularity features are added to the original
model, while (certain) positive features are cut off. Note that only positive solids
not adjacent to negative solids can be cut off from S. Other positive regularity
features are ignored, because adding the negative solid may change the local
connectivity and yield a simpler structure overall. E.g. the negative regularity
feature S2 in Fig. 1(b) is first added to the model S, resulting in an updated
model U (Fig. 1(c)). Since all positive regularity features S0, S1 and S3 have
faces in common with S2, no further updating is required. The original model is
decomposed into the negative regularity feature S2 and the updated regularity

feature U , which become the children of S. In this way, all geometric entities of
S are transmitted to its children, which are processed recursively to construct
the tree. Recursion stops when no further regularity features are found. For U
this creates two additional regularity features S4 and S5 (Fig. 1(c)), while S2 is
not decomposed any further. The corresponding RFT is shown in Fig. 1(d).

For simplicity, throughout this paper, we assume that the approximate in-
put model is a manifold 3D solid represented by a valid, watertight B-rep data
structure, and is bounded by planar, spherical, cylindrical, conical and toroidal
surfaces, which covers a wide range of mechanical components [15]. The only
reason for this restriction is the difficulty of extending the geometry of free-form
surfaces. We assume that blends have been identified and suppressed using ex-
isting blend-removal methods [21, 30]. Finally, we assume that all geometries are
represented parametrically and we denote the complete underlying parametric
curve of an edge E as Ẽ.

The next section discusses how our novel ideas are related to earlier work.
In Sect. 3 we describe recoverable edges and faces in detail. We then outline our
algorithm in Sect. 4, and give further algorithmic details in Sect. 5. Section 6
presents some experimental results.

2 Related Work

Our proposed algorithm is clearly closely related to previous work on feature
recognition, conversion of B-rep models to CSG models, and conversion of wire-
frame models to solid models. We discuss relevant results in these areas and
compare them to our method.

The current work, and feature recognition, both detect local shape infor-
mation in solid models. However, feature recognition mainly focuses on detect-
ing information needed to manufacture a solid model, such as holes, slots and
pockets [4, 17, 24]. More closely related to our method are feature recognition
techniques which try to construct feature volumes for such applications as tool
accessibility analysis and process planning [2, 6, 18–20, 26–29].

Convex hull decomposition, also called Alternating Sum of Volumes (ASV),
and its variations, produce a hierarchical volumetric representation of solids from
boundary information. It then recognises feature volumes in this decomposition.
This approach subtracts an object from its convex hull to produce a new ob-
ject recursively until a convex object is produced [6, 16, 26]. Such methods are
not directly applicable for producing RFTs, for two reasons. Firstly, while such
approaches work for polyhedra, they are difficult to generalise to objects with
curved surfaces. Secondly, and more importantly, in general the convex hull does
not recover broken symmetries such as cut off corners of cubes—this approach
does not explicitly consider regularities.

In our method of finding regularity features, new recoverable edges and faces
are generated to find feature volumes. Similar ideas have been applied to cre-
ate feature volumes from feature face-sets [2, 19, 20, 29]. The latter have to be
detected or are sometimes assumed to be provided in advance, reducing the com-

plexity of the problem. Our approach is applied directly to a solid model: all the
needed geometric information is obtained from the model.

The idea of face intersections has also been applied in cell-based methods:
the model is decomposed into a set of minimal cells by intersecting all faces of
the model, having extended them as necessary using their underlying geometry.
These cells are then merged into subsets to form feature volumes [18, 27]. How-
ever, whereas features are local parts of a model, this approach makes global use
of local geometry, leading to a combinatorial explosion in the number of cells
generated and merged; nevertheless, recent work has limited this problem by us-
ing localised face extensions, and cell collection using seed cells [28]. In contrast,
our algorithm detects regularity features as minimal volumes, defined by recov-
erable faces generated via local extensions of existing geometry. In combination
with recursive processing of regularity features, this greatly reduces the number
of volumes to be considered.

In feature recognition, it is important to carefully choose the newly gener-
ated geometric entities used to form features. Regularity features are supposed
to reveal symmetries of the model, an issue not been addressed in previous work.
Our approach systematically constructs regularity features using carefully cho-
sen newly generated entities based on the idea of recovering broken symmetries.
To obtain all the possible regularity features and avoid the need for heuristics, all
possible local entities are constructed, and selection amongst them occurs natu-
rally during the entity construction process. Specifically, only those recoverable
edges, faces or regularity features making a contribution towards generating a
recoverable face, regularity feature or updated model respectively, are kept.

Our approach is also closely related to methods for converting B-rep mod-
els to CSG models [22], which try to determine how to construct a model from
primitives using Boolean operations. Our method shifts the emphasis from the
construction process to finding suitable primitives, the regularity features. In
CSG models, the primitives are simple regular solids, whereas in our method,
the regularity features are solids which, when added to or removed from other
solids, produce a more regular solid. For example, the 2D face F in Fig. 2(a)
is not difficult to express using Boolean operations between simple CSG primi-
tives, e.g. rectangle B0 minus rectangle B1 plus circle C as shown in Fig. 2(b);
original geometric entities in F are drawn with solid lines and added geometric
entities are drawn with dashed lines. Such expressions are not directly required
for regularity detection, and can involve extra unnecessary geometric primitives,
such as the rectangle B1 completely composed of dashed lines. Building up such
expressions consequently can require additional unnecessary computation. In our
method, we simply express F as regularity features B0, the intended model sym-
metry, and D, the symmetry break. As a further difference, note that D could in
principle intersect with another part of the model due to some unwanted global,
rather than local, interaction. This must be taken into consideration when con-
structing a CSG model, but for regularity processing can simply be ignored.

Construction of regularity features from recoverable edges requires similar
steps to converting wire-frame models into solid models [1, 5, 11, 13]. Given a

wire-frame model linking vertices and edges, these methods produce a corre-
sponding volumetric description by deciding which edge loops are covered by
faces. The main issues here are algorithmic efficiency, and how to enumerate all
multiple interpretations—or to choose the most appropriate one from amongst
them. A general approach for polyhedra is based on ordering edges around each
vertex and faces around each edge to create all possible solutions [13]. More gen-
eral work to reconstruct curved solids from engineering drawings uses a maximal
turning angle method to detect all possible faces in a wire-frame with straight
and conic edges [11]. Graph theory has been applied to resolve the conversion
problem for 0-, 2- and 3-connected wire-frames [1, 5]. In our method, unlike in
the wire-frame case, the face normals of the model are available, as well as those
of any generated recoverable faces (determined uniquely by the original edge
orientations), greatly simplifying the construction of regularity features.

In summary, like previous work on feature recognition, B-rep to CSG con-
version, ASV and related approaches, our method hierarchically decomposes a
model into parts. These approaches are closely related and even sometimes pro-
duce similar results. However, our approach has the goal of recovering symmetries
in the model, while previous work is based on other geometric aspects such as
the convex hull, specific primitives, or machining features. For our application—
detecting geometric design intent—symmetry is the important geometric aspect.

3 Recoverable Edges and Faces

Our algorithm is based on recovering symmetries that were broken during con-
struction of the (ideal, rather than approximate) original model. Constructing
geometric models by using modelling operations on geometric primitives usually
destroys regularity in structures which were originally simple. One can under-
stand this process as a sequence of symmetry breaking operations—see e.g. [10].
These operations often leave hints in the model from which they may be re-
covered. We recover broken symmetries by first analysing symmetry breaks in
faces, from which symmetry breaks of the model are constructed. Specifically,
the symmetries of a primitive face might be broken in its interior, across one or
more edges, or surrounding one or more vertices—or some combination of these.
By adding entities we may recover the original symmetries.

To simplify the processing required, we reduce complex cases of broken sym-
metry to combinations of elementary cases which we call Missing Face Segment
(MFS), Missing Edge Segment (MES), and Missing Vertex Segment (MVS), ex-
amples of which are shown in Fig. 3. For MFS cases, to regain the symmetry we
must generate a new face bounded by an inner edge loop of a face of the input
model. MES cases require a new edge, and MVS cases require a new vertex;
other associated geometry is also required in these cases.

The new geometry required to recover the symmetry is composed of recov-
erable vertices, recoverable edges and recoverable faces. A recoverable vertex is
a newly generated intersection vertex between certain edges, e.g. vertex V in
Fig. 3(c). A recoverable edge is a newly generated edge that is not already rep-

0 V1V

W3

V3 V2

W2

W1W0

(a) Missing face segment1
(MFS)

E

V

V2V3

V0 1

E0 E1

(b) Missing edge seg-
ment (MES)

e
e1

d 2

V0

5V
V1 Vd 1

E2

E

4V V3

V2

2
1

(c) Missing vertex seg-
ment (MVS)

Fig. 3. Three elementary cases of breaking face symmetries.

resented in the model and connects two vertices (original or newly generated)
that lie in the underlying geometry Ẽ of some edge E of the model, e.g. edge
E in Fig. 3(b) or e1 and e2 in 3(c). A recoverable face is a newly generated
face with an underlying surface derived from a face in the model, bounded by
recoverable or original edges, e.g. the face bounded by the loop V0, V1, V2, V3

or W0,W1,W2,W3 in Fig. 3(a), the face bounded by the loop V0, V1, V2, V3 in
Fig. 3(b) or the face bounded by the loop V1, V, V2, V0 in Fig. 3(c). We distin-
guish between two recoverable edge types depending on whether they relate to
the MES or MVS case as explained next.

3.1 MES Recoverable Edges

MES recoverable edges are straight-forward to define. Let V , V ′ be two vertices
of the input model M such that

(1) these vertices lie on the underlying geometry of some edge E of the model
M , i.e. V, V ′ ∈ Ẽ;

(2) the segment S of the underlying curve Ẽ bounded by V , V ′ contains no
other vertex of M in its interior;

(3) there is no edge E′ of M with underlying geometry Ẽ bounded by V , V ′.

Then the edge E∗ with underlying geometry Ẽ, bounded by V and V ′, is called
an MES recoverable edge. E.g., in Fig. 3(b), the newly generated edge E bounded
by V0 and V1 is an MES recoverable edge with underlying geometry Ẽ0.

3.2 MVS Recoverable Edges

MVS recoverable edges are more complex than MES ones, as we have to decide
which two vertices, original or newly generated, to use to construct the edges
needed when recovering the face’s symmetry. We first show how this can be
done for a vertex on a planar face at which straight edges meet, and then how
to extend the idea to more general cases.

We first introduce some terminology. A vertex on a planar face bounded
by two straight edges at which the interior angle is greater than π is called
concave, e.g. V0 in Fig. 3(c). We call the two incident edges at a concave vertex

Fig. 4. MVS recoverable vertex and edge generation.

V0 on a planar face F boundary edges, e.g. E1, E2 in Fig. 3(c). The end-points of
boundary edges, other than V0, are called boundary vertices, e.g. V1, V2. An edge
of F that is not a boundary edge but contains a boundary vertex is called an
external edge, e.g. d1, d2. A line normal to an external edge at the corresponding
boundary vertex is called an associated external line, e.g. n1, n2 in Fig. 4 at
the concave vertex V0. A face of the model sharing the external edge with F
is called an external face, e.g. F1, F2 in Fig. 6(a). As the input model M is a
manifold solid, the number of boundary vertices, boundary edges, external edges,
associated external lines and external faces is always two. Any edge containing a
boundary vertex but not lying on F is called an associated edge, e.g. E3 and E4 in
Fig. 6(a). An associated external plane is a new plane containing the associated
external line and an associated edge originating from a boundary vertex. More
than three edges can originate from one vertex, e.g. at the apex of a pyramid,
so there may be more than one associated edge or associated external plane
originating from a boundary vertex.

The external edges and faces usually give some indication of the local sym-
metry at a concave vertex, and are helpful in recovering the broken symmetry of
the face. Furthermore, in engineering, rectangles play a particularly important
role and are often present. In the following definitions of MVS recoverable vertex
and edge, we seek the ‘most plausible’ way of completing a rectangle using the
external edges and associated external lines. Two principles are used. Firstly, the
two generated recoverable edges should be those that form the closest possible
angle to a right angle. This avoids having to use a tolerance value to determine
whether or not two lines are orthogonal—choosing such a tolerance is non-trivial
given an approximate input model. Secondly, the constructed recoverable vertex
should lie on the opposite side of the line V1V2 determined by the two boundary
vertices V1V2 from the concave vertex V0. This ensures that the constructed re-
coverable edges do not intersect the two boundary edges, which must lie on the
same side of line V1V2 as V0 due to the concavity at V0. See also Fig. 4.

With these considerations, a unique line pair (l1, l2) is selected from amongst
the external edges and associated external lines around one concave vertex; their
intersection point is the MVS recoverable vertex. For any two lines l1, l2, we
denote their intersection vertex as VI(l1, l2) and their intersection angle (≤ π/2)

V0

E1 E2

V1

2V

d 2

e2

d 1 e 1
V

(a)

V0

V

E1

E2

V2

e 1

e 2

V1

d 1

d 2

(b)

V0
E2

d 2

e 2

V1
e 1d 1

E1

n1

V2

V

n 2

(c)

Fig. 5. Different intersection cases of external edges on a face and corresponding MVS
recoverable vertex V and edges e1 and e2.

as AI(l1, l2). Suppose V0 is a concave vertex with boundary vertices V1, V2,
external edges d1, d2 and associated external lines n1, n2 (see Fig. 4). Since
ni is orthogonal to d̃i, i = 1, 2, it can be seen that AI(d̃1, d̃2) = AI(n1, n2),
AI(d̃1, n2) = AI(n1, d̃2), and AI(d̃1, d̃2)+AI(d̃1, n2) = π/2. Taking the four line
pairs, we select (l1, l2) using the following method:

1. If AI(d̃1, d̃2) < π/4:
– If VI(d̃1, n2) lies on the opposite side of line V1V2 from V0 and VI(n1, d̃2)

does not, set l1 = d̃1 and l2 = n2.
– If VI(n1, d̃2) lies on the opposite side of line V1V2 from V0 and VI(d̃1, n2)

does not, set l1 = n1 and l2 = d̃2.
2. If l1 and l2 do not yet have values:

– If VI(d̃1, d̃2) lies on the opposite of line V1V2 from V0, set li = d̃i, i = 1, 2;
– otherwise set li = ni, i = 1, 2.

A unique pair (l1, l2) is always obtained using the above definition: the second
step always provides l1 and l2 whenever d̃1 is not parallel to d̃2, because VI(d̃1, d̃2)
and VI(n1, n2) must lie on different sides of line V1V2. Whenever d̃1 is parallel
to d̃2, there always exists a unique point VI(d̃1, n2) or VI(n1, d̃2) lying on the
opposite of line V1V2 from V0, and hence the first rule applies in this case.

The vertex VI(l1, l2) is the desired MVS recoverable vertex, e.g. vertex V in
Fig. 3(c). Edges bounded by the recoverable vertex and the boundary vertices,
with underlying curves l1 or l2, are called the MVS recoverable edges, e.g. edges
e1, e2 in Fig. 3(c). Fig. 5 shows some examples of recoverable vertices V with
recoverable edges e1, e2 obtained by this selection method.

More generally, for a face with at least two straight edges, we try to convert
the involved curved edges into straight edges and then analyse them using the
above approach, following these principles:

1. If one or more connected curved edges lie between two straight edges on the
face, we treat them in the same way as we earlier treated a concave vertex
lying between two straight edges; the two straight edges are considered to
be the corresponding external edges. This is reasonable as the straight edges
in the face may be hints for a broken symmetry in the input model. E.g. in
Fig. 2(a) the curved edge E0 is adjacent to two straight edges E1 and E2.
Thus, E1, E2 are treated as the corresponding external edges, resulting in

V

E

V0

E1

E2

d1

d2

F1

F2

V’

E3

E4

(a) External faces for additional
MVS recoverable edges

C0

V1E1

e1

V3 e3

e4

V0

E

V

W

2E2 2V e

3

(b) MVS recoverable edge detection
for general cases

Fig. 6. More general MVS cases.

recoverable vertex V and recoverable edges e1, e2, which ultimately give a
rectangle. In Fig. 6(b), the external edges for the curved edge C0 are E1 and
E2, resulting in a recoverable vertex V and recoverable edges e1 and e2.

2. If a concave vertex has straight boundary edges but a curved external edge,
the external edge is replaced by its tangent line at the boundary vertex during
generation of MVS recoverable edges. Generally this is a more plausible
way of recovering model symmetry—leading to a rectangle—than using the
curved edge directly. E.g. for the concave vertex V0 in Fig. 6(b), the tangent
line of C0 at V1 is used instead of C0 in the generation of MVS recoverable
edges, resulting in a recoverable vertex W and recoverable edges e3 and e4.

The model building operations used to construct the original model may
have removed certain edges completely, e.g. edge E bounded by vertices V and
V ′ in Fig. 6(a). External faces or associated external planes help to find the
solution in such cases. The vertices V , V ′ which bound an MES recoverable
edge may be MVS recoverable. If the MVS recoverable vertices are constructed
from an external edge, the underlying curve of the MES recoverable edge is the
intersection of the external faces. If the MVS recoverable vertices are constructed
from an external line (instead of an external edge), the curve underlying the MES
edge is the intersection of the associated external planes.

In the case of faces having at most one straight edge, it is difficult to design a
universally useful method for finding MVS recoverable edges. We do not process
them in our current approach, and leave a more sophisticated approach for future
work. Our current implementation detects all MVS recoverable edges on planar
faces. However, our concept of MVS recoverable edges is not limited to such cases
in principle. For curved surfaces, we could consider the geometry of the boundary
loop inside the underlying surface, and follow geodesics instead of straight lines.

4 Algorithm Overview

We now give an overview of our algorithm for constructing an RFT from an input
manifold B-rep model M . Further details are presented in the next section. The
RFT for M is built up by first constructing regularity features for M and then

processing the resulting features recursively. In the following we refer to the solid
currently being processed in this recursion as S.

We decompose S, if possible, into edge-connected solids, each of which is
determined by a separate component of the edge graph of S. Each edge loop
representing a boundary of an edge-connected solid is closed with a face as
appropriate. If S consists of several edge-connected solids, they become children
of S in the RFT, and each is processed by the following steps in turn as the
current solid.

Next, MES and MVS recoverable edges of S are detected. Existing edges,
together with newly generated recoverable edges, create new edge loops from
which subsequent recoverable faces are constructed. The orientations of the faces
constructed using these loops are determined from orientations of the edges.
After extending the solid S using these newly constructed recoverable faces, the
regularity features are identified as closed cells, which are used to recover broken
symmetries of S and form the basis of the construction of regularity features of
S. The negativity or positivity of each regularity feature comes naturally from
the orientations of the faces bounding them.

Once the regularity features of S have been identified, we update S to create
an updated model U by first adding all negative regularity features to S and
then removing all positive regularity features from S except for those adjacent
to negative regularity features (see Sect. 1). The added negative and removed
positive regularity features (not all positive ones), together with U , become the
children of S in the RFT, and are recursively processed. Recursion stops when
all solids in the RFT have been processed.

Pseudo-code for the algorithm is given in Fig. 7. The tree T contains the
RFT as it is built up; its root is set to M . Recursion is implemented via a queue
Q storing solids still to be processed; it initially contains M (Lines 1–2). In order
to determine recoverable edges lying in the same surface geometry, we first group
faces of M sharing the same underlying surface to within tolerance (Line 3). For
this we cluster the faces according to a similarity measure based on the symmetric
Hausdorff distance. Using the face clusters we can also determine whether other
geometric entities in the model are the same. E.g. we check whether two edges
share the same underlying curve by checking whether they are the intersection
of two face pairs which come from the same two underlying surfaces.

Repeatedly, until the queue is empty, the first solid is removed from the
queue and its regularity features are constructed (Lines 4–17). First, the solid S
is analysed to determine whether its edge graph consists of a single connected
component (Line 6). If not, it is decomposed into edge-connected solids, which
are added as children of S to the tree and queued for further processing (Lines
15–17). For efficiency, we tag edge-connected solids detected to avoid re-checking
them when they are processed recursively.

If S consists only of one edge-connected solid, we determine its regularity
features (Lines 7–14). First all the MES and MVS recoverable edges in S are
constructed using the ideas in Sect. 3 (Lines 8–9). From these we then detect
the recoverable faces as described in Sect. 5.2 (Line 10). If no recoverable faces

Algorithm RFTConstruction (M)
Input: M—a manifold B-rep solid (with approximate geometry)
Output: T—a Regularity Feature Tree for M

1. T ← tree with root M to store regularity feature tree
2. Q← FIFO queue of solids, initially containing M
3. C ← GroupFaces (M)
4. while Q 6= empty do
5. S ← pop (Q)
6. R← EdgeConnectedSolids (S)
7. if |R| = 1 then
8. EE ← MESRecoverableEdges (S, C)
9. EV ← MVSRecoverableEdges (S, EE, C)

10. FR ← RecoverableFaces (S, EE ∪ EV)
11. if FR = empty then break (continue at line 4)
12. D ← RegularityFeatures (S, FR)
13. if D = empty then break (continue at line 4)
14. R← (U, D0, . . . , Dd)← UpdateSolid (S, D)
15. for N ∈ R do
16. Add N as child of S to T
17. push (Q, N)
18. return (T)

Fig. 7. RFT construction algorithm.

are detected, we stop processing S and proceed to the next element of the queue
(Line 11). Otherwise regularity features are found by detecting cells bounded
by recoverable faces and the original faces of S (Line 12). If no regularity fea-
tures are detected, we stop processing S and proceed to the next element of the
queue (Line 13). Otherwise, an updated solid U for S is computed based on the
detected regularity features, together with the added negative and removed posi-
tive regularity features (Line 14). They are added as children to S and scheduled
for further processing (Line 15–17).

At each step we simplify the solid being processed by filling in or cutting
off material as determined by the recoverable faces. Each new solid is simpler,
having less recoverable edges. As the overall number of recoverable edges in a
model is finite, recursion eventually stops.

As an example, consider the model M shown from above and below in
Figs. 8(a) and (b). It becomes the root of the output RFT T . M is edge-
connected, so we construct its MES (red) and MVS (black) recoverable edges as
shown in Fig. 8(c). The recoverable faces and the regularity features are then
generated in turn as shown in Figs. 8(d) and (e). As all the generated regularity
features are negative, they are added to M , producing the updated model shown
in Fig. 8(f). Both the constructed regularity features and the updated model be-
come the children of M in T . Except for the updated solid in Fig. 8(f), no further
regularity features are obtained when the initial regularity features are reconsid-
ered. The updated model is further processed to give two edge-connected solids:

(a) Top view (b) Bottom view (c) Recoverable edges

(d) Recoverable faces (e) Regularity features (f) Updated solid

Fig. 8. Example model.

a cube and a cylinder, which become the children of the updated model. No
further regularity features are found on considering them.

5 Algorithm Details

This section discusses further important details of our algorithm. As Lines 8–14
only process edge-connected solids, we assume in the following that we have an
edge-connected solid S with edge set E and face set F .

5.1 Recoverable Edge Construction

The recoverable edge set ER = EE ∪ EV consisting of MES and MVS recoverable
edges is constructed in sequence using the ideas in Sect. 3 (Lines 8–9). This
sequence is required to resolve conflicts between MES and MVS cases (see below).
For constructing MVS recoverable edges, two issues must be considered carefully.

Firstly, if several concave vertices are consecutively linked to each other by
edges in E , we have to decide which of these vertices to process. We choose the
shortest edge having one or two concave vertices as end-points. If this edge has
two concave vertices as end-points, we choose the vertex for which the adjacent
edge is shorter. Otherwise, we simply choose the concave vertex. This way we
expect to find the ‘smallest’ broken symmetry first. We process this vertex as
a standard MVS vertex and leave the other vertices for later processing in the

V0

V1 V2

V3V4

V5

V

E1

E2
E3

E4

(a) Choice between multiple concave
vertices for MVS

V

4

51 2

3

V

V V

V

V0 V6
V

V7

V8

(b) Ambiguity between MES and
MVS recoverable edges

Fig. 9. Ambiguous recoverable edge cases.

resulting regularity features. For instance, vertices V1, V2 and V3 in Fig. 9(a)
are all concave vertices. Only V3 is selected for construction of MVS recoverable
edges.

Secondly, if a concave vertex or the boundary vertex of an MVS case also
serves as an end-point of an MES recoverable edge, we have to decide which to
select such that similar sub-parts create similar decomposition results. This is
particularly important for models where all geometric relations between model
entities are only approximately satisfied. In Fig. 9(b), for example, if we construct
edge V7V8 as an MES recoverable edge for the right-hand feature, while edges
V0V , V3V are found as MVS recoverable edges for the central feature, the bottom
of the right slot will be filled in, while for the central feature V, V0, V2, V3 is filled.
Such inconsistency in the construction will hamper application of our ideas to
design intent detection. To avoid this problem, we always give preference to
MES recoverable edges, since they are constructed from clear hints for broken
symmetries, and usually produce fewer regularity features. Thus, if a concave
vertex or the boundary vertices of an MVS case serve as an end-point of an
MES recoverable edge, we do not construct MVS recoverable vertices and edges.
For the model in Fig. 9(b), recoverable edges V3V4 and V7V8 are constructed as
MES recoverable edges while V V0 and V V3 are not taken into consideration.

Finally, note that an MVS recoverable vertex might be the same as another
MVS recoverable vertex, or an original vertex, within tolerance. We combine such
vertices using the face grouping information gathered in Line 3 of our algorithm.

5.2 Recoverable Face Construction

After the recoverable edge set ER of the solid S has been obtained as above, the
recoverable face set FR is constructed from the union of the edges in E and ER

based on taking minimal turning angles between these edges (Line 10).
Using an edge ordering algorithm, for each recoverable edge E in ER, we find

all the minimal edge loops lying on the same surface and containing E in the
edge graph given by the union of E and ER. Each such non-self-intersecting loop
bounds a new recoverable face. Such loops must be detected on both surfaces on
which E lies, proceeding in both clockwise and counter-clockwise directions. If

1

2

V

V

f
1

f
2

V

f3F1

3

Fig. 10. Two recoverable faces to be considered in sequence.

a loop does not contain any edge in E , it makes no contribution to recovering
symmetries of existing faces and hence is ignored.

5.3 Regularity Feature Construction

Having obtained the recoverable face set FR, we generate all possible regularity
features of the model S (Line 12). These are the cells determined by original
faces F together with the recoverable faces FR. As the input solid S already has
proper loops and face normals, generating these cells is much simpler than the
general problem of converting wire-frame models to solid models [1, 5, 11, 13].
To ensure that the resulting solids are manifold and closed, the Möbius rule is
applied: each edge belongs to two faces and the orientation of the edge is opposite
on each face [9]. The negativity or positivity of each resulting regularity feature
is determined from the face orientations.

Note that each original edge can only lie on the intersection of two faces as S is
manifold. Moreover, our algorithm guarantees that at most two recoverable faces
are generated around a given edge on one surface. Hence, the number of faces
around one edge, both in FR and F , is at most six, two of which are original faces
while others are recoverable faces. All faces having the same underlying surface
also have the same or opposite normals. If the normals of two faces point in the
same direction, we cannot uniquely order them around their common edge. To
resolve this issue, we note that: (i) if the two faces are lying on different sides
of an edge on the surface, the unique one contributing to the Möbius rule is
considered; (ii) if the two faces lie on the same side of an edge on the surface,
each of them is selected in sequence to generate all possible volumes. E.g. in
Fig 10 we start with recoverable face f1 at the left which is expanded to F1 via
edge V1V3. If we expand F1 via V2V3, both recoverable faces f2 and f3 give the
same turning angle. Considering f2 first, no volume is detected. Then considering
f3, a volume cut off from the cube is produced.

5.4 Model Update

Having found all the regularity features, negative and positive, we compute an
updated, more symmetric model U incorporating geometric information from the

(a) (b)

Fig. 11. Two example models.

original solid S and the regularity features (Line 14). Firstly, if the intersection of
the interior of two regularity features is not empty, the one with smaller volume is
kept while the other one is discarded. Secondly, volumes determined by negative
regularity features are added to S, while volumes corresponding to the positive
solids are cut from S, except for those adjacent to negative features. Both rules
are aimed at constructing simple updated models and avoid the inclusion of
unnecessary regularity features in the RFT.

We create the updated model using face combination operations (rather than
potentially non-robust Boolean operations) by analysing the geometric and topo-
logical relations between the regularity features and their parent. This is feasible
as the faces of a regularity feature come from its parent’s faces or underlying
surfaces. This approach fills in a set of negative regularity features or splits off
a set of regularity features by changing the topology of the model; both can be
done in the same way. We simply combine the regularity features and the parent
solid along their shared faces; similarly, adjacent faces on the same underlying
surface are further combined along their common edges. Finally, all connected
edges lying on the same curve are combined into a single edge.

6 Examples

Our algorithm has been implemented under Linux using OpenCASCADE and
experiments were run on a 3.4GHz Pentium 4E with 1GB RAM. This sec-
tion shows the RFTs constructed for two complicated example models shown
in Fig. 11, and considers the algorithm’s performance.

The decomposition for the model in Fig. 11(a) with 281 faces is shown in
Fig. 12. On the first decomposition level 10 edge-connected solids are produced,
two of which are (a) and (d). The other edge-connected solids are simple cylinders
which do not decompose further. Sub-part (a) leads to 29 negative regularity
features at the next level in the tree as shown in (b), and results in the updated
model (c), which is further decomposed into two rectangular blocks. Note that

(a) (b) (c)

(d) (e) (f)

Fig. 12. Decomposition of the model in Fig. 11(a).

(b) properly identifies the congruent negative regularity features in a regular
translational arrangement. Similarly, (d) leads to 16 negative solids as shown in
(e). The resulting updated model is shown in (f), which is further decomposed
into a positive and a negative cylinder. In (e) the symmetric arrangement of the
negative regularity features has been extracted explicitly. It takes 27.50 seconds
to produce the final RFT of depth 4 consisting of 59 regularity features. Overall
the decomposition reveals the rotational symmetries of the main cylinder as well
as the regular translational arrangement of congruent regularity features at the
sides. The regularity features at the leaves of the tree are simple and regular,
which would allow easy subsequent regularity analysis.

Fig. 11(b) shows another complicated example with 355 faces; its decompo-
sition is shown in Fig. 13. On the first decomposition level 93 edge-connected
solids are produced, three of which are (a), (d) and (g). The other edge-connected
solids are simple, non-decomposable, cylinders. Sub-part (a) is further decom-
posed into 11 regularity features at the next level in the tree as shown in (b),
resulting in the updated model (c). Sub-part (d) leads to 11 regularity features
at the next level, as shown in (e); the updated model is shown in (f). The result-
ing regularity features are further decomposed but are straight-forward and not
shown due to space limitations. It takes 18.96 seconds to produce the final RFT
of depth 5 consisting of 155 regularity features. However, the updated model
in Fig. 13(i) was only decomposed into a bottom block and a second part. We
expected the latter to be decomposed further into three blocks. Fig. 14 shows a
closeup of the regularity feature revealing the cause of the incomplete decompo-
sition: blocks S1, S2 touch each other at faces F1, F2, but their interiors do not

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. Decomposition of the model in Fig. 11(b).

intersect. Both faces would have to be extended to recover the original blocks.
However, in such contact cases, our current algorithm cannot construct recover-
able faces to separate the two blocks due to the lack of suitable recoverable edges.
In order to address this problem, original edges which form loops around ‘holes’
would have to be determined efficiently so they can be filled in by the geometry
of neighbouring faces. Several further examples of realistic industrial parts are
provided at http://www.langbein.org/research/DID/rftexamples. In each
case the computation took less than 30 seconds for models with a maximum
of 355 faces and 164 regularity features, demonstrating the algorithm’s practi-
cal utility. In these tests, any rotationally symmetric arrangements and regular
translational arrangements are clearly exposed by the decomposition; often the
regularity features are congruent or similar to each other. Furthermore, the reg-
ularity features at deep levels in the tree show a high level of regularity as they
are often the basic rectangular blocks, cylinders, etc. present in the model.

7 Conclusions

We have presented an algorithm for constructing regularity feature trees for B-
rep solid models, for detecting geometric design intent. Our experiments indicate
that it produces suitable RFTs for detecting regularities of a model’s sub-parts

(a) (b)

Fig. 14. Close-up of cause for incomplete decomposition of Fig. 13(i).

and intended geometric relations between the sub-parts. The algorithm takes a
relatively short time, suitable for practical applications. We note that the ideas
presented are applicable to more general curved models, although the decompo-
sition method may need further refinement and generalisation. In future work
we intend to detect potential geometric regularities more efficiently using the
RFT and ultimately select a suitable subset of these regularities to describe the
geometric design intent of approximate models.

Acknowledgements

This project was supported by EPSRC grant GR/S69085/01. The example mod-
els in Sect. 6 were obtained from the National Design Repository at Drexel
University, http://www.designrepository.com/.

References

1. S. Bagali, J. Waggenspack. A shortest path approach to wireframe to solid model
conversion. In: Proc. 3rd ACM Symp. Solid Modeling and Appl., pp. 339–349, 1995.

2. X. Dong, M. Wozny. A method for generating volumetric features from surface
features. In: Proc. 1st ACM Symp. Solid Modeling and Appl., pp. 185–194, 1991.

3. C. H. Gao, F. C. Langbein, A. D. Marshall, R. R. Martin. Local topological beau-
tification of reverse engineered models. Computer-Aided Desisn, 36(13):1337–1355,
2004.

4. J. Han, M. Pratt, W. Regli. Manufacturing feature recognition from solid models:
a status report. IEEE Trans. Robotics and Automation, 6(6):782–796, 2000.

5. K. Inoue, K. Shimada, K. Chilaka. Solid model reconstruction of wireframe CAD
models based on topological embeddings of planar graphs. J. Mechanical Design,
125(3):434–442, 2003.

6. Y. Kim. Convex decomposition and solid geometric modeling. PhD thesis, Starnford
University, USA, 1990.

7. F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin. Approximate geometric
regularities. Int. J. Shape Modeling, 7(2):129–162, 2001.

8. F. C. Langbein. Beautification of reverse engineered geometric models. PhD thesis,
Cardiff University, UK, 2003.

9. R. Lequette. Automatic construction of curvilinear solids from wireframe views.
Computer-Aided Design, 20(4):171–179, 1988.

10. M. Leyton. A generative theory of shape. Lecture Notes in Computer Science 2145,
Springer, Berlin, 2001.

11. S. Liu, S. Hu, Y. Chen, J. Sun. Reconstruction of curved solids from engineering
drawings. Computer-Aided Design, 33(14):1059–1072, 2001.

12. E. Lockwood, R. Macmillan. Geometric symmetry. Mathematical Intelligence,
6(3):63–67, 1984.

13. G. Markowsky, M. Wesley. Fleshing out wire frames. IBM J. Research and Devel-
opment, 24(5):582–597, 1980.

14. B. Mills, F. Langbein, A. Marshall, R. Martin. Approximate symmetry detection
for reverse engineering. In: Proc. 6th ACM Symp. Solid Modeling and Appl., pp.
241–248, 2001.

15. B. Mills, F. Langbein, A. Marshall, R. Martin. Estimate of frequencies of geometric
regularities for use in reverse engineering of simple mechanical components. Tech.
report GVG 2001-1, Dept. Computer Science, Cardiff University, 2001.

16. A. Rappoport. The extended convex differences tree (ECDT) representation for
n-dimensional polyhedra. Intl. J. Comp. Geometry and Appl., 1(3):227-241, 1991.

17. W. Regli. Geometric algorithms for recognition of features from solid models. PhD
thesis, University of Maryland, USA, 1995.

18. H. Sakurai, P. Dave. Volume decomposition and feature recognition, Part II: curved
objects. Computer-Aided Design, 28(6–7):519–537, 1996.

19. D. Sandiford, S. Hinduja. Construction of feature volumes using intersection of
adjacent surfaces. Computer-Aided Design, 33(6):455–473, 2001.

20. V. Sashikumar, S. Milind. Reconstruction of feature volumes and feature suppres-
sion. In: Proc. 7th ACM Symp. Solid Modeling and Appl., pp. 60–71, 2002.

21. V. Sashikumar, S. Milind, R. Rahul. Removal of blends from boundary represen-
tation models. In: Proc. 7th ACM Symp. Solid Modeling and Appl., pp. 83–94,
2002.

22. V. Shapiro, D. Vossler. Separation for boundary to CSG conversion. ACM Trans.
Graphics, 12(1):35–55, 1993.

23. M. Sitharam, J.-J. Oung, Y. Zhou, A. Arbree. Geometric constraints within feature
hierarchies. Computer-Aided Design, 38(1):22-38, 2006.

24. J. Vandenbrande. Automatic recognition of Machinable Features in Solid Models.
PhD thesis, University of Rochester, USA, 1990.

25. T. Varady, R. Martin, J. Cox. Reverse engineering of geometric models - an intro-
duction. Computer-Aided Design, 29(4):255–268, 1997.

26. D. Waco, Y. Kim. Geometric reasoning for machining features using convex de-
composition. Computer-Aided Design, 26(6), 477-489, 1994.

27. Y. Woo, H. Sakurai. Recognition of maximal features by volume decomposition.
Computer-Aided Design, 34(3):195–207, 2002.

28. Y. Woo. Fast cell-based decomposition and applications to solid modeling.
Computer-Aided Design, 35(11):969–977, 2003.

29. X. Xu, S. Hinduja. Recognition of rough machining features in 2 1
2

components.
Computer-Aided Design, 30(7):503–516, 1998.

30. H. Zhu, C. Menq. B-rep model simplification by automatic fillet/round suppressing
for efficient automatic feature recognition. Computer-Aided Design, 34(2):109–123,
2002.

