
Detecting Approximate Incomplete Symmetries in Discrete Point Sets

M. Li F. C. Langbein R. R. Martin

School of Computer Science, Cardiff University, UK

{M.Li,F.C.Langbein,R.R.Martin}@cs.cf.ac.uk

Abstract

Motivated by the need to detect design intent in approximate bound-
ary representation models, we give an algorithm to detect incom-
plete symmetries of discrete points, giving the models’ potential lo-
cal symmetries at various automatically detected tolerances. Here,
incomplete symmetry is defined as a set of incomplete cycles which
are constructed by, e.g., a set of consecutive vertices of an approx-
imately regular polygon, induced by a single isometry. All seven
3D elementary isometries are considered for symmetry detection.
Incomplete cycles are first found using a tolerance-controlled point
expansion approach. Subsequently, these cycles are clustered for
incomplete symmetry detection. The resulting clusters have well-
defined, unambiguous approximate symmetries suitable for design
intent detection, as demonstrated experimentally.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—Geometric Algorithms, Languages,
and Systems; J.6 [Computer-Aided Engineering]—Computer-
Aided Design.

Keywords: approximate incomplete symmetry, design intent, re-
verse engineering.

1 Introduction

Many manufactured objects exhibit global and local symmetries as
a feature of their design or function, or for ease of manufacturing
or analysis [Mills et al. 2001b]. Also, designers prefer symmetric
shapes for reasons of aesthetics and simplicity [Barratt 1989]. Ex-
plicit detection of such symmetries in geometric models has uses
in speeding up analysis, enforcing constraints in editing, and so on.
We are thus interested in detecting the design intent of an approx-
imate boundary representation (B-rep) model as represented by its
symmetries. We assume that the model is approximate as it may
have been transferred from a CAD system with large tolerances, or
it may have been created by a reverse engineering system [Varady
et al. 1997] in which errors may arise due to measurement, approx-
imation, numerical algorithms, and even a worn source object.

Current methods of geometric design intent detection can detect
global approximate symmetries [Mills et al. 2001a], approximate
congruences between sub-parts [Gao et al. 2003], and other local
regularities, e.g. parallel and orthogonal planes [Langbein et al.
2004]. However, local symmetries still need to be considered: e.g.
the model in Figure 6(b) has cylindrical holes with rotational sym-
metries and slots with translational symmetries. Symmetries are of-
ten incomplete in the sense that repetitions are missing: e.g. one or

two of the cylindrical holes in Figure 6(b) might be missing. Trans-
lational symmetry is always incomplete due to its infinite nature.
Symmetries may need to be merged if they are induced by the same
isometry, e.g. the translational symmetries of the slots on each side
in Figure 6(b).

To detect local symmetries, we use similar ideas to those used for
global symmetry detection in [Mills et al. 2001a]. We extract repre-
sentative points from a solid model: special points which uniquely
characterise each model entity (including vertices, edges and faces).
Symmetries of the representative points are sufficient to indicate
symmetries of the underlying shapes. Using these representative
points, we describe an algorithm to detect approximate incomplete
symmetries as subsets of discrete point sets. By symmetry we mean
an isometry which maps a subset of the point set onto itself, repre-
sented as a point permutation. As we assume that the input model is
approximate, the subset may only be mapped approximately onto it-
self under the symmetry. By incomplete we mean that not all points
needed for the symmetry are present in the subset, e.g. six vertices
of a regular octagon.

Although exact symmetry detection has been widely studied these
methods cannot be directly extended to approximate symmetries by
simply replacing tests for equality by tests for approximate equality.
Algorithms for exact symmetry detection rely on making local de-
cisions about which elements match under symmetry. For approxi-
mate symmetries, such decision must be based on global properties.
Point matching is no longer a Boolean property—points match to
a certain degree, and in general, multiple potential matches have to
be considered, increasing algorithmic complexity.

We detect approximate incomplete symmetry using two steps. First
we detect incomplete cycles induced by some isometry; a complete
cycle represents a special case of an incomplete cycle. Given a sin-
gle point, its orbit under repetitive application of an isometry gives a
complete cycle. If certain points are absent in the input point set, an
incomplete cycle occurs. As we consider approximate symmetries,
the points are not mapped exactly onto each other, but only within
a certain tolerance. To detect approximate incomplete cycles, we
build on our earlier approach [Li et al. 2006] for complete approx-
imate cycles using a point expansion technique, starting from ap-
proximate isosceles triangles as seed sets. The expansion process is
strictly based on our definition of approximate symmetry to control
possible accumulated errors during the expansion process.

In the second step we merge incomplete cycles induced by the same
isometry. Due to their approximate nature, we have to carefully
decide whether different cycles are induced by the same isometry.
This isometry has to map the points of each cycle approximately
onto each other such that the points in the original set and its im-
age match uniquely. Such matching is used to provide a similarity
measure between every pair of distinct incomplete cycles. Based
on this, a cycle clustering algorithm is used to generate incomplete
symmetries as incomplete cycle clusters. As demonstrated experi-
mentally, the detected approximate symmetries do seem suited for
design intent detection.

We consider all elementary isometries in 2D and 3D: reflection,
inversion, translation, rotation, glide-reflection, rotation-reflection,
and screw translation: see Section 3. A uniform algorithm is pro-
vided to detect all of these as sets of incomplete cycles mainly

based on point distance computations. A minimum number l of
consecutive points is prescribed for each cycle (P1, . . . ,Pl) such
that an isometry inducing the cycle can be deduced by mapping
(P1, . . . ,Pl−1) to (P2, . . . ,Pl). E.g. for an n-fold rotation, n> 3, four
points are needed to determine the isometry and ensure we have a
rotation.

This approach allows us to automatically determine tolerances at
which incomplete symmetries are present, and does not require pre-
defined tolerance bounds as input. Such tolerances are generally
difficult to estimate, and in the same model, different local symme-
tries often have different tolerances, so fixing a unique tolerance is
not appropriate. Later selection amongst the detected symmetries
can be performed by analysing geometric constraint systems [Lang-
bein et al. 2004; Gao et al. 2006].

Our method for symmetry detection using discrete points is quite
different from symmetry approaches used in image processing,
e.g. [Sun and Sherrah 1997], and mesh processing [Podolak et al.
2006; Mitra et al. 2006], which work with dense point data, where
the point distributions are far more important than locations of indi-
vidual points. Such work is mainly concerned with detecting dom-
inant symmetries by partial matching of images or meshes under
user selected tolerances. Instead, we generate all possible subset
symmetries of a much smaller discrete point set. Each point is a
characteristic feature point of a B-rep model whose boundary sur-
faces are represented analytically. Nevertheless, it might be pos-
sible to extend our method to detecting symmetries of meshes by
extracting certain key feature points from meshes.

Section 2 considers related work on symmetry detection. Section 3
defines approximate incomplete symmetries. Section 4 gives an
overview of our algorithm, and some details are discussed in Sec-
tion 5. We demonstrate practical examples in Section 6.

2 Related work

Detection of exact global symmetries of shapes and point sets has
been widely studied. Symmetries of points, lines and polyhedra in
3D can be found in O(n logn) time [Sugihara 1984]. The same time
order also holds for more general 3D objects [Brass and Knauer
2004]. Relatively few results concern detection of exact symmet-
ric subsets. Brass [2003] detects rotational symmetries by finding
isosceles triangles and combining them into symmetric subsets ef-
ficiently using a tree. Tate and Jared [2003] find reflection symme-
tries present in a B-rep model by finding face loops and grouping
them according to similarity.

Most previous work on approximate symmetry detection has con-
sidered global approximate symmetries, using various definitions.
Iwanowski [1991] points out that testing approximate symmetry in
the plane is NP-hard if approximate symmetry is defined in terms of
the existence of an exactly symmetric object similar to the approx-
imate object. Alternatively, approximate symmetries may be de-
fined by checking whether an isometry exists which maps the point
set approximately onto itself within some tolerance, which yields
high-order polynomial time algorithms [Alt et al. 1988]. Mills et
al [2001a] give a low-order polynomial time algorithm for approx-
imate global symmetry detection that combines the combinatorial
and geometric nature of symmetries. Based on this, Li et al [2006]
show how to detect complete approximate symmetry cycles in a
similar way to exact cycle detection given by Brass [2003], using
a strict error-controlled point expansi1on idea. This paper further
extends this method to detecting incomplete cycles of all symmetry
types, and to merging cycles induced by the same isometry.

There is little further work on detecting approximate incomplete
symmetries. We are only aware of [Robins et al. 1999], which is
confined to subsets of points regularly arranged on a line. A com-
pletely different approach to detecting approximate symmetries is
to define an asymmetry measure [Zabrodsky et al. 1995].

3 Approximate incomplete symmetry

In this section we first define complete approximate symmetry and
then incomplete cycles. Merging such cycles leads to approximate
incomplete symmetries.

Throughout this paper we use E
d to represent d-dimensional Eu-

clidean space (here d = 2 or 3) and ‖P−Q‖ for the Euclidean dis-

tance between P,Q ∈ E
d ; D(S) = {‖P−Q‖ : P,Q ∈ S } is the

distance set for a point set S . We abuse the definition of l mod N
to mean l modulo N except when the answer is 0 whereupon we set
it to N, as we use indices starting from 1. We define approximate
equality of two real numbers a,b as a=ε b, meaning |a−b| ≤ ε .

We use the following notation for elementary 3D symmetry groups:
M: reflection; I: inversion; T: translation; Cn: n-fold rotation; Z:
glide, i.e. reflection at a line followed by translation parallel to the
line, giving a ‘zig-zag’ symmetry in a plane; Sn: rotation-reflection,
i.e. reflection at a plane followed by rotation about an axis perpen-
dicular to that plane, giving, e.g., an anti-prism;W: screw, i.e. ro-
tation about an axis followed by translation along the axis. These
comprise all elementary isometries in 3D [Weyl 1952].

We define an approximate symmetry of a point set in terms of a
permutation of the points which maps distances between the points

approximately onto each other [Mills et al. 2001a]. LetS ⊂ E
d be

a point set. We call a pair (ε,σ) with ε ≥ 0 and a permutation σ on
S an approximate symmetry ofS , if=ε is an equivalence relation
on D(S), and ‖P−Q‖=ε ‖σ(P)−σ(Q)‖ for all P,Q ∈S .

Above, for the points in S to be mapped uniquely onto each other
by the permutation σ we require that =ε forms an equivalence re-
lation, i.e. it groups the distances in D(S) into distinct sets of ap-
proximately equal distances (equivalence classes). For this to be
satisfied, a tolerance interval [Emin(S),Emax(S)) exists for ε at
which the symmetry is present. These are called the minimal and
maximal tolerances ofS . Emin(S) ensures equality of all the dis-
tances in the same distance group and Emax(S) separates different
groups. See Section 5.1 for details of how they are found. Clearly
we need Emin(S) < Emax(S) for S to be symmetric. A similar
condition also has to be satisfied when we consider incomplete cy-
cles and incomplete symmetries. This condition plays a key role in
deciding whether a point set is symmetric or not at an automatically
detected tolerance, as we will see in Sections 4 and 5.

For example, the 2D points S = {P1, . . . ,P12} in Figure 1(a) have
a six-fold rotational symmetry σ : (1, . . . ,6), (7, . . . ,12) at some
tolerance ε . It consists of two cycles (1, . . . ,6) and (7, . . . ,12). The
distance sets Gr = {‖Pl −P(l+r) mod 6‖, 1 ≤ l ≤ 6} for r = 1,2,3

are distance equivalence classes of =ε determined by (ε,σ).

In general, some points in an otherwise symmetric point set may not
be present. E.g. omitting points P6,P11,P12 from Figure 1(a) gives
the setS = {P1, . . . ,P5,P7, . . . ,P10} in Figure 1(b). However, com-
pleting such incomplete symmetries is not uniquely determined—
adding different points may produce different symmetries. For
example, we could complete S to have a twelve-fold rotational
symmetry. To avoid such problems, we define an incomplete sym-
metry as the combination of incomplete cycles constructed from
lists of consecutive points, e.g. points C1 = (P1, . . . ,P5) and C2 =

P
5

P
6

PP
4

3 P
2

P
8

7
P

P
10

P
9

11
P

P12

1

P

(a) Complete symmetry

5

P
1

P3 P
2

P
8

7
P

P
10

P
9

P12

P
11

P
6

P4

P

(b) Incomplete symmetry

Figure 1: Complete and incomplete approximate symmetries

P
1 P

2

(a) ReflectionM or Inversion I

P
1

P2 P3

(b) Translation T

P
3

P2 P4
1P

(c) Glide Z

P
3P2

PP1 4

(d) Rotation Cn

P
1 P

P

5

P42

P3

(e) Rotation-reflection Sn

P
1

P
2

P3

P4

P5

(f) ScrewW

Figure 2: Incomplete cycle types

(P7, . . . ,P10) in Figure 1(b). Further requirements are prescribed
below to uniquely define an incomplete cycle C ⊂P , specifically
(C1) to ensure membership in a potentially symmetric set, (C2) to
ensure points in C are sufficiently distinct from other points inP ,
and (C3) to ensure maximal cardinality under the previous two con-
ditions.

Let C = {Pl , . . . ,Pc} be a sequence of c≥ 2 points fromP , ε ≥ 0
and let σ be an injection mapping Pl to Pl+1 for l = 1, . . . ,c−1. We
say that C has a (maximal approximate) incomplete cycle (ε,σ) if

(C1) =ε is an equivalence relation on the distance set D(C), and
‖P−Q‖=ε ‖σ(P)−σ(Q)‖ for all P,Q ∈ C ;

(C2) no point inP \C can replace a point in C such that (C1) is
still true;

(C3) no single point inP \C can be added to C for any tolerance
ε such that (C1) and (C2) are still true.

Complete cycles are special cases of incomplete cycles in the sense
that σ further maps Pc onto P1. We refer to both incomplete and
complete cycles as cycles for simplicity. It is not difficult to see
that any sequence of consecutive points forming a symmetry of any
type satisfies the incomplete cycle conditions.

Incomplete symmetries come from merging cycles sharing a single
isometry which approximately maps points within each cycle onto
each other: see condition (I1) below. To sufficiently specify this
isometry, a minimum number of points Tmin is required according
to symmetry type T : 2 for M,I and C2; 3 for T and for a regular
triangle; 4 for Cn with n ≥ 4, Z and for a regular tetrahedra; 5
for Sn and W. Various incomplete cycles of different symmetry
types are shown in Figure 2. Furthermore, as in the incomplete

Algorithm: I ←APPROXINCOMPLETESYMMETRIES(P)
Input: Set of distinct pointsP ⊂ E

d ,d = 2,3
Output: Incomplete symmetries (εl ,Sl) ofP ,

I = {(εl ,Sl) : l = 1, . . . ,N}
01 C ← INCOMPLETECYCLES (P)
02 M ← empty // mapping of symmetry types to cycle lists
03 for each C ∈ C

04 T ← SYMMETRYTYPES (C)
05 for each T ∈T , append (M [T],C)
06 end for
07 M [M]←M [C2]← POINTPAIRS (P)
08 I ← empty // output symmetries
09 for each cycle list L inM for a symmetry type T
10 D(L)← matrix of minimal tolerances for each

consistent incomplete cycle pair in L for T
11 G ← CLUSTERCYCLES (L, D(L))
12 for each complete clusterS in G

13 if Emin(S) < Emax(S), I ←I ∪{(Emin(S),S)}
14 end for
15 end for
16 return I

Figure 3: Incomplete symmetry detection algorithm

cycle definition, for an incomplete symmetryS we need a distance
condition (I2) and an unambiguity condition (I3) to distinguish S

from other cycles of the same type inP .

Thus, a point subsetS ⊂P has an (approximate) incomplete sym-
metry (ε,σ) of symmetry type T if

(I1) S =
⋃
1≤l≤nCl , where Cl ∩Ck = /0 for all l 6= k, and each Cl

is determined by a cycle (ε,σl) of type T with at least Tmin
points, and for each Cl , σ restricted toCl is σl ;

(I2) ‖P−Q‖ =ε ‖σ(P)−σ(Q)‖ for all P,Q ∈ S and =ε is an
equivalence relation on each distance set D(Cl);

(I3) no cycle C ∗ of type T inP \S exists such that (I2) is true
for C ∗∪Cl at tolerance less than ε for any 1≤ l ≤ n.

In particular, two cycles C1,C2 are said to be consistent if they
satisfy (I1) and (I2): for example, the points in Figure 1(b) have an
incomplete six-fold rotational symmetry formed by two consistent
cycles C1 = (P1, . . . ,P5) and C2 = (P7, . . . ,P10).

4 Algorithm overview

We now give an overview of our algorithm for detecting incomplete
symmetries of a point setP based on the above concepts. See Fig-
ure 3. The algorithm first detects all cycles ofP , and then clusters
these cycles to find incomplete symmetries. It takes as input a set

of pointsP ∈ E
d ; no two input points may have the same position.

The algorithm outputs all incomplete symmetries as pairs (εl ,Sl)
where Sl is a set of cycles, and εl is the minimum tolerance of the
incomplete symmetry.

The first step (Lines 01–07) builds on our previous work for de-
tecting complete permutation cycles which induce a symmetry on
a point subset [Li et al. 2006]. We extend our earlier algorithm to
detect all incomplete cycles (Line 01). For each cycle, we detect its
symmetry types and then add it to lists of cycles having that symme-
try type (Lines 02–06). Due to their approximate nature, we have to
consider more than one symmetry type per cycle. Furthermore, all
point pairs in the input set trivially induce M and C2 symmetries,
so we add all pairs to the corresponding lists (Line 07).

In the second step we cluster cycles of the same symmetry type
so that all cycle permutations in a cluster are induced by the same
isometry (Lines 08–15). We have to handle each symmetry type
separately (Line 09); the same cycle may have to be considered for
multiple symmetry types. Only merging cycles with the same sym-
metry type greatly reduces the number of possibilities to consider,
and it ensures that only proper incomplete symmetries are detected.

To cluster cycles, a similarity measure between cycles of the same
symmetry type is required. It is set as Emin(C1 ∪C2) (Line 10), as
this gives the actual maximum matching error when mapping dis-
tances between the points in C1∪C2 onto each other as determined
by the combined permutation involving C1,C2. Details are given in
Section 5.2.

We then cluster the cycles by combining them pairwise in order
of similarity (Line 11). This process involves constructing a graph
whose nodes are the cycles and whose edges are introduced in order
during clustering of consistent cycles. The graph’s completely con-
nected components are constructed using a similar clustering algo-
rithm to that in [Mills et al. 2001a]. To decide if a componentS has
an incomplete symmetry, we must check that Emin(S) < Emax(S)
(Line 13). Otherwise, condition (I2) may not be fulfilled and hence
no symmetry can be found for S or sets containing it, so we
omit S from further consideration. Condition (I3) is automati-
cally satisfied for S from the clustering order. Specifically, if a
cycle C ∗ ∈P \S exists such that C ∗ ∪Cl for a cycle Cl of S

has an incomplete symmetry at tolerance less than Emin(S), then
Emin(C

∗∪Cl) < Emin(S)≤ Emin(Cl ∪Ck) for any other cycle Ck
inS . This means that C ∗,Cl have been merged before pair Cl ,Ck.
Thus, C ∗ must be contained in S . Hence, S has an incomplete
symmetry at tolerance Emin(S). The symmetries detected do not
only include the maximal complete graph components, but also its
valid complete subsets, which generally have smaller symmetry tol-
erances.

5 Algorithm details

We now give further algorithmic details concerning cycle detection
(Section 5.1), and cycle clustering (Section 5.2).

5.1 Cycle detection based on point expansion

First we discuss how to detect cycles in an input point setP . Start-
ing from an approximate isosceles triangle, we add points until a
complete cycle has been found, or no further expansion point ex-
ists. To avoid accumulating errors during the expansion process,
selection of expansion points is based on our cycle definition.

We first illustrate this idea in 2D for Cn, n ≥ 3. Let C = {Pl , 1 ≤
l ≤ c} be a point sequence for a cycle (ε,σ) of type Cn. As =ε

is an equivalence relation on the set D(C) of all distances between
the points in C , its distance equivalence classes are

Gr = {‖Pl −P(l+r) mod n‖ : Pl ,P(l+r) mod n ∈ C } for 1≤ r ≤ R,

where R=min(c,⌊n/2⌋)−1. Correspondingly we have

Emin(C) = max
1≤r≤R

(Dr−dr), Emax(C) = min
1≤r≤R−1

(dr+1−Dr)

with dr =min(Gr(C)), Dr =max(Gr(C)). Therefore

Emin(C) < Emax(C), (1)

P

P’

P’5

P

P1

2P

3P

5

4

4

(a) Expansion from

three points in 2D

C

P4

P3

P4

P1 P4

P2

(b) Expansion from

three points in 3D

P
2

P
3

P
4

P’5
P1P5

ß

ß
ß

(c) Expansion from four

points in 3D

Figure 4: Cycle symmetry type is determined by the expansion
point selection from a seed set

if=ε is to be an equivalence relation onD(C). This forms the core
constraint that a cycle must fulfil for our point expansion algorithm.
Efficient computation of Emin(C) and Emax(C) is discussed in [Li
et al. 2006].

Thus, we select an initial seed set C = {P1,P2,P3} satisfying this
condition, generating a cycle. Moreover, it is required that for any
possible expansion point P in C , C ∪ {P} also satisfies Eq. (1).
However, more than one such point in P may exist. In order
for the resulting cycle to be unambiguous (see (C2)), we choose
the one among the candidate points minimising the correspond-
ing Emin(C ∪{P}). This adaptive tolerance setting strategy avoids
adding any points that may violate the unambiguity condition while
also ensuring that we always find any expansion point which might
exist. Note that a fixed tolerance, either chosen globally for all cy-
cles, or locally based on the initial seed set, would not allow proper
cycle generation as different cycles may have different tolerances,
and tolerances must be based on all points in a cycle rather than any
three consecutive points within it.

Expansion continues until either no further expansion point exists
or a complete cycle is found. A cycle C with c points describes
a complete cycle if ‖Pc − P1‖ =ε ‖Pl − Pl+1‖ for 1 ≤ l ≤ c− 1.
For each resulting cycle, complete or incomplete, its unambiguity
condition is then verified to ensure that no single point in C can be
replaced by a point inP \C based on the corresponding minimal
tolerance. An efficient algorithm for doing so for complete cycles
is given in [Li et al. 2006]; the incomplete case can be handled
similarly.

We discuss how the point expansion process given for Cn can also
be used for symmetries of other types, by analysing possible loca-
tions of expansion points in the exact case. First consider the 2D
case. Expansion from the seed set of three points is done slightly
different from later expansions. Satisfaction of Eq. (1) for C ∪{P}
requires the fourth point P4 to satisfy ‖P4 − P3‖ = ‖P2 − P3‖ =
‖P1−P2‖,‖P4−P2‖ = ‖P1−P3‖: see Figure 4(a). However, two
points, P4 and P

′
4 in Figure 4(a), may satisfy this equation. Fur-

ther expanding P1,P2,P3,P4 produces an isometry of type Cn while
expanding P1,P2,P3,P

′
4 gives Z. We have to consider both possibil-

ities. Note also the special case T arises if P1,P2,P3 are collinear.

Turning now to 3D, and considering ε = 0, the fourth point P4 can
lie anywhere on a circle C (rather than in two locations): see Fig-
ure 4(b). Different locations of P4 induce cycles of different types.
If P1, P2, P3, and P4 are all coplanar, all other expansion points in
this cycle must be coplanar. In this case, a cycle of type Cn or Z
or T can be found. Other locations of P4 on the circle C give a
regular tetrahedron, when all distances involved are equal, or Sn or
W, depending on the next expansion point P5. As illustrated in Fig-
ure 4(c), P5 can lie on either side of the plane defined by P2,P3,P4.
If P5 lies on the same side as P1, the corresponding cycle is Sn;
otherwise it isW. In the approximate case, all fourth potential ex-
pansion points and the two locations for the fifth points must be
considered similarly.

Having detected each cycle, we still need to decide its symmetry
types: one reason is that cycles of the same type are merged to gen-
erate incomplete symmetries. The type is uniquely determined for
a complete cycle for Cn and Sn from the number of points. Other
cycles may have more than one symmetry type in the approximate
case. It is important not to rule out any possible symmetry type too
soon, and lose information. The cycle merging process later helps
to rule out inappropriate symmetries. Therefore, instead of trying
to find the optimal isometry determined by the point mapping [Eg-
gert et al. 1997], we determine symmetry types by considering the
relative locations of the centres of the circles formed by each con-
secutive triple of points in C . For example, in 2D, for Cn these
centres lie on the same side of all edges joining consecutive points,
whereas they lie on opposite sides for successive triples for Z.

5.2 Finding incomplete symmetries using cycle clus-

tering

To find incomplete symmetries, cycles of the same symmetry type
are clustered. In this section, we discuss the computation of the
minimal and maximal tolerances for a set of cycles.

First let C1 = {Pl : 1≤ l ≤ c1}, C2 = {Ql : 1≤ l ≤ c2} describe two
cycles with symmetries (Emin(C1),σ1) and (Emin(C2),σ2) of the
same type and extremal tolerances Emin(C1), Emin(C2), Emax(C1)
and Emax(C2). Let C = C1 ∪C2. To take a concrete case, we as-
sume that the symmetry type is Cn in 2D and both cycles have the
same ordering. Other symmetry types can be handled similarly.

Cycles C1,C2 are consistent if Emin(C) < Emax(C). Condition
(I2) imposes conditions on values of Emin(C),Emax(C). By def-
inition, Emin(C) is the minimal tolerance such that ‖P−Q‖ =ε

‖σ(P)− σ(Q)‖ for all P,Q in C . This is already satisfied for
P,Q ∈ C1 at Emin(C1) and P,Q ∈ C2 at Emin(C2). Verifying it for
points P ∈ C1 and Q ∈ C2 can be achieved by finding the maxi-
mal difference e∗ between suitable matching distances given by the
combined permutation for C1 and C2, using a similar method to
that described for a cycle in Section 5.1, by first setting up equiva-
lent distance groups determined by the cycle permutations. Conse-
quently, we have Emin(C) =max(e∗,Emin(C1),Emin(C2)). For the
maximal tolerance, as C1 and C2 are cycles, =ε remains an equiv-
alence relation on D(C1) and D(C2) simultaneously for tolerances
smaller than Emax(C1∪C2) =min(Emax(C1),Emax(C2)).

Computation of the minimal and maximal tolerances for a point
set containing more than two cycles can then be derived. Let C =
∪1≤l≤nCl , n ≥ 3. Then Emin(C) = max1≤l 6=k≤n(Emin(Cl ∪Ck)),
Emax(C) =min1≤l≤n(Emax(Cl)).

6 Experiments and conclusions

This section demonstrates results obtained by our algorithm from
3D points derived from approximate CAD models, showing its util-
ity for design intent detection. The algorithm was implemented in
Matlab using a 3.4GHz Pentium 4 computer with 1GB RAM.

For simplicity, we used the vertices instead of full representative
point sets. We do not show mirror symmetries as they can eas-
ily be seen in the models and are very simple for our algorithm
to detect. While our algorithm does not require any user-defined
tolerances, for efficiency, we do not consider tolerances greater
than five percent of the longest distance between points in the in-
put point set. The results are summarised in Table 1. ‖P‖ is
the number of points, Sn the number of seed sets for cycle detec-
tion, Cn the number of cycles detected, taking time TC, and ‖I ‖

Model ‖P‖ Sn Cn TC ‖I ‖ TS
Figure 5 135 4915 204 698s 12 14s

Figure 6(a) 76 3200 62 251s 12 13s

Figure 6(b) 438 6220 1045 476s 63 24s

cycle detection for Figure 6(b) done by decomposing it into eight parts

Table 1: Summary of results for the example models

(a) Model (b) Symmetries

Figure 5: Symmetries of the MISUFA model

(a) Spinner Model (b) Monster model

Figure 6: Monster and Spinner models

Figure 7: Symmetries of the Spinner model in Figure 6(a)

the number of incomplete symmetries detected, taking time TS .
The MISUFA model in Figure 5 came from Cadalog, Inc., http:
//www.ohyeahcad.com/, and the other two from the National De-
sign Repository, http://www.designrepository.org/.

Five of the symmetries detected in the MISUFAmodel are shown in
Figure 5(b). The model has no global symmetries. The local incom-
plete symmetries detected by our algorithm include twoC6 symme-
tries (dark lines), two S6 (light lines) and one T (dark lines); each
consists of two cycles. The rotational symmetries are obvious parts
of the model; the (incomplete) translational symmetry demonstrates
evenly spaced circular arcs on the thread. Two rotation-reflection
symmetries are also present.

Various local incomplete symmetries are detected for the Spinner
model in Figure 6(a). Note the the incomplete symmetry arising
from merging three incomplete cycles (drawn in green, running
from left to right) each consisting of four points. Other detected

(a) Global view (b) 2D top view

(c) Side view (d) Close-up view

Figure 8: Symmetries of the Monster model in Figure 6(b)

symmetries reveal the structure of the three slots (drawn in black,
each consisting of three four-fold cycles), and various holes (drawn
in red and blue, generally each consisting of two four-fold cycles).

The final test concerned the Monster model in Figure 6(b). To im-
prove the speed of cycle detection, we first divided the extracted
points into eight regions using horizontal planes. (This is straight-
forward for a user to do and is a reasonable approach as planar sym-
metries dominate in engineering. Furthermore, a C++ implementa-
tion would be likely to be much quicker than our Matlab prototype).
Note that symmetry clustering still considered all cycles at the same
time. Several of the detected symmetries are shown in Figures 8(a),
(b), (c) and (d). Cycles having the same symmetry are drawn in the
same colour. These include a C8 symmetry of 5 cycles (from the
small cylindrical holes), a C16 symmetry of 5 cycles (from slots in
the big cylinder), a C4 symmetry of 8 cycles (from the four blends
in the corners) and T symmetries (from the side slots).

Our experiments on these and other models show that almost all
expected symmetries are detected by our algorithm. Some spurious
symmetries are also detected, which is unavoidable for approximate
models. The time taken depends on the number of initial seed sets
found. Incomplete cycles can be determined in O(ps) time for a set
with p points and s initial seed sets. The cycle clustering algorithm
takes O(c2 logc) time for c cycles. Setting a coarse user-predefined
maximal tolerance greatly reduces the initial number of seed sets.
Note also precomputing all point distances and storing them also
improves efficiency. In future we intend to consider further meth-
ods to distinguish between intended and unintended symmetries
and other regularities. We are also considering model decompo-
sition to reduce the computational requirements.

References

ALT, H., MEHLHORN, K., WAGENER, H., ANDWELZL, E. 1988.
Congruence, similarity and symmetries of geometric objects.
Discrete Computational Geometry 3, 237–256.

BARRATT, K. 1989. Logic and Design in Art, Science and Mathe-
matics. Herbet Press, London.

BRASS, P., AND KNAUER, C. 2004. Testing congruence and sym-
metry for general 3-dimensional objects. Computational Geom-
etry 27, 3–11.

BRASS, P. 2003. On finding maximum-cardinality symmetric sub-
sets. Computational Geometry 24, 19–25.

EGGERT, D., LORUSSO, A., AND FISHER, R. 1997. Estimat-
ing 3-D rigid body transformations: a comparison of four major
algorithm. Machine Vision and App. 9, 5-6, 272–290.

GAO, C. H., LANGBEIN, F. C., MARSHALL, A. D., AND MAR-
TIN, R. R. 2003. Approximate congruence detection of model
features for reverse engineering. In Proc. Int. Conf. Shape Mod-
elling and Applications, 69–77.

GAO, X., LIN, Q., AND ZHANG, G. 2006. A C-tree decom-
position algorithm for 2D and 3D geometric constraint solving.
Computer-Aided Design 38, 1, 1–13.

IWANOWSKI, S. 1991. Testing approximate symmetry in the plane
is NP-hard. Theoretical Computer Science 80, 227–262.

LANGBEIN, F., MARSHALL, A., AND MARTIN, R. 2004. Choos-
ing consistent constraints for beautification of reverse engineered
geometric models. Computer-Aided Design 36, 3, 261–278.

LI, M., LANGBEIN, F., AND MARTIN, R. 2006. Detecting ap-
proximate symmetries of discrete point subsets. submitted.

MILLS, B., LANGBEIN, F., MARSHALL, A., AND MARTIN, R.
2001. Approximate symmetry detection for reverse engineering.
In Proc. 6th ACM Symp. Solid and Physical Modeling, 241–248.

MILLS, B., LANGBEIN, F., MARSHALL, A., AND MARTIN, R.
2001. Estimate of frequencies of geometric regularities for use
in reverse engineering of simple mechanical components. Tech.
Rep. GVG 2001–1, Cardiff University. http://ralph.cs.cf.
ac.uk/papers/Geometry/survey.pdf.

MITRA, N., GUIBAS, L., AND PAULY, M. 2006. Partial and
approximate symmetry detection for 3D geometry. Proc. SIG-
GRAPH 2006, ACM Trans. Graph. 25, 3, 560–568.

PODOLAK, J., SHILANE, P., GOLOVINSKIY, A., RUSINKIEWICZ,
S., AND FUNKHOUSER, T. 2006. A planar-reflective symmetry
transform for 3D shapes. Proc. SIGGRAPH 2006, ACM Trans.
Graph. 25, 3, 549–559.

ROBINS, G., ROBINSON, B., AND SETHI, B. 1999. On detect-
ing spatial regularity in noisy images. Information Processing
Letters 69, 189–195.

SUGIHARA, K. 1984. An n logn algorithm for determining the con-
gruity of polyhedra. Journal of Computer and System Sciences
29, 11, 36–47.

SUN, C., AND SHERRAH, J. 1997. 3D symmetry detection using
the extended Gaussian image. IEEE Trans. Pattern Analysis and
Machine Intelligence 19, 2, 164–168.

TATE, S., AND JARED, G. 2003. Recognising symmetry in solid
models. Computer-Aided Design 35, 7, 673–692.

VARADY, T., MARTIN, R., AND COX, J. 1997. Reverse engi-
neering of geometric models - an introduction. Computer-Aided
Design 29, 4, 255–268.

WEYL, H. 1952. Symmetry. Princeton University Press.

ZABRODSKY, H., PELOG, S., AND AVNIR, D. 1995. Symmetry as
a continuous feature. IEEE Trans. Pattern Analysis and Machine
Intelligence 17, 12, 1154–1166.

