
Detecting Approximate Symmetries of

Discrete Point Subsets ⋆

Ming Li, Frank C. Langbein, Ralph R. Martin

School of Computer Science, Cardiff University, Cardiff, UK

Abstract

Detecting approximate symmetries of parts of a model is important when attempt-
ing to determine the geometric design intent of approximate boundary-representation
(B-rep) solid models produced e.g. by reverse engineering systems. For example, such
detected symmetries may be enforced exactly on the model to improve its shape, to
simplify its analysis, or to constrain it during editing. We give an algorithm to detect
local approximate symmetries in a discrete point set derived from B-rep model: the
output comprises the model’s potential local symmetries at various automatically

detected tolerance levels. (Non-trivial) symmetries of subsets of the point set are
found as unambiguous permutation cycles, i.e. vertices of an approximately regu-
lar polygon or an anti-prism, which are sufficiently separate from other points in
the point set. The symmetries are detected using a rigorous, tolerance-controlled,
incremental approach, which expands symmetry seed sets by one point at a time.
Our symmetry cycle detection approach only depends on inter-point distances. The
algorithm takes time O(n4) where n is the number of input points. Results produced
by our algorithm are demonstrated using a variety of examples.

Key words: Local approximate symmetry, design intent, reverse engineering.

1 Introduction

Many manufactured objects exhibit global and local symmetries as a feature
of their design or function, or for ease of manufacturing or analysis [1]. Fur-
thermore, symmetry is also common in natural shapes [2] and designers prefer

⋆ Supported by EPSRC UK Grant GR/S69085/01
Email addresses: M.Li@cs.cf.ac.uk (Ming Li), F.C.Langbein@cs.cf.ac.uk

(Frank C. Langbein), Ralph.Martin@cs.cf.ac.uk (Ralph R. Martin).

Preprint submitted to Elsevier 25 October 2008



Fig. 1. A B-rep model with many local symmetries.

symmetric shapes for reasons of aesthetics and simplicity [3]. This is partic-
ularly true for engineering objects conventionally represented by boundary-
representation (B-rep) models, such as the one shown in Fig. 1.

While such symmetries may be explicitly represented along with a B-rep
model, often they are not explicitly given, for example, where a model has
been created by reverse engineering, or where a model has been transferred
from one CAD system into another. Furthermore, in cases like these, the sym-
metries are often not exactly present, but only approximately present, due to
measurement errors in the scanning process, and approximation and numerical
errors in model reconstruction during reverse engineering system [4]. Different
CAD systems often use different tolerances [5], and what is symmetric in one
CAD system may not be symmetric in another.

Explicit detection of symmetries in such geometric models has many potential
uses: for example, to improve the shape of a model by enforcing intended sym-
metries, to enable faster analysis, to place constraints on editing operations,
and so on. We are thus interested in detecting the symmetries intended by a
designer in a B-rep model, but which are only approximately present.

Our previous methods for geometric design intent detection can detect global
approximate symmetries [6], approximate congruencies between sub-parts [7],
and other local regularities, e.g. parallel and orthogonal planes [8]. This paper
considers a different issue not solved by such approaches: finding local approx-
imate symmetries in a B-rep model. For example, the model in Fig. 1 has
cylindrical holes arranged with an eight-fold rotational symmetry, and slots
with a sixteen-fold rotational symmetry.

To detect local symmetries, we use similar ideas to those used for global sym-

2



metric detection in [6,7]. As in these papers, we extract characteristic points
from a solid model, which when used with connectivity and face type informa-
tion, are sufficient to determine its symmetry, should symmetry be present.
Essentially, these points are the vertices of the B-rep model, together with
other special points needed to characterise curved edges and faces. For exam-
ple, a straight line is characterised by its two end points, whereas for an edge
known to be a circular arc, using one other point taken to be the mid-point of
the arc is sufficient to both fix its radius, and to determine which of the two
arcs between those end points we want. A discussion of how to select these
characteristic points is given in [7].

Note, then, that we start from a very different point of view to symmetry
approaches used in image processing, e.g. [9–12], and mesh processing [13–15].
These are designed to work on dense point data, where the point distributions
are far more important than locations of individual points. Generally, their
aim is to detect one or a few dominant approximate symmetries by partial
matching of images or meshes under user selected tolerances. In contrast, we
wish to find symmetries in B-rep models that are intended to be exact, but
are approximate due to their origins. We furthermore wish to generate all
possible subset symmetries, where any one may belong to quite a small part
of the model (such as a hole, or row of slots in a complex model). We use
as a basis a carefully selected and generated point set from a B-rep model,
not a dense point set covering the whole surface of the B-rep model. Our
algorithm thus processes far fewer points than a mesh symmetry algorithm;
in our algorithm, both the position, and existence, of every individual point
is significant. However, we speculate that it might be possible to apply our
method to detecting symmetries of meshes if a suitable means could be found
for defining and extracting carefully chosen key feature points.

In summary, the main novel contribution of the paper is a rigorous definition
and an algorithm to detect local approximate symmetries possessed by subsets
of a set of points in 2D or 3D. By letting this set of points be carefully chosen
characteristic points extracted from a B-rep model as described above, these
approximate point subset symmetries in turn directly correspond to approxi-
mate local symmetries of an approximate B-rep model. Finding approximately
symmetric subsets of a point set is an important topic not addressed by pre-
vious work. Here we are considering points which the symmetry maps in a
one-to-one fashion onto each other. Mitra et al. [15] have considered the dif-
ferent problem of approximate maps of dense point clouds representing part of
the surface of an object onto other dense point clouds from the same object—
but these are not point-wise maps. Other related work is later discussed in
Section 2.

The detected symmetries include rotational symmetries and rotation-reflection
symmetries, i.e. vertices of an approximately regular polygon or an anti-prism.

3



Each symmetry is represented as an unambiguous (permutation) cycle on that
subset of points. Each symmetry corresponds to a transformation which maps
a subset of the point set onto itself. As we assume that the input model is
approximate, the subset may only map approximately onto itself under the
symmetry. A (permutation) cycle is a subset of a permutation whose elements
trade places with one another. It describes the orbit of a single point under
consecutive application of a symmetry transformation (in the exact case),
specifically under rotation and rotation-reflection. By unambiguous cycles we
mean that the points involved in the subset are sufficiently far away from
other points in the input point set, so that there is no chance of confusion as
to which point maps to which under the symmetry transformation, given its
approximate nature. These ideas are explained more carefully and rigorously
in Section 3.

Note that in this paper we only concern ourselves with finding each individual
cycle separately. Thus, given a regular prism, we will output one cycle corre-
sponding to the vertices at one end, and a separate cycle for the vertices at
the other end—even though (at least in the exact case) these two point sub-
sets share the same symmetry transformation. Clearly, extracting higher level
information is important: merging the cycles found by the method given in
this paper will be addressed in future work. In the following, we shall always
mean a cycle when we talk about a symmetry, unless we say otherwise.

Before we go further, we should just mention a special case. Clearly, every
pair of points trivially defines an exact two-fold rotational symmetry, a reflec-
tion symmetry, and an inversion symmetry cycle. These cycles can be trivially
‘found’ by simply enumerating every pair of points, and so are not further
discussed here. Thus, we consider how to find rotational symmetry cycles,
i.e. vertices of an approximately regular polygon, and rotation-reflection sym-
metries, where the symmetry transformation comprises reflection in a plane
followed by rotation about an axis perpendicular to that plane, i.e. vertices of
an anti-prism.

There are seven elementary symmetry transformations: reflection, inversion,
translation, rotation, glide reflection, rotation reflection, and screw transla-
tion [16]. However, discounting inversion and reflection, only two other kinds—
rotation and rotation reflection—have finite cycles (i.e. if we apply the symme-
try operation enough times, the points go back to their original permutation).
Translational symmetries, and glide reflections and screw translations, which
are combinations of translation respectively with reflection and rotation, must
always be incomplete for finitely many points. Handling incomplete symme-
tries, both of this kind, and e.g. incomplete rotational symmetries, is not
straightforward and will also be addressed in future work.

Although exact symmetry detection has been widely studied, e.g. [17,18], these

4



methods cannot be directly extended to approximate symmetries by simply
replacing tests for equality by tests for approximate equality. Algorithms for
exact symmetry detection rely on making local decisions about which elements
match under symmetry. For approximate symmetries, such decisions must be
based on global properties. Point matching is no longer a Boolean property—
points match to a certain degree, and in general, multiple potential matches
have to be considered, increasing algorithmic complexity [6].

We build on the basic idea of Brass’ work on detecting exact subset symme-
tries [18]. For exact n-fold rotational symmetries, given three ordered points
forming an isosceles triangle, these uniquely determine a rotation mapping
point 1 to point 2, and point 2 to point 3. Under recursive application of
the map, we get point 4 and so on, expanding the initial seed set. During
the expansion process, if a point is finally mapped back onto the first point,
the expansion stops and the result is a symmetric regular polygon. While it
is trivial to determine these point mappings in the exact case, for approxi-
mate symmetries the points do not map exactly onto each other, but are only
matched within a certain tolerance. Thus it becomes non-trivial to determine
them.

Detecting local approximate symmetries raises further issues—which point
subsets should be examined for symmetry, and under what tolerance they dis-
play symmetry. These two issues depend on each other. Our approach allows
us to automatically determine tolerances at which approximate symmetries
of subsets are present, and does not require predefined tolerance bounds as
input (also see [6]). Fixing some coarsely chosen upper limit to acceptable
tolerances can help to reduce the number of unwanted approximate symme-
tries detected. However, it cannot directly help in finding local approximate
symmetries, where appropriate tolerances must be derived from the point set
itself. Choosing tolerances appropriate to the data is important, as typically
for engineering components, quite different tolerances are used for different
features of the same component.

Downstream processes may typically wish to merge the cycles found, or in
other cases choose between them. We note that the tolerance information
output by our method is important for any such processes which use the
symmetries, e.g. to beautify reverse engineered models by solving geometric
constraint systems [8,19] or other applications for further selection between
these detected symmetries [20]. After symmetries at certain tolerances have
been detected it is simpler to select suitable symmetries at suitable tolerances.

Based on the definition of global approximate symmetries given in [6], we intro-
duce in Section 3 a definition of approximate subset symmetries, or unambigu-
ous cycles, leading to clear conditions under which approximate symmetries
can be said to be present. Using this definition, we then give an algorithm

5



for detecting approximate symmetries, by selecting symmetry seed sets and
expanding them point by point. The initial seed sets are approximate isosceles
triangles. Each detected cycle that is sufficiently separate from other points
in the input point set represents an approximate subset symmetry.

We next discuss in more detail how our ideas are related to earlier work on
exact and approximate symmetry detection. Our definition of approximate
symmetry is given in Section 3. An overview of our algorithm for finding ap-
proximate symmetries in 2D is provided in Section 4, with further details in
Section 5. Extension of the algorithm to 3D symmetry detection is given in Sec-
tion 6. The time complexity of our symmetry detection algorithm is analysed
in Section 7. Practical examples are discussed in Section 8, and conclusions
are drawn in Section 9.

2 Previous work

We now discuss previous work on detection of exact and approximate sym-
metry. Symmetry detection is used to refer to two slightly different problems.
Sometimes, it refers to finding the symmetry transformation (if any) under
which a certain point set is mapped onto itself. Alternatively, it can mean
finding a symmetric set which is close (according to some similarity measure)
to a set of points; in this case the transformation itself need not be explicitly
found. Symmetry detection algorithms can be further classified as detecting
either global or subset (local) symmetries, and as trying to find exact or ap-
proximate symmetries. Global symmetries involve mapping the whole set onto
itself, whereas subset symmetries only map a subset onto itself. The latter is
harder to compute as the subset in addition to the symmetry has to be iden-
tified. Exact symmetries preserve the point set exactly under transformation,
whereas approximate symmetries map the point set onto itself to within a
tolerance. Different definitions for approximate symmetry exist depending on
how matching under a tolerance is defined. This paper considers approximate
subset symmetries, for sets of discrete points. As noted earlier, such sets suffice
to identify local symmetries in B-rep models.

Algorithms for detecting exact, global symmetries of point sets and objects
have been widely studied, e.g. [17,21–24]. Exact symmetry detection for planar
collections of points and lines can be done in O(n logn) time [21]. Detecting
symmetries of 3D point and line configurations, and polyhedra, has the same
complexity [17,21]. The basic idea used is to sort the points according to
distances from the centroid, and then to check how many there are at each
distance, which essentially reduces the complexity of the problem to that of a
sorting algorithm. Brass and Knauer [24] recently extended the idea to general
3D objects.

6



There are relatively few results on exact symmetries of subsets. Brass [18] de-
tects rotational symmetries by finding rotational mappings based on isosceles
triangles, and combines them into symmetric subsets efficiently using a tree
data structure. Mirror symmetries can easily be detected by combining mir-
ror planes generated by point pairs. This work was improved by Aloupis [25]
using a randomised approach. Another approach to finding subset symmetries
in solid models was presented by Tate [26]. It is based on matching pairs of
edge loops and finding the isometries that relate them. The isometries are then
grouped according to similarity. Their implementation finds mirror planes of
symmetry.

Most previous work on approximate symmetries has considered global ap-
proximate symmetries, using various definitions of approximate symmetry.
Iwanowski [27] pointed out that testing approximate symmetry in the plane
is NP-hard if approximate symmetry is defined in terms of the existence of
an exactly symmetric object near to the approximate object. Alternatively,
approximate symmetry may be defined as existence of a transformation map-
ping the point set approximately onto itself within a certain tolerance; this
yields high-order polynomial time algorithms [22] for symmetry detection.
Mills et al [6] give a method for approximate global symmetry detection that
combines the combinatorial and geometric nature of symmetries, resulting
in a low-order polynomial time algorithm. A completely different approach
to detecting global approximate symmetries is to define an asymmetry mea-
sure [28,29]. Zabrodski [28] defines this as the minimum, taken over all exactly
symmetric shapes with the desired symmetry, of the mean squared distance
between points of the original shape and the symmetric shape.

Finally, we turn to the case of approximate symmetries of subsets of points.
To our knowledge, no previous work addresses this topic. (We again empha-
sise that we seek one-to-one correspondences between points, so our work is
quite different from previous work on detecting local symmetries in images
e.g. [9,12] or meshes [14,15] which use dense sets of points). The difficulties of
the problem lie in choosing point subsets for consideration, inferring the sym-
metry transformations, and automatically determining the tolerance for each
symmetry; furthermore, all of these issues depend on each other. The require-
ment to find all potential approximate symmetries at appropriate tolerances
increases the difficulty of the problem. We employ a similar definition of ap-
proximate symmetry to Mills et al [6], but modify it so that it can find subsets,
based on the ideas for finding exact symmetric subsets given by Brass [18].

7



3 Approximate symmetries of point subsets

Exact symmetry is a well-defined concept and there are efficient algorithms to
detect it. Approximate symmetry is harder to define—there is more than one
way to do so, and to some extent, the most appropriate definition depends
on the particular application. In this Section, we give a rigorous formalisation
of our particular concept of approximate symmetry for use in design intent
detection.

Throughout this paper we use the following notation:

E
d d-dimensional Euclidean space (here, d = 2 or 3).

‖P −Q‖ Euclidean distance between points P, Q ∈ E
d.

D(P) The set of distances {‖P − Q‖ : P, Q ∈ P} for a set P of
points.

|P| The number of elements in a set P.

⌊r⌋ The largest integer not greater than a real number r.

a =ǫ b Equality of real numbers within tolerance ǫ: |a− b| ≤ ǫ.

a mod n Remainder of division of integer a by integer n except when
the remainder is 0 whereupon we set it to n as we use indices
starting from 1.

Assume that a point set P has an exact, global symmetry. In E
d this symmetry

T of P is fully determined by a mapping from d + 1 points S0 ⊂ P onto
another d + 1 points S1 ⊂ P. The images of the remaining points P \ S0 are
fully determined by mapping their distances from the points in S0 onto the
corresponding distances from the points in S1.

This mapping induces a permutation on the points in P. In the exact case
these distances match exactly and uniquely, which allows for efficient sym-
metry detection algorithms that extend partial matches to complete ones. In
the approximate case, however, T maps points and their distances only ap-
proximately onto each other, and care is needed to find a globally consistent
matching between points. Just taking the best match locally is insufficient, and
in general, an expensive backtracking approach is required. We have carefully
chosen the definition below for approximate symmetry so that it allows an
algorithm to be devised based on expanding local matches without backtrack-
ing, enabling us to keep the efficiency of the approach used in [6]. Approximate
symmetry of a point set is defined in terms of a permutation of the points which
maps distances between the points approximately onto each other:

Definition 1 (Approximate Symmetry) Let P ⊂ E
d be a point set. We

8



P1

P3

P2

PP5 4

P6

(a)

P
P2

P

P

5

P4
P

3

6

1

(b)

P P

P

P

P6

1 2

3

4P5

(c)

Fig. 2. Some symmetries of a hexagon.

call a pair (ǫ, σ), for which ǫ ≥ 0 and σ is a permutation on P, an approximate
symmetry of P if =ǫ is an equivalence relation on D(P), and ‖P − Q‖ =ǫ

‖σ(P )− σ(Q)‖ for all P, Q ∈ P.

Note that an approximate symmetry with ǫ = 0 yields an exact symmetry.

We now explain the ideas behind this definition. The condition that =ǫ forms
an equivalence relation means that the set D(P) of all distances between the
points P is grouped into pairwise distinct subsets of approximately equal dis-
tances (equivalence classes). This partly recovers the exact matching property
of exact symmetries. In the exact case, given the images P ′ of d + 1 points
P, we can determine the other points and their images by the distances from
P and P ′. In the approximate case with an arbitrary tolerance the distances
only match approximately and hence do not uniquely determine the points.
By requiring that =ǫ forms an equivalence relation we avoid this situation:
if two points have approximately (within ǫ) the same distances from a set of
d + 1 points in P they are effectively identified with each other and treated
as having the same approximate position. But note that this does not hold
true for points not in P, which means for subsets we have to introduce further
conditions involving the complete point set.

For example, consider a 2D point set P = {Pk : 1 ≤ k ≤ 6} forming an
approximate hexagon. Fig. 2 shows three of its symmetries described by per-
mutations: the mirror symmetry σ1 : (P1, P6), (P2, P5), (P3, P4) in Fig. 2(a);
the three-fold rotational symmetry σ2 : (P1, P3, P5), (P2, P4, P6) in Fig. 2(b);
and the six-fold rotational symmetry σ3 : (P1, P2, P3, P4, P5, P6) in Fig. 2(c). If
we were detecting subset symmetries in the case in which P were a subset of a
larger point set, we would, however, only be interested in detecting the six-fold
symmetry σ3 for P. This is the only symmetry whose permutation consists of
a single cycle. The other permutations would be found at other times when
considering different subsets of the complete, larger point set. Thus, our algo-
rithm detects symmetries in terms of single cycles as these form the elementary
symmetry structures of a point set. In 2D the cycles correspond to the ordered
vertices of regular polygons, while in 3D they may in addition be the ordered

9



PP
P

4
5 3

P2P1

Fig. 3. Unambiguous symmetry

alternate vertices taken from opposite ends of anti-prisms as further discussed
in Section 6.2.

Following Definition 1, a tolerance interval Emin(C) ≤ ǫ < Emax(C) exists for
ǫ at which a symmetry cycle C is present. These are called the minimal and
maximal tolerances of C. Emin(C) ensures equality of all the distances in the
same distance class—if Emin(C) were too small, various distances would no
longer be considered equal, and the approximate symmetry would no longer
exist. Emax(C) separates different classes—if Emax(C) were too large, the ap-
proximate symmetry would map a given point onto more than one possibility,
and the approximate symmetry would no longer be unambiguous. We require
that Emin(C) < Emax(C) for C to be a proper cycle—see Theorem 1. Further
discussion of this issue is given in Section 5.

For symmetries of point subsets in an input point set, we have to consider an-
other issue, to specify the subsets we are interested in. Consider, for example
in Fig. 3, P1, P2, P3, P4 construct an exact square and P5 is a point close to P4.
Suppose P1, . . . , P5 form an input point set P. They yield two subset symme-
tries given by the permutation cycles C1 : (P1, P2, P3, P4), C2 : (P1, P2, P3, P5) at
proper tolerances ǫ1, ǫ2 respectively, where ǫ1 < ǫ2. However, C2 is ambiguous
as P5 can be replaced by P4 without changing the symmetry transformation
at tolerance ǫ2. We must avoid such cycles containing ambiguous points if the
description of a symmetry by a cycle is to be unique. The following definition
gives a condition for when a given cycle C belonging to a point set P is sym-
metric and sufficiently separate from the other points in P to avoid ambiguity:
no point in P \ C can replace a point in C such that C is still symmetric at
the same tolerance. As an approximate symmetry can be present at a range of
tolerance values, we must enforce this requirement at the minimal tolerance
Emin(C).

Definition 2 (Unambiguous Cycle) Let C be a cycle formed by a subset
of points from a point set P at the minimal tolerance e∗ = Emin(C). We say
that C is unambiguous with respect to P if C stops being a cycle at tolerance
e∗ if we replace any point in C by any point in P \ C.

Finally, we can now state what our algorithm computes: given a point set P ⊂
E

d, d = 2 or d = 3, our algorithm computes each of its unambiguous cycles Ck

10



Fig. 4. Illustration of the expansion process

together with their minimal tolerance ǫk = Emin(Ck), i.e. (Ck, ǫk), 1 ≤ k ≤ r.

4 Algorithm overview

In this Section we provide an overview of our algorithm for detecting approx-
imate symmetries of a 2D point subset, each represented as an unambiguous
cycle. Further 2D algorithm details are given in Section 5. The algorithm for
3D point sets is similar, and is further described in Section 6.

The basic idea behind our symmetry detection algorithm comes from the fol-
lowing ideas in the exact case. Let P1, P2, P3 describe an isosceles triangle in
which ‖P1 − P2‖ = ‖P2 − P3‖ and ‖P1 − P3‖ ≥ ‖P1 − P2‖ (see Fig. 4). These
three points define a rotation, under a (partial) permutation that P1 moves to
P2, and P2 moves to P3; this rotation potentially represents the symmetry of
a regular polygon. Suppose we now look for another point P4 to extend this
symmetry such that the rotation maps P3 onto P4. We can find P4 by noting
that P4 must satisfy ‖P4 − P3‖ = ‖P2 − P1‖ and ‖P4 − P2‖ = ‖P3 − P1‖.
These constraints correspond to two possible locations for P4, and only the
one lying on the same side of the line P2P3 as P1 is valid and chosen. (In the
approximate case we have to consider both as explained below.) To proceed
further, we can find the next expansion point P5 by replacing (P1, P2, P3, P4)
by (P2, P3, P4, P5) in the above process. Applying this expansion process iter-
atively will eventually lead to a cycle corresponding to the ordered vertices of
a regular polygon if it is present.

However, in the approximate case, determining the points involved in a sym-
metry using an expansion process is more complicated, due to the difficulty in
determining whether two distances are approximately the same, both because
of the need to choose a tolerance, and due to the possible accumulation of er-
rors. To avoid accumulating expansion errors, we add further constraints to de-
termine the expansion point. For example, in order to determine the expansion
point P5 from the seed set (P1, P2, P3, P4) in Fig. 4, instead of simply requiring

11



at some tolerance ǫ that ‖P5−P4‖ =ǫ ‖P4−P3‖ and ‖P5−P3‖ =ǫ ‖P4−P2‖,
we require the equality of all the distances within the same distance group,
i.e. ‖P5−P4‖ =ǫ ‖Pk+1−Pk‖, k = 1, 2, 3, ‖P5−P3‖ =ǫ ‖Pk+2−Pk‖, k = 1, 2
and ‖P5 − P2‖ =ǫ ‖P4 − P1‖. Note here that P5 is uniquely determined by
these distance equalities without any further conditions, at least in the exact
case.

Note that we do not base our approximate symmetry detection algorithm on a
predetermined tolerance, but instead, we find suitable tolerances as the algo-
rithm proceeds. The ideas are based on three theorems discussed later in the
paper. We use Theorem 1 to detect potential expansion points: if a point P is
to be a valid expansion point for seed set S, the following relationship must be
satisfied: Emin(S ∪{P}) < Emax(S ∪{P}); Emin(S ∪{P}) and Emax(S ∪ {P})
are computed during the point expansion process from inter-point distances as
explained in detail in Section 5.2.2. However, more than one potential expan-
sion point may exist in the input point set. We choose the one which minimises
Emin(S ∪{P}). This strategy tries to avoid adding any points that violate the
unambiguity condition while also ensuring that we always find any expansion
point which exists. Taking this idea further, a condition under which a com-
plete cycle can be found is provided in Theorem 2. While we always choose the
expansion point which minimises the tolerance, this tolerance may increase as
further points are added during the expansion process. Hence, we still need
to check the unambiguity condition for the final detected cycle before it is
output; doing so is based on Theorem 3.

The algorithm itself, for detecting approximate symmetries expressed as un-
ambiguous cycles, is listed in Fig. 5. It takes as input a set of distinct 2D
points P and outputs all unambiguous cycles as pairs (C, ǫ) where C lists the
points in order forming a cycle, and ǫ is the minimal tolerance at which C
forms an unambiguous cycle. We assume no two input points are at the same
location.

In Line 1 the output list of cycles T is initialised as empty. In Line 2 the
distances between all pairs of points are pre-computed for efficiency. Lines 3–17
form an outer loop over all triples of points in P. These triples are seeds for the
point expansion process, some of which will lead to unambiguous cycles. Each
initial seed set forms an approximate, rather than exact, isosceles triangle.
The triple is put into an ordered list (P1, P2, P3) such that P1 maps to P2, and
P2 to P3, and ‖P1−P3‖ ≥ ‖P2−P3‖ ≥ ‖P1−P2‖. We now consider expanding
a cycle starting from P1, P2, P3 (Line 3). Note that the same symmetry can be
found starting with several different triples. Hence, we further check in Line 4
whether the triple is already a contiguous part of a previously detected cycle
and if so, ignore it.

A given point triple may form an approximately regular triangle, or may be

12



Algorithm: Detect approximate symmetries (unambiguous cycles) present
in a 2D point set

Input: P ⊂ E
2, a set of pairwise distinct 2D points

Output: T = {(Ck, ǫk) : 1 ≤ k ≤ r}, a set of unambiguous cycles, each
represented by an ordered list of points Ck, and its correspond-
ing minimal tolerance ǫk

01 T ← empty

02 D ← array of distances between each pair of points in P
03 for each point triple S = (P1, P2, P3)

with ‖P1 − P3‖ ≥ ‖P2 − P3‖ ≥ ‖P1 − P2‖ from P do
04 if S is a contiguous part of a cycle in T then break // skip this triple
05 if IsUnambiguousCycle(S) then // test for unambiguous triangle
06 T ← T ∪ {(S, Emin(S))}
07 end if
08 do
09 M ← {P : Emin(S ∪ {P}) < Emax(S ∪ {P}), P ∈ P \ C}
10 if M = empty then break // no cycle found
11 P ∗ ← arg min{Emin(S ∪ {P}) : P ∈M}
12 S ← S ∪ {P ∗} // add P ∗ to the end of the ordered list S
13 while not IsCycle (S)
14 if IsUnambiguousCycle(S) then // test for unambiguous polygon
15 T ← T ∪ {(S, Emin(S))}
16 end if
17 end for
18 return T

Fig. 5. 2D approximate symmetry (unambiguous cycle) detection algorithm

expanded to a regular polygon with more than 3 sides, or even both. We
consider these cases respectively in Lines 5–7 and Lines 8–16. (Note that
deciding which of these different cases is actually present in the model is not
considered in this paper, but left as a problem for a downstream process,
guided by some higher level information, see [8]; here we only detect what is
unambiguously present in the model data). We first check, as a special case,
if the three points form an approximately regular triangle, and output them
if so (Lines 5–7). How this is done is described in Section 5.3.1.

We next check whether an unambiguous cycle containing more than three
points can be generated from the triple (Lines 8–16). To find the correct
expansion point from a set S, first a set M of potential expansion points
is determined (Line 9). As explained above, each such point P must satisfy
Emin(S ∪{P}) < Emax(S ∪{P}). If any such points exist, i.e. M is not empty,
we choose the point which minimises the tolerance required for the potential
approximate symmetry (Line 11) and add it to S (Line 12). Expansion from

13



the initial three points is handled slightly differently from further expansion
points, as there are two possible locations for which the distances between
the points match approximately, and they both have to be considered, as we
explain in detail in Section 5.3.2; this is omitted from the algorithm listing
for simplicity. Expansion stops when either no more expansion points can be
found (Line 10) or a complete cycle has been detected (Line 13). If a cycle is
detected, we must further verify that it satisfies the unambiguity condition,
i.e. that there is no other point close to some point in S which can replace it
and still give the same symmetry at the same tolerance (Line 14). If verified,
we accept this detected cycle as an unambiguous cycle (Line 15).

5 Unambiguous cycles of 2D point sets

We now give further details of our 2D unambiguous cycle detection algorithm
outlined in Section 4. We first explore the basic properties of the point expan-
sion approach in Section 5.1. Using these ideas, we then show in Section 5.2
how to select suitable expansion points, compute the associated tolerance
ranges, and verify whether an expanded cycle is unambiguous. Section 5.3
considers conditions on the valid initial seed sets for point expansion and how
to expand them in the special case of the fourth point.

5.1 Tolerance conditions for symmetry seed set expansion

In this section we derive the conditions imposing limits on the tolerances
under which a set S expanded by a point P may still lead to an approximate
symmetry. We also give theorems stating when an expansion gives a cycle and
when the cycle is unambiguous. We obtain these by analysing what conditions
are to be fulfilled for a list of consecutive points if they form a cycle.

Let C ⊂ E
2 be a cycle of c = |C| points at tolerance ǫ. The cycle C = {Pk :

1 ≤ k ≤ c} can be seen as generated by a permutation that maps Pl to Pk,
satisfying for each 1 ≤ r ≤ c− 1

‖Pl − P(l+r) mod c‖ =ǫ ‖Pk − P(k+r) mod c‖, for 1 ≤ l, k ≤ c. (1)

Thus, all the distances between point pairs (Pl, Pk) with l−k = r or l−k = c−r
are approximately the same at tolerance ǫ. Moreover, as =ǫ is an equivalence
relation on the set D(C) of all distances between the points in C, each group
of distances between point pairs with index differences r or c− r corresponds
to one equivalence class. Therefore the number of distance equivalence classes
is ⌊c/2⌋.

14



The equivalence classes play an essential role in the approximate symmetry
definition, Definition 1, and enforce constraints on the tolerances allowed for
a symmetric set. In the following, we apply them to infer what condition a list
of consecutive points should fulfil if it lies in a cycle.

Consider a subset S of s = |S| consecutive points Pk+1, Pk+2, . . . , Pk+s from
C, with indices taken modulo c. Clearly, Eq. (1) still holds for the distances
between points in S and groups these in the same way as for C. We call a set
with such properties a (symmetry) seed set at tolerance ǫ. The fact that the

number of different distance classes in D(C) is
⌊

c
2

⌋

yields that the number of

different distance classes in D(S) is

g(s, c) = min
(

s− 1,
⌊

c
2

⌋)

. (2)

Then for each 1 ≤ r ≤ g(s, c) we get a distance class

Gr(S) = {‖Pk − Pk+r‖ : 1 ≤ k ≤ s− r}

∪{‖Pk − Pk+r−c‖ : 1 ≤ k ≤ s + c− r}. (3)

Let

Dr
min(S) = min(Gr(S)), Dr

max(S) = max(Gr(S)), (4)

respectively be the minimal and maximal distance in each class Gr(S). Clearly,
Dr

min(S) ≤ Dr
max(S).

As S satisfies Eq. (1) and =ǫ is an equivalence relation on D(S), S being a
seed set is equivalent to

Dr
max(S)−Dr

min(S) ≤ ǫ, 1 ≤ r ≤ g(s, c),

Dr+1
min (S)−Dr

max(S) > ǫ, 1 ≤ r ≤ g(s, c)− 1.
(5)

These inequalities give a range of tolerance values ǫ for S to be a seed set
based on the actual distances between the points in S: ǫ must be large enough
for all distances in each distance class Gr(S) to be approximately the same
and small enough not to confuse different Gr(S). Furthermore, Eq. (5) is a
condition for S being a seed set. Thus any subset of points satisfying Eq. (5)
is a seed set which may lead to an unambiguous cycle C on expansion.

For simplicity in the above tolerance condition derivation, we assume the
potential cycle C that a seed set S may lie in (see Eq. 2) is known. We discuss
further in Section 5.2 how, during the point expansion process, the cycle and
its size c = |C| are determined.

By defining the maximum size of all distance classes to be the minimum match-

15



ing tolerance
Emin(S) = max

1≤r≤g(s,c)
(Dr

max(S)−Dr
min(S)), (6)

and the minimum distance between two consecutive distance classes as the
maximum separation tolerance

Emax(S) = min
1≤r≤g(s,c)−1

(Dr+1
min (S)−Dr

max(S)), (7)

we can simplify Eq. (5) to

Emin(S) ≤ ǫ < Emax(S). (8)

Finally, then, to verify whether S is a suitable seed set, we only have to check
whether some ǫ exists for Eq. 8 to be satisfied, i.e. that:

Emin(S) < Emax(S). (9)

Thus Eq. (9) allows us to check the validity of a seed set without reference to
any explicit tolerance ǫ, using only quantities derived from the set itself. We
may now apply this result to give a condition to decide whether a seed set can
be expanded:

Theorem 1 For a point set P ⊂ E
2, let S ⊂ P be a seed set. The set S+ =

S ∪ {P} with P ∈ P \ S is also a seed set if and only if

Emin(S+) < Emax(S+). (10)

We now consider how to find Emin(S+) and Emax(S+).

For each 1 ≤ r ≤ g(s + 1, c), let Dr
+ be the set of distances between Ps+1 and

the points in S that may have index gaps r or c− r to Ps+1 when Ps+1 is seen
as the expansion point of S. We get

Dr
+ =











{‖Ps+1 − Ps+1−r‖}, if s ≤
⌊

c
2

⌋

;

{‖Ps+1 − Ps+1−r‖, ‖Ps+1 − Ps+1−(c−r)‖}, if s >
⌊

c
2

⌋

, r ≥ c− s.

Hence, we can write

Dr
min(S+) = min(Dr

+ ∪ {D
r
min(S)}), Dr

max(S+) = max(Dr
+ ∪ {D

r
max(S)}).

(11)
In the special case that r = g(s + 1, c) = s + 1, Dr

min(S) and Dr
max(S) do not

exist and we treat the sets {Dr
min(S)} and {Dr

max(S)} as empty.

Eq. (11) tells us that instead of computing Dr
min(S+), Dr

max(S+), 1 ≤ r ≤
g(s+1, c), based on Eq. (4), we can efficiently calculate them from the known

16



values Dr
min(S), Dr

max(S), 1 ≤ r ≤ g(s, c), and the distance set Dr
+. Similarly

this also leads to an efficient way to compute Emin(S+), Emax(S+).

From Eq. (11) it follows that Dr
max(S+) ≥ Dr

max(S) and Dr
min(S+) ≤ Dr

min(S),
and hence

Emin(S+) = max
1≤r≤g(s+1,c)

(Dr
max(S+)−Dr

min(S+))

≥ max
1≤r≤g(s,c)

(Dr
max(S)−Dr

min(S)) = Emin(S).

Similarly Emax(S+) ≤ Emax(S). Furthermore, Eq. (8) is satisfied for S+, so

Emin(S) ≤ Emin(S+) ≤ ǫ < Emax(S+) ≤ Emax(S), (12)

i.e. the additional point distances introduced by adding a new point to S such
that the expanded set S+ remains a seed set generally reduces the range of
valid tolerance values ǫ.

We now consider how expansion terminates. An initial seed set S is expanded
consecutively by finding additional points satisfying Eq. (10) until either no
further expansion points exist, or a cycle is found. In the former case there is
no symmetry, as there is no cycle. In the latter case the fully expanded seed
set S∗ is a symmetric set at tolerance ǫ = Emin(S

∗) < Emax(S
∗) as it satisfies

Eq. (1) and =ǫ is an equivalence relation on D(S).

A seed set describes a complete cycle if ‖Ps+1 − P1‖ ∈ G
1(S), because in

this case due to the definition of Gr(S), Eq. (3), we have k = s + 1, r = 1,
k + r − c = 1 and hence s + 1 = c. Thus we get

Theorem 2 Let P ⊂ E
2 a point set and S ⊂ P with s points P1, P2, · · · , Ps

ordered in sequence by the expansion process according to Theorem 1. S de-
scribes a cycle if ‖Ps − P1‖ ∈ G

1(S) and is approximately symmetric at toler-
ance Emin(S).

Note how our algorithm avoids accumulating expansion errors by considering
all possible distances to all other points in the seed set S. Errors could rapidly
accumulate if the process simply determined an expansion point merely by its
distances to the three previous points in the seed set.

A cycle S for a point set P is only unambiguous with respect to P if there is no
point in P \S close to the points in S with respect to the symmetry tolerance
ǫ. The following theorem, which follows from the above considerations, gives
the condition to verify this after a complete cycle has been found.

Theorem 3 Let C = {Pk, 1 ≤ k ≤ c} be a cycle within P ⊂ E
2 at tolerance

ǫ = Emin(C). For each point Pk, let Ck
−(P ) be the point set generated by replac-

17



ing Pk by another point P ∈ P \ C. C is an unambiguous subset of P if and
only if Emin(C

k
−(P )) > ǫ for all choices of P ∈ P \ C.

How to efficiently apply the theorem to check unambiguity of a cycle is further
explained in Section 5.2.1.

5.2 Symmetry seed set expansion

In this Section we illustrate in detail the point expansion process of a seed
set S with s = |S| ≥ 3, such that the expansion leads to an unambiguous
cycle. How to obtain seed sets consisting of three points from the input set
P is described in Section 5.3. Repetitive application of this point expansion
process is used in the overall algorithm to find unambiguous cycles.

5.2.1 Expansion point selection

This Section describes how to expand a seed set by an additional point and
verify that a resulting cycle is unambiguous. We use Theorems 1, 2 and 3
for expansion point selection, the termination condition, and unambiguity
verification respectively.

Given a seed set S within an input point set P, selecting a unique expansion
point (if one exists) requires the determination of a suitable tolerance ǫ: once
this has been done, the unique expansion point P ∈ P \S fulfilling Eq. (8) can
be determined. Eq. (12) tells us that adding an additional point may cause the
range Emin(S) to Emax(S) of acceptable tolerance values to become narrower.
Theorem 1 tells us that we can expand S by adding an additional point as
long as some point exists for which this interval does not become empty. We
choose amongst these points, if there are several, by taking the one which
keeps the tolerances smallest, as we describe shortly.

Note that at no time during the expansion process are we able to fix a specific
value for the tolerance ǫ. If we were to set ǫ to the minimal tolerance in the
initial set Emin(S), then it might not be possible to expand the initial set to a
cycle as this value could be too restrictive. Moreover, even if we were to try all
possible initial seed sets, and set the tolerance from them, the tolerance might
have to be increased when adding additional points as indicated by Eq. (12).

If we were to choose a tolerance ǫ larger than necessary, e.g. Emax(S)− δ for a
very small δ, to include the additional point in the symmetry, it might be pos-
sible to replace certain points in S with other points from P at the tolerance,
violating the unambiguity condition, when a smaller value of ǫ would not have
this problem. In Fig. 3, for example, if we expand from S = {P1, P2, P3} at

18



P1

P’4
P5

P6

P4

P3

P2

Fig. 6. Verification of unambiguity condition of a cycle

tolerance Emax(S), Eq. (8) is satisfied by adding either P4 or P5. However, P5 is
an unnecessary point and can actually be ruled out using a smaller tolerance,
say ‖P4 − P5‖/2.

So instead of fixing the tolerance, we keep track of the tolerance interval and
check whether there is any expansion point which can be added while keeping
the tolerance within the interval given in Theorem 1.

To select a unique expansion point, we consider each potential expansion point
P ∈ P \ S satisfying Emin(S+) < Emax(S+) for S+ = S ∪ {P}. We compute
Emin(S+) and choose as the expansion point the one for which this tolerance
is minimal.

If there is no point in P\S satisfying Emin(S+) < Emax(S+), no valid expansion
point can be found and the expansion process stops. If there is more than one
point minimising Emin(S+), we have multiple expansion points and expansion
will also stop. However, using real arithmetic, such a situation is unlikely to
arise in practice.

Only after a complete cycle has been found, by checking the condition ‖Ps+1−
P1‖ ∈ G

1 (Theorem 2) for the expansion point Ps+1, can we compute the actual
minimal tolerance for the approximate symmetry. However, the resulting cycle
may not be unambiguous with respect to the input point set P, and further
checking is required based on Theorem 3 as we now explain. For example, in
Fig. 6, P1, P2, P3, P4 are points of an exact six-fold rotation. P5 does not
exactly lie in the set, and P ′

4 is a point close to P4. Starting from P1, P2, P3,
we find the next expansion point P4 with a tolerance ǫ = 0 rather than P ′

4,
which gives a larger tolerance ǫ′ > 0. The expansion process continues with
P5 which increases the tolerance ǫ. At this new tolerance, it may be possible
that P ′

4 can be used to replace P4 while giving the same symmetry. We cannot
simply conclude that P ′

4 can replace P4 simply based on ǫ > ǫ′, however, as
these tolerances are not based on the final cycle.

Unambiguity verification must be based on Theorem 3. Specifically, suppose
C = {Pl : 1 ≤ l ≤ c} is a cycle of P at tolerance ǫ = Emin(C) and let Ck

−(P )

19



be the point set generated by replacing Pk with another point P ∈ P \ C. We
need to check that

Emin(C
k
−(P )) > ǫ (13)

for each point P ∈ P \ C. However, instead of applying this directly, we
note that, for k > 3, if the point set Ck

− ∪ {P} is symmetric, it must satisfy
Emin(S

∗∪{P}) < Emax(S
∗∪{P}) for S∗ = {Pl, 1 ≤ l ≤ k−1}. Hence, for each

seed set S = {Pk, 1 ≤ k ≤ s} generated during the point expansion process,
if Ps+1 is the unique point in P \C such that Emin(S ∪{P}) < Emax(S ∪{P}),
we know that Eq. (13) will not be satisfied. If more than one point exists in
P \ C such that Emin(S ∪ {P}) < Emax(S ∪ {P}) is satisfied, we only need
verify Eq. (13) for these points to improve the algorithm’s efficiency.

As can be seen from the above, the validity and efficiency of the point expan-
sion approach mainly depends on the computation of Emin(S+) and Emax(S+)
from given Emin(S) and Emax(S), which we discuss next.

5.2.2 Minimal and maximal tolerance computation

In this section, an efficient algorithm is given for the computation of Emin(S+)
and Emax(S+) for P ∈ P \ S, where S = {Pk : 1 ≤ k ≤ s} is a given seed
set and S+ = S ∪ {P}. Eq. (11) is used for the computation of Dr

min(S+),
Dr

max(S+), 1 ≤ r ≤ g(s + 1, c), from the known values Dr
min(S), Dr

max(S),
1 ≤ r ≤ g(s, c) where s = |S| and c is the number of points in the c-fold
rotational symmetry that S may finally produce. While we do not know c in
advance, it can be computed during point expansion as described below.

Let Lk = ‖P − Ps+1−k‖, 1 ≤ k ≤ s. From Eq. (2), it can be seen that g(s +
1, c) = g(s, c) or g(s+1, c) = g(s, c)+1. Using Eq. (11) for the computation of
Dr

min(S+) and Dr
max(S+), we just need to decide which distance class Gr(S+),

1 ≤ r ≤ g(s + 1, c), each Lk, 1 ≤ k ≤ s should lie in if S+ is also a seed set.
This is based on the following observation depending on the slot P occupies
in the symmetry:

(1) If s ≤ ⌊c/2⌋, Lk increases with k (see Fig. 7(a)).
(2) If s > ⌊c/2⌋ and c is an odd integer, Lk increases with k at first until it

reaches a maximum at k = ⌊c/2⌋ and k = ⌊c/2⌋+ 1 and then decreases
(see Fig. 7(b)).

(3) If s > ⌊c/2⌋ and c is an even integer, Lk increases with k at first until it
reaches a maximum at k = ⌊c/2⌋ and then decreases (see Fig. 7(c)).

Therefore, in each step of our consecutive point expansion, as s increases, we
can determine whether Lk has reached a maximum. If not, we must have Lk ∈
Gk(S+); otherwise we can now determine c. Once we know c, the computation
of Dr

min(S+) and Dr
max(S+) can be based on Eq. (11). Further details are now

20



P4

L1L
L2

3

P3

P2

P1

L 4

P

(a)

P

P

P

P

L1

L2L3

L

P2

1

3

4

4

(b)

P

L1

L
L3

L4

P

P4

3P2

1P 2

(c)

Fig. 7. Various cases of distance classes during point expansion process.

explained.

Suppose c is not yet known. In this case, we know that s ≤ ⌊c/2⌋. Therefore,
g(s, c) = s − 1 and correspondingly, Ds−1

min (S) = Ds−1
max(S). Furthermore, we

have Lk ∈ G
k(S+), 1 ≤ k ≤ s − 1. However, Ls may possibly belong to any

of Gs−2, Gs−1 or Gs for c = 2(s − 1), c = 2s − 1 and c ≥ 2s respectively,
when S+ is a seed set. In Fig. 7, for example, given S = {P1, P2, P3, P4} for
a valid expansion point P , cases (a), (b), (c) are those for which L4 belongs
to G4, G3 and G2 respectively. Therefore, in order to decide to which distance
class Ls actually belongs, we compute Emin(S+) and Emax(S+) for the three
possibilities of adding Ls to Gs, Gs−1 and Gs−2. Ls is then added to the class
such that Emin(S+) has the smallest value while Emin(S+) < Emax(S+). If Ls

is added to Gs, we leave c undetermined, and to get the next expansion point
after this one, the above process is repeated. If Ls is added to Gs−1, we set
c = 2s − 1. If Ls is added to Gs−2 , we set c = 2(s − 1). Once c has been
determined, Dr

min(S+) and Dr
max(S+) can be computed according to Eq. (11).

Note that we do not estimate c from the angles set up by each consecutive
triple of points in S, since it is difficult to say in the approximate case which
c-fold rotational symmetry an angle corresponds to without additional infor-
mation (especially when c is large). The above approach is compatible with our
point expansion principle, choosing the point P that makes Emin(S+) minimal
among all points in P \ S.

The following observation further simplifies the computation required during
the point expansion. For a valid expansion point P , Emin(S+) < Emax(S+)
must be satisfied. From Eqs. (6), (7), we have that

max
1≤k≤s

(|Lk −Dr
min(S)|, |Lk −Dr

max(S)|) ≤ Emin(S+) < Emax(S+) ≤ Emax(S)).

Thus, Lk must lie in the open interval (Dr
min(S)−Emax(S), Dr

max(S)+Emax(S))
for a valid expansion point, and we can ignore any point not meeting this
condition. This simple observation greatly reduces the amount of computation
required since most points in P \ S typically fall into this category.

21



5.3 Initial symmetry seed sets

Finally, we describe in Section 5.3.1 conditions on a proper initial seed set
consisting of three points for them to produce a potential cycle, and in Sec-
tion 5.3.2 how to compute the first expansion point (which must be treated
as a special case) from such an initial seed set.

5.3.1 Conditions on symmetry initial seed sets

Our point expansion process considers all unordered triples of points in the
input point set as candidates for cycle generation. However, Eq. (9) adds
further conditions on an initial seed for it to be capable of producing cycles,
as we now explain. For this, let an initial seed set triple be the three points
P1, P2, P3. Without loss of generality we assume the points are ordered such
that ‖P1 − P3‖ ≥ ‖P2 − P3‖ ≥ ‖P1 − P2‖.

First we consider the possibility that S possesses a three-fold rotational sym-
metry. I this case the minimal tolerance for S is Emin(S) = ‖P1−P3‖−‖P1−
P2‖, the maximal difference between the edge lengths amongst these points. In
order for these points to represent a three-fold symmetry, in which we cannot
confuse two points, we require that Emax(S) = ‖P1−P2‖. Hence, from Eq. (9),

‖P1 − P3‖ ≤ 2‖P1 − P2‖. (14)

Now suppose that S may be expanded to a symmetric set possessing a c-fold
symmetry with c > 3 and correspondingly g(s, c) ≥ 2 (see Eq. (2)). From
Eqs. (6), (7) we obtain

Emin(S) = ‖P2 − P3‖ − ‖P1 − P2‖,

Emax(S) = ‖P1 − P3‖ − ‖P2 − P3‖.

For S to be a valid seed set, it must satisfy Emin(S) < Emax(S), i.e.

2‖P2 − P3‖ < ‖P1 − P3‖+ ‖P1 − P2‖. (15)

If only one of Eqs. (14) and (15) is satisfied, we can immediately decide whether
the points have three-fold symmetry, or c-fold symmetry for some c > 3.
However, Eqs. (14) and (15) are frequently both satisfied, specifically, if 2‖P2−
P3‖ < 3‖P1 − P2‖. In this case, S can be plausibly either a regular triangle
or a suitable seed set for point expansion; this happens, for example, for the
seed set S = {P1, P2, P3} in Fig. 6. In such situations, we output both as
potential symmetries detected in the point set (the problem of deciding which

22



P

P’

P’5

P

P1

2P
3P

5

4

4

(a)

P1

P2 P3

P4

P5

P6

s−1P
sP

(b)

Fig. 8. Special cases for point expansion

one should be present is left for downstream processing, where higher level
information may be used; also see [8]).

5.3.2 Initial symmetry seed set expansion

Expansion from the initial seed set S of three points is different from the
general point expansion process for a seed set S of |S| > 3 points, as we now
discuss.

Before considering what may happen when we expand an initial seed set S =
{P1, P2, P3} in the approximate case, we first discuss the exact case (i.e. ǫ = 0).
Eq. (1) requires that the following conditions must be satisfied for an expansion
point P4 with ǫ = 0:

‖P4 − P3‖ = ‖P2 − P3‖ = ‖P1 − P2‖, ‖P4 − P2‖ = ‖P1 − P3‖. (16)

These conditions determine two possible locations for P4, denoted P4 and P ′
4:

see Fig. 8(a). They are the intersection points of two circles with centre P3

and radius ‖P2−P3‖, and centre P2 with radius ‖P1−P3‖. However, only P4

can lead to rotational symmetry and is the desired expansion point. The two
points can be distinguished in the exact case by which side of the line P2P3

they lie on. Specifically, we choose the point P which lies on the same side of
the line P2P3 as P1 as the expansion point, i.e. the point which fulfils

((P − P3)× (P2 − P3)) · ((P3 − P2)× (P1 − P2)) > 0. (17)

For ǫ > 0 the case is less straightforward, especially if P1, P2, P3 almost lie
in a line, which corresponds to a c-fold rotational symmetry with large c. In
this case determining the sign of the left hand side of Eq. (17) is ill posed
due to numerical instabilities. Furthermore, note that a point which lies on
the wrong side of the line may still belong to an approximate symmetry. For
example, see Fig. 8(b). Starting from the initial seed set S = {P1, P2, P3},
the point P4 should still be selected even though it lies on the opposite side

23



of P2P3 from P1: a symmetric set with small tolerance can still be generated
using this point.

Our solution to this problem is to consider points on both sides of the line and
check whether a complete cycle can be found. In the exact case, if we expand
P1, P2, P3, P4 further, we get a potential cycle, while exact expansion from
P1, P2, P3, P

′
4 would produce a zig-zag line, not a cycle. Consider Fig. 8, for

example. Applying a further expansion step from both S ∪{P4} and S ∪{P ′
4},

we would obtain P5 and P ′
5 respectively. P1, . . . , P5 form a seed set that may

finally lead to a cycle, while P1, P2, P3, P
′
4, P

′
5 only yield a zig-zag line.

Now consider the approximate case (ǫ > 0). Denote by P∗ the set of all points
fulfilling Emin(S ∪ {P}) < Emax(S ∪ {P}), P ∈ P \ S. This set is divided into
two categories: points P∗

s lying on the same side of the line P2P3 as P1, and
points P∗

d lying on the opposite side. We choose whichever point minimises
Emin(S ∪ {P}) in P∗

s , and again in P∗
d , and do further point expansion from

both in order not to lose potential symmetries. No unnecessary symmetries
will be introduced by this strategy, as further explained. Provided we have no
symmetries like those in Fig. 8(b), expansion from the point chosen from P∗

s

produces a cycle (if it exists), while the point from P∗
d can only give a zig-zag

line. If, however, we have a case like Fig. 8(b), the selected points from P∗
s

and P∗
d may produce two cycles which are only different in the fourth point,

and are otherwise very close to each other. Selection between them will be
decided by further unambiguity checking—either one of them will be chosen,
or neither of them.

Note that this situation can only arise when expanding an initial seed set
consisting of three points. If s = |S| ≥ 4, Ps+1 is uniquely determined by the
point P that minimises Emin(S ∪ {P}) amongst all valid expansion points in
P \ S, as illustrated in Section 5.2.1.

6 Unambiguous cycles of 3D point sets

In this section we describe the modifications needed to our 2D unambiguous
cycle detection algorithm for 3D point sets. It is again based on the idea of
expanding an initial seed set consisting of three points. The main difference is
that in the 3D case, we have to consider rotation-reflection cycles, i.e. vertices
of an anti-prism, as well as rotation cycles.

24



6.1 Unambiguous cycle types in 3D

The unambiguous cycles that can arise in 3D are the ordered vertices of the
following shapes: tetrahedrons, regular polygons and anti-prisms (alternate
vertices taken from opposite ends). Here, again, we start by considering exact
symmetries of such types.

The following theorem states the condition under which an initial seed set can
only be expanded into a point sequence lying in a plane, leading to symmetry
defined by a regular polygon: the fourth expansion point lies on the plane
determined by the initial seed set. As in the 2D case, expansion points from
an initial seed set are still determined by the distance constraints as prescribed
by Eq. (1) for ǫ = 0 or equivalently Emin(S) = 0.

Theorem 4 Assume throughout the tolerance ǫ = 0. Let S = {Pk : 1 ≤
k ≤ 4} ⊂ E

3 be a coplanar seed set. The next expansion point P5 is uniquely
determined by S such that S ∪ {P5} is a seed set, and any further expansion
of S results in a coplanar set.

Proof: A seed set is only prescribed by the distances between its points. From
the analysis in 2D, P4 may lie to the left or right of the line P2P3 in the plane
P1, P2, P3. We assume that P4 lies on the same side of the line P2P3 as P1. The
proof of the case where P4 lies on the other side proceeds in a similar manner.
From Eq. (1), the fifth expansion point from S is determined by

‖P5−P4‖ = ‖P1−P2‖, ‖P5−P3‖ = ‖P1−P3‖, ‖P5−P2‖ = ‖P1−P4‖. (18)

This means that P5 lies at the intersection of three spheres: S1 with centre
P4 and radius ‖P1 − P2‖, S2 with centre P3 and radius ‖P1 − P3‖, S3 with
centre P2 and radius ‖P1 − P4‖. S1 and S2 always intersect in a circle C with
centre O on the line P3P4 (see Fig. 9(a)). Let P5 and P ′

5 be the intersection
points between circle C and plane P1, P2, P3. P5 lies on the same side of line
P3P4 as P2 and P ′

5 the other side. P5 is the unique expansion point we are
looking for. Firstly, ‖P5 − P2‖ = ‖P1 − P4‖, as the polygons P1, P2, P3, P4

and P2, P3, P4, P5 are congruent. Next, as the line P2P5 is parallel to P3P4

and P3P4 is perpendicular to the plane the circle C lies in, line P2P5 is also
perpendicular to the plane of C. Thus, the distance between P2 and all other
points on C than P5 is greater than ‖P2 − P5‖. Thus P5 is the unique point
satisfying Eq. (18). 2

We now give a further analysis for other 3D symmetries.

Let {P1, P2, P3} be an initial seed set of 3D points (see Fig. 9(b)), and P4 be
the next expansion point determined by Eq. (1) at ǫ = 0. Hence, P4 must lie
on the circle C formed by the intersection of two spheres, with centre P3 and

25



P’5

CO
P5

P1

P3

P4

P2

(a)

C

P4

P3

P4

P1 P4

P2

(b)

P2

P3

P4

P’5
P1

ß

ß
ß

P5

(c)

Fig. 9. Analysis of 3D point expansion

radius ‖P2 − P3‖, and P1 with radius ‖P1 − P3‖, respectively. Depending on
the different locations of P4, different types of symmetry are possible.

Clearly, a regular tetrahedron is produced if all the distances between each
pair of points are the same. As noted in Theorem 4, if P4 lies on the plane
P1P2P3, the points can belong to a regular polygon. Finally, suppose P4 does
not lie in the plane P1P2P3, and the dihedral angle (at edge P2P3) between
the adjacent triangles P1P2P3 and P2P3P4 is β. Continuing from P1, P2, P3,
P4 there are two possible expansion points, P5 and P ′

5, such that Eq. (18) is
satisfied (see Fig. 9(c)). P5 and P ′

5 lie on different sides of plane P2P3P4 and
they determine two triangles P3P4P5 and P3P4P

′
5 respectively, each of which

makes a dihedral angle β with triangle P2P3P4 along edge P3P4. Suppose P5

lies on the same side of the plane P2P3P4 as P1 while P ′
5 on the other side.

In a similar manner to the 2D case, further expanding (P1, P2, P3, P4, P
′
5) pro-

duces a zigzag line in 3D space, which is caused by evenly distributed points
on a helix (leading to an infinite screw symmetry, which we ignore here). In
the other case, (P1, P2, P3, P4, P5) leads to a uniquely determined rotation-
reflection symmetry case.

In 3D, when finding unambiguous cycles involving the detection of the orbit
of a single point, there are two cases to consider: isometries which preserve
orientation and isometries which invert the orientation of space. The orien-
tation preserving isometries are rotations giving regular polygons as unam-
biguous cycles. The orientation inverting isometries consist of combinations
of rotations and reflections, which means we have to also consider elementary
rotation-reflection symmetries as described above.

6.2 Point expansion in 3D in the approximate case

Section 6.1 analyses the cycles that may arise in 3D in the exact case. Based
on these ideas, we now explain how similar cycles can be obtained in 3D in the
approximate case using a point expansion approach starting from an initial
three-point seed set. In particular, we illustrate how the point expansion pro-

26



cess used in the 2D case can be applied in 3D to rotation-reflection symmetry
detection.

The core algorithm used for 3D unambiguous cycle detection is similar to the
one used in 2D. Given an initial seed set S = {P1, P2, P3} taken from the
input point set P ⊂ E

3, we choose all possible expansion points P4 and then
expand further from each of them if possible. As noted in Section 6.1, the fifth
expansion point can be in two different positions of which only one can lead to
a valid unambiguous cycle. Thus, following a similar approach to the 2D case,
we divide all potential expansion points into two sets according to which side
of the plane P2P3P4 they lie on and use the same reasoning as in the 2D case
to find in each set an optimal expansion point leading to an unambiguous set,
if one exists. Finally, its unambiguity condition is checked similarly as the 2D
case.

However, applying this expansion process directly prevents certain rotation-
reflection symmetries from being detected. This is because for a regular poly-
gon, the distance equivalent classes as defined by Eq. (3) increase (in the sense
of their elements) as r (the index difference between points as used in Eq. (3))
increases, but this is not satisfied for an anti-prism. We handle this case by
distinguishing distance classes that contain distances between points in op-
posite ends of an anti-prism from classes containing distances between points
from the same end of the anti-prism, as we now explain.

We recall some ideas from 2D point expansion: we start with a 2D seed set
S, s = |S| with maximal and minimal distances Dr

min(S), Dr
max(S), 1 ≤ r ≤

g(s, c) for each distance class as defined by Eq. (4). For any point P ∈ P \ S
we let Lk = ‖P − Ps+1−k‖, 1 ≤ k ≤ s. The point expansion algorithm is
based on Theorem 1, which states that the next expansion point P must
satisfy Emin(S + {P}) < Emax(S + {P}). The computation of Emin(S + {P}),
Emax(S + {P}) involves two important monotonicity conditions:

(i) Dr
min(S) ≤ Dr

max(S) < Dr+1
min (S) ≤ Dr+1

max(S) for S to be a valid seed set,
which can be seen from Eq. (5);

(ii) Lk increases with k at first until a maximum is reached at k =
⌊

c
2

⌋

and then

decreases (see Section 5.2.2).

In 3D, however, these monotonicity properties are in general not satisfied by a
point set with rotation-reflection symmetry. For example, consider the points
forming a rotation-reflection symmetry in Fig. 10. We may have ‖P5 − P3‖ <
‖P5 − P4‖ or even ‖P5 − P1‖ < ‖P5 − P4‖ if we increase the distance between
the points on the top plane and bottom plane along the normal direction. In
such cases Emin(S + {P}), Emax(S + {P}) have to be handled differently so
that Theorem 1 remains valid.

27



P2

P1

P3

P4

P5

Fig. 10. Crown symmetry detection

When rotation-reflection symmetry is present, if we split each set Dr
min(S),

Dr
max(S) and Lk into subsets with even and odd indices, denoted as Dr,o

min(S),
Dr,e

min(S), Dr,o
max(S), Dr,e

max(S) and Lo
k, L

e
k, we can see that a monotonicity con-

dition similar to the 2D condition (conditions (i) and (ii) listed above) is
separately satisfied by each subset. We can then consider the even and odd
cases separately first, and then combine them together for rotation-reflection
cycle generation. Specifically, for each point P ∈ P \S, we first compute from
Dr,o

min(S), Dr,o
max(S), Lo

k and Dr,e
min(S), Dr,e

max(S), Le
k as described in Section 5.2.2

to give Eo
min(S∪{P}), Eo

max(S∪{P}) and Ee
min(S∪{P}), Ee

max(S∪{P}) respec-
tively. If Ex

min(S∪{P}) ≥ Ex
max(S∪{P}) for x = o or x = e, the point P is not

a valid expansion point. Otherwise, we next set Emin(S∪{P}) = max(Eo
min(S∪

{P}), Ee
min(S∪{P})) and Emax(S∪{P}) = min(Eo

max(S∪{P}), E
e
max(S∪{P}))

to maintain the interval of valid tolerances. If Emin(S∪{P}) ≥ Emax(S∪{P}),
the point is again not a valid expansion point. A similar idea is used to gener-
alise the unambiguity verification from 2D to 3D using the same computation
for Emin(S ∪ {P}).

Finally, based on the above analysis, we note that for a rotation-reflection
symmetry, it may be possible that ‖P1 − P3‖ < ‖P1 − P2‖ for the initial seed
set. So the condition on finding the initial three points for the seed set is
relaxed to max(|‖P1 − P3‖ − ‖P1 − P2‖|, |‖P1 − P3‖ − ‖P2 − P3‖|) < ǫ∗ with
ǫ∗ = min(‖P1 − P2‖, ‖P2 − P3‖, ‖P1 − P3‖).

7 Time Complexity

The time complexity of our algorithm is O(Cn4), where n is the number of
points in the input point set and C is the maximal symmetry order present
(usually a small integer). This is easily seen as all triples of points are taken
as seed points, and then each remaining point is considered as an expansion
point at each step until we have a cycle (or we exit without finding one).

Brass’ [18] presents a deterministic algorithm to find all exact local symmetries
in O(n2.136+ǫ) time. Aloupis et al [25] improve this using a randomised algo-

28



rithm which can detect regular polygons with high probability in O(n2.068+ǫ)

time. Although the time order of these algorithms is smaller, they only solve
the exact problem and approximate symmetry detection is much more com-
plex as global properties have to be considered. No previous work on ap-
proximate local symmetry (i.e. regular polygon) detection exists as far as we
know. Finding global approximate symmetry is NP-hard under the definition
of Iwanowski [27]. Under other different definitions provided to facilitate detec-
tion, approximate global symmetry detection requires high-order polynomial
time: O(n8) using Alt et al’s method [22] and O(n3.5 log4 n) using Mills et al’s
method [6]. In this context, we consider time O(n4) to be acceptable.

For large point sets, in the approximate case, there is potentially a large num-
ber of unambiguous cycles. To increase the speed of the algorithm, as well as
the usefulness of the answers, we suggest that feature detection algorithms,
such as regularity feature trees [30], may help to reduce the complexity of
the problem for practical use, by dividing the input into several smaller sub-
problems.

8 Experiments

In this section we present various examples of using our approach to detect
unambiguous cycles in 2D and 3D point sets. The algorithm was implemented
on Linux in Matlab running on a Pentium 4 3.4GHz with 1GB RAM. We
would expect a C++ implementation to be much quicker than this Matlab
prototype. Section 8.1 considers 2D cases, and Section 8.2 shows cases derived
from 3D CAD models.

Note that if C has a c-fold rotational symmetry at tolerance ǫ, by definition
it must have subsets displaying a c′-fold rotational symmetry with tolerance
not greater than ǫ for any factor c′ ≥ 1 of c. For clarity of presentation, such
symmetries are not shown in these examples although they are also output.
Furthermore, we do not show the detected three-fold symmetries or 3D sym-
metries consisting of four points, of which there are usually many.

Most spurious symmetries are only present at large tolerance values and can
easily be suppressed if a user-supplied maximal tolerance of interest is given.
Often it is very simple to select a suitable cut-off tolerance after the symme-
tries at various tolerances have been detected. However, as we are detecting
approximate symmetries, not all symmetries at low tolerance are automati-
cally also symmetries which are intended. Our algorithm detects symmetries
which are unambiguously present in the data at various tolerance levels. Down-
stream processes must decide which of these symmetries should be considered
for further processing.

29



Fig. 11. 2D points with intended (left) and unintended (right) unambiguous cycles;
running time for this example: 2.37s

8.1 2D Examples

This section discusses the results of determining 2D unambiguous cycles in
various examples.

First, we considered the algorithm’s ability to detect intended symmetries in
sets of points derived from regular shapes. We took 25 points from the vertices
of a twelve-fold regular polygon of radius 1.0, one five-fold regular polygon of
radius 0.5 and two squares of radii 0.5 and 0.2. The twelve-fold regular polygon
was placed at the origin and the others centre at various locations. In the
example shown, these centres were as (0.−0.25), (−0.2, 1.05), (1.5, 0.2), chosen
to carefully place points from different polygons close to each other so we could
assess the quality of the results produced by the point expansion process. The
coordinates of the points in each original exact regular polygon were disturbed
by uniformly distributed random errors less than 0.01, 0.04, 0.033 and 0.01
respectively. Overall 30 randomly generated arrangements of this type were
used for testing, one of which is shown in Fig. 11. The left image shows the
symmetries used to generate the set, which were also detected successfully, and
the right image shows additional unintended symmetries also detected. The
tolerances at which these were present are also given in the top-right legends.

All four initial polygons were detected in each test, taking an average time
of 2.5s. Furthermore, at most five additional symmetries were detected. As
we are looking for approximate symmetries, such additional sets cannot be
avoided in general. As can be seen in Fig. 11, the unintended symmetries not
only have much larger tolerances (at least 10 times larger) than the intended
symmetries, but also are inconsistent with some of the intended symmetries—
for example, three points are shared by the intended twelve-fold symmetry and
the unintended five-fold symmetry. The tolerance information can be used
in combination with a consistency check to separate the intended from the

30



Fig. 12. 2D points on a 4× 4 regular grid and 20 random points

unintended symmetries (see [8]).

The example in Fig. 11 shows the algorithm’s stability with respect to noisy
point sets with intended symmetries. To test the algorithm’s behaviour given
random points, examples like Fig. 12 were also considered. 36 points were
generated of which 16 were arranged on a 4×4 regular grid in [0, 1]×[0, 1] (dark
points) and the other 20 were chosen randomly with a uniform probability
distribution in the same area (light points). These light points disturb the
symmetries generated by the dark points. Over 30 tests on such arrangements
were executed. Within at most 10s, the 20 square symmetries induced by the
points on the 4× 4 grid were always detected at tolerance 0 (see the first four
rows of Fig 12). The random points led to several other symmetries (at most
five per test) also being detected; examples being given in the last row, with
tolerances of 0.0459, 0.0471, 0.0570, 0.0801, 0.1063 respectively.

Tests on uncorrelated random points uniformly distributed in [0, 1]×[0, 1] were
also performed to test the algorithm’s performance in detecting unintended
symmetries. The results of 30 tests using 30 random points are summarised in
Fig. 13. The black line gives the running time in seconds, the red line shows
the number of detected symmetries, and the blue line indicates approximate
tolerances multiplied by 100 in each test. As seen from the figure, in 5 tests no

31



Fig. 13. Experimental results on 30 tests of 30 2D random points.

symmetry was found, in 16 tests between 1 and 2 symmetries were found, in 7
tests between 3 and 4 symmetries, and in 2 tests 6 symmetries were detected.
The tolerances of the symmetries found range from 0.0159 to 0.0838. Such
good performance strongly suggests that only few unintended symmetries, as
detected by our algorithm, are introduced by randomly distributed points.
All the tests took 2 to 4 seconds to compute, which shows the algorithm’s
efficiency.

In summary, these and other 2D examples show that our algorithm can ro-
bustly detect all potential intended 2D symmetries within one minute for up
to about 100 points. Also note that for many typical CAD models, planar
symmetries dominate in engineering, e.g. see the complex model in Fig. 1. In
such cases, the 2D symmetry detection algorithm can be used directly if these
planes are detected explicitly beforehand.

8.2 3D Examples

In this section we show the performance of the 3D version of our algorithm
on discrete point sets extracted from CAD models.

The MISUFA model in Fig. 15(a) came from Cadalog, Inc., http://www.

ohyeahcad.com/, and the other two in Fig. 1 and Fig. 14(a) from the National
Design Repository, http://www.designrepository.org/. For simplicity, the
discrete points used in our tests here were the model vertices instead of being

32



(a) (b)

Fig. 14. The symmetries of extracted points from the Vise-guide model

the complete set of characteristic points discussed earlier. These exact models
were perturbed using uniformly distributed random errors dependent on the
objects’ sizes; details are given later. This allows us to compare the symmetries
that our algorithm detects with the intended symmetries that really exist.

In the first test, 68 discrete points were extracted from the model in Fig. 14(a).
The maximal and minimal distances between these distinct points are 2.3607
and 0.054 respectively. These extracted points were then disturbed by uni-
formly distributed random errors less than 0.01. It took 38.9 seconds to detect
the 4 hexagonal symmetries shown in Fig. 14(b). The same symmetries are
obtained when running our algorithm on the exact point set yielding toler-
ances 0, 0, 0.0154, 0.0154 for the hexagonal symmetries in 36.2 seconds. The
two symmetries at tolerance zero correspond to the two in Fig. 14(b) drawn
in dashed lines. The non-zero tolerances for the other two symmetries orig-
inate from the actual model. To further check the algorithm performance,
the extracted points were disturbed by larger errors: uniformly distributed
random errors of less than 0.05. Note that such errors are quite close to the
minimal inter-point distance 0.054. Then, only two hexagonal symmetries are
detected respectively at tolerance 0.114 and 0.122, which corresponds to the
two symmetries originally at tolerance zero (in dashed lines). The other two
symmetries were no longer detected, as their regular distribution were de-
stroyed by such large induced errors. This demonstrates that our algorithm
is capable of detecting intended symmetries at large tolerances, but also only
finds unambiguous symmetries and yields overall less unintended symmetries.
No other unintended symmetries were detected during all the tests.

In the next example, the 123 vertices of the MISUFA model in Fig. 15(a) were
disturbed by uniformly distributed random errors of less than 0.02. (Maximal
and minimal inter-point distance in the original exact model are 2.3607 and

33



(a) (b)

Fig. 15. The symmetries of extracted points from the MISUFA model

0.054 respectively). All the eight detected symmetries are shown in Fig. 15(b)
at similar tolerances on average 0.0247. The model has no global symmetries.
The cycles detected by our algorithm include four rotational cycles (blue lines)
and 4 rotation-reflection cycles (red lines). The rotational symmetries are ob-
vious hexagonal parts of the model; the rotation-reflection symmetries come
from combination of rotational symmetries.

We also tested our algorithm with the Monster part in Fig. 1. A total of
438 points were extracted. As other examples, these points were disturbed by
uniformly distributed random errors of less than 0.1. To improve the algorithm
performance, we first divided the extracted points into 8 regions by planes
orthogonal to the z coordinate axis at z heights −25, 0, 20, 40, 60, 70, 90 (see
Fig. 16(c)); the original z coordinates were in [−50, 100]. (This planar division
is straightforward for a user to do and is a reasonable approach, as planar
symmetries dominate in engineering, and rotation-reflection symmetries also
consist of two planar symmetries).

Using this approach, it took 345s to detect 58 unambiguous cycles. An overall
view, a top view, a side view and a close-up view are shown in Fig. 16(a), (b),
(c) and (d) respectively. The detected symmetries can be explained as (i) the
five eight-fold rotational symmetries, drawn in red, with an average tolerance
0.094, which come from the eight cylindrical holes; (ii) the five sixteen-fold
rotational symmetries, drawn in black, with average tolerance 0.1764, which
come from the 16 slots around the centre; (iii) the 24 smaller square symmetries
along the sides, drawn in green, with average tolerance 0.1364, from the square
slots at the sides; (iv) the 24 large square symmetries along the sides, drawn in
red, with average tolerance 5.0100, from the rectangular slots at the sides. As

34



(a) (b)

(c) (d)

Fig. 16. The symmetries of extracted points from the Monster model (see Fig. 1)

seen from the model, the first three types at smaller tolerance are all intended
symmetries, while the fourth type were originally rectangles but detected as
squares at a large tolerance.

In a manner similar to the above examples, we have tested our algorithm with
various other approximate CAD models, most of which were obtained from
the National Design Repository, http://www.designrepository.org/. They
were disturbed by uniformly distributed random errors. These models include
simple models such as cubes with some blends or complex models such as
the Monster model (Fig. 1). The number of discrete points extracted from
these models ranged from 36 to 438 and it took between 5s and 345s to detect
symmetries. In each case, all intended symmetries that could be detected at
zero tolerance in the original CAD model were detected as unambiguous cycles
from the disturbed extracted points. In addition to these symmetries, other
unintended symmetries were also detected; in all cases there was clear evidence
in the model for their presence. Most unintended symmetries, however, were
present at larger tolerances than the intended symmetries and, hence, could
easily be identified.

Depending on the amount of noise added to the points compared to the dis-

35



tances between the points, some unintended symmetries were at the same
tolerances as the intended symmetries. For these a downstream process would
have to employ a more sophisticated selection process, e.g., as discussed in [8].
When we added a larger amount of noise (on the level of the smallest distance
between points), some intended symmetries were not detectable anymore. We
note that such cases cannot in general be avoided when detecting approxi-
mate symmetries and our algorithm only detects symmetries for which there
is clear, unambiguous evidence present in the model.

Again, we address the advantage of our algorithm that instead of selecting an
arbitrary tolerance in advance, the algorithm selects suitable tolerance levels
as the symmetries are detected.

9 Conclusion

In this paper a novel definition of approximate subset symmetries of discrete
point sets has been given, together with an algorithm to find them. It is
suitable for finding approximate symmetries in B-rep models, by carefully
choosing characteristic points from the model, including vertices and other
special points. Our algorithm avoids generating large numbers of spurious
approximate symmetries by automatically deducing tolerance levels at which
subsets unambiguously exhibit symmetries. Our experiments demonstrate the
ability of our algorithm to find all expected symmetries. Only few unintended
symmetries are detected when tested in practice on CAD models. The latter
are almost always found at larger tolerance values, giving a simple criterium
to decide which symmetries are likely to be intended by the designer. Our
algorithm takes time O(Cn4) for a point set with n points, and maximal
symmetry order C. In practice, our prototype Matlab implementation detects
symmetries in an acceptable amount of time, in the context of a complete
reverse engineering process, for example; furthermore we would expect a C++
implementation to be considerably faster.

In this paper we detect unambiguous cycles which describe orbits of points
only. In future work we intend to consider the problem of combining such
orbits into sets which approximately share the same geometric symmetry—for
example, the five eight-fold symmetries in Fig.16 can actually be merged into
a single eight-fold rotational symmetry. We also intend to investigate the use
of this algorithm for design intent detection.

36



Acknowledgements

We thank the reviewers for their comments, which have helped to improve the
paper.

References

[1] B. Mills, F. Langbein, A. Marshall, R. Martin, Estimate of frequencies of
geometric regularities for use in reverse engineering of simple mechanical
components, Tech. Rep. GVG 2001–1, Geometry and Vision Group, Dept.
Computer Science, Cardiff University, http://ralph.cs.cf.ac.uk/papers/

Geometry/survey.pdf (2001).

[2] D. W. Thompson, On Growth and Form, Cambridge University Press, 1917,
1942.

[3] K. Barratt, Logic and Design in Art, Science and Mathematics, Herbert Press,
London, 1989.

[4] T. Varady, R. Martin, J. Cox, Reverse engineering of geometric models - an
introduction, Computer-Aided Design 29 (4) (1997) 255–268.

[5] M. Pratt, B. Anderson, T. Ranger, Towards the standardized exchange of
parameterized feature-based CAD models, Computer-Aided Design 37 (12)
(2005) 1251–1265.

[6] B. Mills, F. Langbein, A. Marshall, R. Martin, Approximate symmetry
detection for reverse engineering, in: Proc. 6th ACM Symp. Solid and Physical
Modeling, 2001, pp. 241–248.

[7] C. Gao, F. Langbein, A. Marshall, R. Martin, Approximate congruence
detection of model features for reverse engineering, in: Proc. Int. Conf. Shape
Modelling and Applications, 2003, pp. 69–77.

[8] F. Langbein, D. Marshall, R. Martin, Choosing consistent constraints for
beautification of reverse engineered geometric models, Computer-Aided Design
36 (3) (2004) 261–278.

[9] D. Reisfeld, H. Wolfson, Y. Yeshurun, Context-free attentional operators: the
generalized symmetry transform, Int. J. Computer Vision 14 (2) (1995) 119–
130.

[10] C. Sun, J. Sherrah, 3D symmetry detection using the extended Gaussian image,
IEEE Trans. Pattern Analysis and Machine Intelligence 19 (2) (1997) 164–168.

[11] D. Shen, H. Ip, K. Cheung, E. Teoh, Symmetry detection by generalized
complex (GC) moments: a close-form solution, IEEE Trans. Pattern Analysis
and Machine Intelligence 21 (5) (1999) 466–476.

37



[12] G. Loy, J. Eklundh, Detecting symmetry and symmetric constellations of
features, in: ECCV 2006, Part II, LNCS 3952, Springer-Verlag, 2006, pp. 508–
521.

[13] A. Martinet, C. Soler, N. Holzschuch, F. X. Sillion, Accurate detection of
symmetries in 3D shapes, ACM Trans. Graph. 25 (2) (2006) 439–464.

[14] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, T. Funkhouser, A
planar-reflective symmetry transform for 3D shapes, Proc. SIGGRAPH 2006,
ACM Trans. Graph. 25 (3) (2006) 549–559.

[15] N. Mitra, L. Guibas, M. Pauly, Partial and approximate symmetry detection
for 3D geometry, Proc. SIGGRAPH 2006, ACM Trans. Graph. 25 (3) (2006)
560–568.

[16] E. Lockwood, R. Macmillan, Geometric Symmetry, Cambridge University Press,
1978.

[17] K. Sugihara, An n log n algorithm for determining the congruity of polyhedra,
Journal of Computer and System Sciences 29 (11) (1984) 36–47.

[18] P. Brass, On finding maximum-cardinality symmetric subsets, Computational
Geometry 24 (2003) 19–25.

[19] X. Gao, Q. Lin, G. Zhang, A C-tree decomposition algorithm for 2D and 3D
geometric constraint solving, Computer-Aided Design 38 (1) (2006) 1–13.

[20] K. Kanatani, Comments on ’symmetry as a continuous feature’, IEEE Trans.
Pattern Analysis and Machine Intelligence 19 (2) (1997) 246–247.

[21] J. Wolter, T. Woo, R. Volz, Optimal algorithm for symmetry detection in two
and three dimensions, The Visual Computer 1 (1985) 37–48.

[22] H. Alt, K. Mehlhorn, H. Wagener, E. Welzl, Congruence, similarity and
symmetries of geometric objects, Discrete Computational Geometry 3 (1988)
237–256.

[23] X. Jiang, K. Yu, H. Bunke, Detection of rotational and involutional symmetries
and congruity of polyhedra, The Visual Computer 12 (4) (1996) 193–201.

[24] P. Brass, C. Knauer, Testing congruence and symmetry for general 3-
dimensional objects, Computational Geometry 27 (2004) 3–11.

[25] G. Aloupis, J. Cardinal, S. Collette, J. Iacono, S. Langerman, Where to build a
temple, and where to find one, in: 22nd European Workshop on Computational
Geometry (EWCG’06), 2006, pp. 1–4.

[26] S. Tate, G. Jared, Recognising symmetry in solid models, Computer-Aided
Design 35 (7) (2003) 673–692.

[27] S. Iwanowski, Testing approximate symmetry in the plane is NP-hard,
Theoretical Computer Science 80 (1991) 227–262.

38



[28] H. Zabrodsky, S. Pelog, D. Avnir, Symmetry as a continuous feature, IEEE
Trans. Pattern Analysis and Machine Intelligence 17 (12) (1995) 1154–1166.

[29] R. Martin, D. Dutta, Tools for asymmetry rectification in shape design, J.
Systems Engineering 6 (1996) 98–112.

[30] M. Li, F. C. Langbein, R. R. Martin, Constructing regularity feature trees for
solid models, in: Proc. Geometric Modeling and Processing, Springer, 2006, pp.
267–286.

39


