
Segmenting Reliefs on Triangle Meshes

Shenglan Liu∗ Ralph R. Martin Frank C. Langbein Paul L. Rosin

School of Computer Science, Cardiff University
{Shenglan.Liu, ralph, F.C.Langbein, Paul.Rosin}@cs.cf.ac.uk

Figure 1: A porcelain relief and a corresponding segmented triangle mesh

Abstract

Sculptural reliefs are widely used in various industries for purposes
such as applying brands to packaging and decorating porcelain. In
order to easily apply reliefs to CAD models, it is often desirable
to reverse-engineer previously designed and manufactured reliefs.
3D scanners can generate triangle meshes from objects with reliefs;
however, previous mesh segmentation work has not considered the
particular problem of separation of reliefs from background. We
consider here the specific case of segmenting a simple relief de-
limited by a single outer contour, which lies on a smooth, slowly
varying background. Generally, such reliefs meet the surrounding
surface in a small step, enabling us to devise a specific method for
such relief segmentation.

We find the boundary between the background and the relief using
an adaptive snake. It starts at a simple user-drawn contour, and is
driven inwards by a collapsing force until it matches the relief’s
boundary. Our method is insensitive to the choice of the initial
contour. The snake’s limiting position is controlled by a feature
energy term designed to find a step. A refinement strategy is then
used to drive the snake into concavities of the relief contour.

We demonstrate operation of our algorithm using real scanned mod-
els with different relief contour shapes and triangle meshes with
different resolutions.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: Relief segmentation, snakes, mesh processing.

∗Corresponding author

1 Introduction

Complex decorative reliefs are often added to CAD models in such
application areas as sign-making, packaging, and ceramics to make
product designs more interesting, more characteristic of the com-
pany, or of higher intrinsic value. A typical example is the Wedg-
wood item shown on the left in Figure 1. New reliefs can be cre-
ated from 2D artwork using software such as Delcam’s ArtCAM,
or can be hand-crafted, typically on a planar surface, and reverse-
engineered using a 3D scanner. Extracting a relief from a planar
background surface is a trivial task. However, in other cases it is
desired to scan an existing relief lying on a curved object, rather
than generating a new design. As in general such reliefs lie on
freeform surfaces, reverse engineering methods are needed to sep-
arate the relief from the non-planar background, and to assist in the
application of the relief to a different base surface.

A real world example of the need for reverse engineering reliefs oc-
curs in the porcelain industry. When extending an existing range of
porcelain, it is essential for any new item to exactly match existing
designs on old items. At present it is necessary for a sculptor to
hand-copy existing relief designs, a process that is time consuming
and tedious for the artist, and expensive for the manufacturer—if
indeed he can find suitably skilled workers. Clearly, the ability to
automatically extract the relief, flatten it and then apply it to a new
object would greatly reduce production time, and has the potential
to produce better results.

To be more precise, in this paper, we define a relief to be extra
material added locally to some underlying surface. This added ma-
terial forms a surface with sculpted features clearly different from
the underlying surface. In particular, we assume that the relief has
a small height relative to the characteristic size of features on the
underlying surface, which allows us to distinguish between the two
surface regions. (There is nothing in principle, however, to prevent
our methods being applied to ‘negative reliefs’, i.e., embossing, too,
after making suitable minor changes).

There are various kinds of reliefs, and they can be imposed on di-
verse backgrounds. The simplest kind of relief is an isolated relief,
which is bounded by a single outer contour (and which may also
contain inner contours). See, for example, the duck in Figure 1.
Other reliefs may be cyclic and wrap right around the object, such

Figure 2: Relief on a textured background

as the frieze around the rim in Figure 1. A more complex kind of
relief is a backgroundless relief where the relief covers all or most
of the surface of the model—we may envisage the model as hav-
ing some smooth underlying surface over which a relief is applied
everywhere. Relief processing also needs to take into account the
nature of the background surface: the underlying surface maybe
relatively simple and smooth, as in Figure 1, or more intricate—
in more complex cases, the background can itself be textured, as
in Figure 2. We could consider this object to be covered with a
backgroundless relief, but alternatively, we might be interested in
segmenting the bird and branch from the underlying pattern, which
would then be considered to be a textured background.

In this paper we address a particular problem in reverse engineer-
ing of reliefs; other cases are to be considered in future work. We
assume we are given as input a triangular mesh created from data
points captured by a 3D scanner. Here we only consider the simple
problem of segmenting the part of the mesh delimited by the outer
contour of an isolated relief which lies on a smooth and slowly vary-
ing background. There may be multiple isolated reliefs present on
the original object; we assume that the user draws a rough closed
contour on the mesh around one relief to indicate which relief is
to be segmented. This is done by specifying a few points on the
mesh which are then automatically joined across the mesh; these
may be relatively far from the relief. We can also handle the case
where the relief is bounded by an open contour, as seen for exam-
ple in Figure 7(c); in this case the user must indicate on which side
of the initial contour the relief lies. We hope to extend our results
to more complex reliefs and backgrounds in future, and so the ap-
proach taken has future generalisability in mind.

Our method uses a snake which starts from the user-drawn contour,
and evolves until it matches the boundary of the relief. We adapt
the snake to suit the mesh resolution, and allow most of the pa-
rameters to be determined automatically, minimising the need for
non-technical users to have to understand and specify control pa-
rameters, whilst also providing high performance.

In Sections 2 and 3 we review closely related work: we briefly
discuss the original idea of snakes as used for segmenting images,
and their generalisation to 3D surfaces. In Section 4 we explain
the novel contributions of this paper. The following Sections give
details of our method: Section 5 explains the energy terms we use to
control the snake and Section 6 describes the evolution process for
the snake, Section 7 gives further implementation details, especially
of the parameters used to control the method. Experiments using
such snakes show that they can quickly and effectively determine
isolated reliefs, as discussed in Section 8. Section 9 concludes the
paper and gives various ideas for future extensions of our approach
to other relief types.

2 Snakes on 2D Images

Snakes (or, more formally, active contour models) were originally
proposed by Kass et al. [1988], and have been widely used for im-
age segmentation and motion tracking in computer vision and im-
age analysis. The basic idea is to deform a starting curve to an
energy-minimising position under the influence of internal and ex-
ternal forces, in order to detect or follow features in an image or
image sequence. Internal forces coming from the curve itself shrink
and smooth the curve. External forces derived from the image help
to drive the curve toward the desired features of interest using an it-
erative process. The snake evolves until an equilibrium of all forces
is reached, which is equivalent to a minimum of the energy func-
tion.

There are two main limitations of the original snake approach.
Firstly, the initial contour needs to be quite close to the object, oth-
erwise the snake may converge to the wrong result, getting stuck in
a local minimum. Secondly, when the object being sought is non-
convex, snakes have difficulties in following the object’s boundary
in concavities. Both of these difficulties can also be encountered
when using snakes for relief contour extraction.

If the snake is too sensitive to choice of initial contour, this forces
the user to trace a starting contour which reasonably follows the
complicated concavities and convexities of the relief’s boundary,
which is tedious and error-prone. In practice, concavities are very
common on relief contours, and often they can be very deep and
narrow. Various methods have been proposed to address the prob-
lem of initial contour sensitivity by modifying the external forces.
The ‘balloon’ model [Cohen 1991] adds an additional pressure
force (which can be inflationary or deflationary) to make the con-
tour behave like a balloon. This helps avoid the contour getting
stuck at weak features caused mainly by noise, and aiding conver-
gence onto a more distant strong boundary. However, this intro-
duces the new problem of choosing an appropriate pressure force.

Cohen and Cohen [1993] suggests employing an attractive force
derived from the edge map of the image to provide a larger capture
range for the snake in order to address the limitation on placement
of the initial contour. Xu and Prince [1998] employs a gradient vec-
tor flow, an external force computed as a diffusion of the gradient
vectors of a gray-level or binary edge map derived from the image,
to address both limitations.

3 Snakes on 3D Surfaces

When extending the ideas of snakes from 2D images to 3D mesh
surfaces, various problems arise. The first is the greater complexity
caused by the connectivity of the mesh not being regular, unlike a
2D grid of pixels. Secondly, the internal energy terms caused by
the internal forces must be defined in local surface tangent planes,
rather than a global plane, and care must be taken when forces are
added. Thirdly, the extra forces need to be calculated based on
mesh features, instead of intensity image features. Generally, we
require more complex energy terms to describe mesh features, and
certain extended extra forces proposed for image snakes are difficult
to directly adapt to meshes. Finally, the snake must be restricted to
lie on the mesh when the energy function is minimised, thus leading
to a constrained rather than unconstrained minimisation problem.

Milroy et al. [1997] extended snakes to 3D surfaces to perform sur-
face segmentation. Their approach links curvature extrema points
on an orthogonal cross-section model, a surface mesh that traces an
object’s contours with closed curves running in the x, y, and z direc-
tions. They extended the definition of the internal energy to support

a discretised snake with irregular segment lengths in 3D. Two extra
forces, an inflation force and an attraction force, were introduced
to inflate contours, and attract small, closed, user-defined contours
to the curvature extrema points. A greedy algorithm was used to
minimise the energy.

Snakes on triangular meshes have been used to detect features
where a certain property such as curvature changes drastically, al-
lowing the detection of sharp edges and peak vertices [Lee and Lee
2002], for example. The authors define the external feature energy
on the mesh in terms of the variation of normal directions between
neighbouring faces. They parameterise the surface region surround-
ing the snake, then minimise the energy function and compute the
motion of the snake in 2D, and finally remap the snake back onto
the 3D mesh.

Other more recent research has also considered snakes for triangu-
lar meshes. Jung and Kim [2004] use snakes to find features related
to Gaussian curvature. They move snakes step-by-step, from one
mesh vertex to another, and give them the ability to change topol-
ogy, allowing a snake to split into multiple separate snakes as ap-
propriate. Based on their framework of parameterisation-free active
contour models [2004], Bischoff et al. [2005] present a new rep-
resentation and method for evolving snakes on triangular meshes.
Their method enables collision detection and supports topological
controls such as snake merging and splitting, in this case constrain-
ing the vertices of the snakes to move on mesh edges.

4 Novelty

Many methods have been proposed for segmentation of meshes;
some of these try to cut a mesh into natural pieces (such as the fin-
gers on a hand), whereas others try to find surface features such as
sharp edges. As just one example, we cite the work by Funkhouser
et al. [2004], which uses a least-cost path for mesh segmentation to
find the natural seams of the mesh. Although snakes have been pre-
viously used for problems such as feature detection and segmenta-
tion of meshes, previously reported work is not particularly tailored
to detecting reliefs on an underlying surface. Careful choice of ap-
propriate forces for this specific problem will lead to better results
than applying a general method, or a method which looks for, e.g.,
sharp edges. Note that a relief may meet the underlying surface in a
sharp step, or the relief may blend with the underlying surface over
a short distance. This is a different kind of feature from a sharp
edge and warrants a specific type of feature energy term particular
to relief segmentation. We describe our specific energy term for
detecting a relief boundary in Section 5.3.

As mentioned above, other general issues are that snakes can be
sensitive to the choice of initial contour, and can have particular
difficulties with finding concavities in contours such as those found
near the duck’s neck in Figure 1. Although sensitivity to initial
contours has been tackled in previous work through the use of an
external pressure force [Cohen 1991; Milroy et al. 1997], the force
strength has to be set carefully if the equilibrium contour is to end
up in the desired place, rather than overrunning, or ceasing to move
inward too soon. The method proposed in Xu and Prince [1998] is
able to move snakes into concavities in images, but is not directly
applicable to 3D surface meshes. Our approach, on the other hand,
works with a crudely specified initial contour which does not have
to be close to the relief contour—it simply has to separate the de-
sired relief from other possible reliefs.

Furthermore, previous methods based on snakes have required sev-
eral parameters to be carefully controlled so that the snake’s move-
ment leads to the desired results. In many cases appropriate param-

eter choices are data-dependent and can require considerable tuning
by users to get good results. However, we expect many users of re-
lief segmentation will not have a technical background, making it
hard for them to understand how to tune the method for best results.
Much time can be wasted in making a series of trials to find the
best parameter settings. We thus have devised an approach which
keeps such tuning to a minimum, and, where possible, we derive pa-
rameter settings from the model directly, without user interaction.
Other remaining parameters have intuitively obvious meanings and
effects.

Taking these points into account, we introduce a novel adaptive
snake-based approach suitable for relief contour detection on a tri-
angular mesh. Our main contributions are:

1. A feature energy term specifically designed for relief contour
segmentation.

2. A deflation force with strength determined in such a way as to
make the snake insensitive to choice of initial contour.

3. A snake refinement phase designed to make the snake explore
relief contour concavities.

4. A denoising term in the deflation energy and use of bilateral
filtering of feature properties to enable the snake to robustly
traverse a noisy background.

The next several Sections present the details of our approach to
using snakes for relief contour detection on triangular meshes.

5 Energy Terms

We now introduce the snake used; in this Section we define all the
energy terms used and explain the resulting energy minimisation
problem. Section 5.1 describes the energy functional used and ap-
proach to solving the energy minimisation problem. Details of the
internal energy terms and external energy terms are explained sep-
arately in Sections 5.2 and 5.3.

5.1 Energy Functional

A parametric snake in 3D may be represented by a curve v(s) =
(x(s),y(s),z(s)), where s represents arc-length. Following previous
researchers’ ideas [Williams and Shah 1992; Milroy et al. 1997], the
snake on the triangular mesh proposed in this paper is approximated
using connected straight line segments, joined by an ordered list of
discrete vertices (snaxels):

v(s) = [vi], i= 0, . . . ,n−1 (1)

where vi is a point on the mesh lying either on a mesh vertex, an
edge or a face. The list is a circular list for a closed relief contour:
v0 and vn−1 denote the same snaxel, or it may be an ordinary list
for an open relief contour. The distances between snaxels need not
be equal, even approximately. The energy functional representing
the energy of the snake can be written as

E =
∫
Eint(v(s))+Eext(v(s)) ds, (2)

and depends on an internal energy term and an external energy
term. The internal energy Eint depends on the snake itself. It
is made up of two energy terms, representing tension energy
and bending energy; minimising Eint makes the snake shrink and
straighten (which are to some extent conflicting requirements).

These drive the snake inwards, and also prevent it from locally
bending in and out too much. The external energy Eext depends
on the mesh. It creates extra forces which move and deform the
snake to make it best fit the features sought; these forces are de-
scribed in detail later. The forces arising from these various energy
terms drive the snake to a position of lower overall energy. Ulti-
mately, this should make the snake stabilise at the desired contour,
located at a local minimum of energy.

In image processing, variational calculus [Kass et al. 1988] is
widely used to determine the minimum energy of Eqn. 2. How-
ever, previous formulations cannot immediately be applied to the
mesh case as this formalism does not permit the inclusion of the
necessary hard constraint that the snake must lie on the mesh and
not move off it. Lee and Lee [2002] handles this problem by param-
eterising the mesh surrounding the snake and then minimising the
energy in 2D. However, parametrisation introduces an additional
complexity, and may lead to unstable or inaccurate results in highly
curved regions. Note that such regions at the boundary of the relief
are precisely those we wish to find in our application!

A greedy algorithm for image snakes proposed by Williams and
Shah [1992] provides a formulation for incorporating hard con-
straints quickly and easily. In this approach, the energy function
is computed for every snaxel and each of its neighbouring pixels in
the image, and the pixel (neighbour or current snaxel) which has the
lowest energy is chosen as the new position of the snaxel. The en-
ergy of the snake is minimised one snaxel at a time and the whole
snake stabilises when every snaxel is located at a local minimum
of energy. Such a greedy method has also been used by Milroy et
al. [1997] on a 3D mesh. The energy is evaluated at two adjacent
locations on the surface perpendicular to the current snaxel bound-
ary direction: this is justified in that any force parallel to the tangent
direction of the snake affects the distribution of snaxels along the
snake but does not change the snake’s shape. The new positions of
the snaxels are computed on a quadratic surface which locally ap-
proximates the orthogonal cross-section surface at every vertex. A
greedy algorithm was also used by Jung and Kim [2004] on triangle
meshes; they consider as candidate new snaxel positions the 1-ring
neighbourhood vertices for each snaxel (which in their algorithm
lie at mesh vertices).

We adopt Milroy’s method, and use a greedy algorithm. For each
snaxel, we consider two new candidate snaxel positions, at fixed
distances from the snake and approximately perpendicular to it. In
practice these candidate locations are chosen on the mesh along the
directions which bisect the two edges linking the current snaxel,
and the previous and next ones along the snake. We allow snaxels
to be anywhere on the mesh, not at mesh vertices or on mesh edges.
The snaxel vi and the two candidate points, v∗i and v∗∗i , are shown
in Figure 3. Snaxel vi either moves to one of these two points or re-
mains still depending on which of these three points has the lowest
energy.

vi

vi-1vi+1

vi

vi

�

*

**

i

Figure 3: Candidate new snaxel positions

5.2 Internal Energy

The internal energy imposes internal shrinking and straightening
forces on the snake which make the snake act both as a spring and
as a flexible rod. It includes a tension energy term, Et , and a bending
energy term, Eb: Eint = Et +Eb. We follow Milroy et al. [1997] in
using the following energy terms associated with vi: a first-order
term which encourages the snake to be short,

Et(i) =
1
4
α (|vi−1vi|+ |vivi+1|) , (3)

and a second-order term representing the curvature of the snake,
which discourages a large angle between snaxel segments, keeping
it locally smooth,

Eb(i) = β
1−cosθi

(|vi−1vi|+ |vivi+1|)2
. (4)

The constants α and β are used to normalise the energy terms, giv-
ing each energy a value between 0 and 1. θi is the angle between
vi−1vi and vivi+1 as shown in Figure 3.

5.3 External Energy

The external energy’s purpose is to drive the snake towards the re-
lief boundary and localise the snake at it. Hence, the external energy
should have a minimum at the boundary such that the snake con-
verges towards it. For this we utilise a feature energy term E f and
a deflation energy term Ed . The external energy is: Eext = E f +Ed .
The deflation energy helps the snake to contract from the user-
drawn initial contour which may be at a large distance from the
relief boundary and also to elongate the snake into concavities. The
feature energy helps to creates a counter-force to the deflation force
to stop the snake at the relief boundary.

We first consider the feature energy E f designed to locate the re-
lief contour. We do so by presenting three versions of the feature
energy. A general representation is given first, and then we discuss
how a revised one based on bilateral filtering can overcome local
noise. Finally we present the version using in our program which is
specifically tailored to finding the particular feature at the edge of a
relief, which is at a higher level the underlying surface. We finish
this section by considering the deflation energy term.

5.3.1 General Definition of Feature Energy

In order to detect general geometric features in a mesh, energies
can be defined in terms of properties such as planarity, variation in
normal direction, or curvature, measured at vertices of the mesh.
The planarity P(v) of a vertex v is defined as the signed distance
between v and some plane fitted to its neighbours, where a positive
value represents a vertex in a concave region and a negative value
represents a vertex in a convex region. Given the planarity at mesh
vertices, the planarity of points inside mesh faces can be determined
by linear interpolation. Planarity is a simple measure to compute
and provides an easy way to find such features as sharp edges.

For such general features, based on the idea of image feature en-
ergy, we may define E f at a snaxel vi as

E1f (i) = −γ (P(vi))
2 , (5)

where γ is a normalisation parameter. This gives a large negative
energy where the surface is locally non-planar (as might occur near
the edge of a relief).

q
outSbg

Srf

q
inh

Figure 4: Cross-section of mesh near relief contour

5.3.2 Feature Energy for Noisy Surfaces

To reduce the effects of noise, mesh smoothing generally needs to
be done before the properties like planarity are calculated. Bilateral
filtering, proposed for images, is a one-sided filter derived from
Gaussian blurring, which on the one hand smooths similar data
while avoiding averaging dissimilar values, preserving steps in val-
ues [Tomasi and Manduchi 1998]. Extending this idea to meshes,
Fleishman et al. [2003] yields a successful mesh-smoothing method
which removes noise while preserving features. In the particular
case of planarity, the bilaterally filtered value of planarity, P̂(v), at
point v is defined by

P̂(v) =
∑v′∈N(v)Wc (|v−v′|)Ws (P(v)−P(v′))P(v)

∑v′∈N(v)Wc (|v−v′|)Ws (P(v)−P(v′))
, (6)

where N(v) is a neighbourhood of v, Wc is a Gaussian filter
with standard deviation σc, given by Wc(x) = exp

(−x2/(2σ2c)
)
,

and Ws is a similarity weight function, with standard deviation
σs that penalises large variation in planarity, given by Ws(x) =
exp

(−x2/(2σ2s)
)
. Settings for these parameters are discussed in

Section 7.2.1.

We may now revise the feature energy and replace Eqn. 5 by

E2f (i) = −γ
(
P̂(vi)

)2
, (7)

which will reduce the tendency of the snake to get stuck at local
minima, caused by noise in the background region due to measure-
ment errors.

5.3.3 Relief Step Feature Energy

When applied to a relief contour, Eqn. 7 can readily detect a sharp
step boundary between a relief and the background, but does not
work so well if the relief meets the background in a more gentle
step. Consider how a cross section of the mesh might appear near
the boundary of a relief; an example is shown in Figure 4. Sbg rep-
resents the background surface and Srf is the relief surface. A small
step joins the two surfaces and causes two local feature energy ex-
trema at the boundary of the relief: the outer edge of the step located
at qout is represented by a localmaximum of positive planarity in the
sectional view, while the inner edge of the step located at qin has a
local minimum of negative planarity. This leads to E1f or E

2
f having

two minima in the vicinity of the edge of the relief. Thus, we make
a further modification to Eqn. 7 to give the final version of feature
energy used in our algorithm. The key idea is to take advantage of
the planarity signature expected near the edge of a relief. Although
the relief itself may have quite a variable height, usually it will have
a characteristic step height above the background surface where it
meets the background. Suppose this height is h—see Figure 4. We
assume that it can be measured, or estimated by the user. We use

this as a typical distance in the further modified definition of the
feature energy function:

E3f (i) =

{
−γ(P̂(vi)− P̂(qi))2 if P̂(vi) > P̂(qi);
0 otherwise.

(8)

Suppose the point qi is a point on the mesh which is located inside
the snake at geodesic distance h from snaxel vi, measured perpen-
dicular to the snake at vi. When the snake is at some point of the
background surface, vi and qi are expected to have nearly the same
planarity, leading to a feature energy close to zero. When the snake
is at the outer contour of the relief boundary, vi will be the point
having the local maximum planarity and qi will have the local min-
imum planarity, leading to a very large negative feature energy.

However, in practice the relief may have a complicated cross-
section—for example, it may rapidly go down again just inside the
contour. Thus, just choosing one particular position for qi may not
lead to stable results. Instead, we use a small set of candidate po-
sitions for qi at distances (1− ε)h to (1+ ε)h from vi, and select
the location of qi as the point with minimum planarity value for use
in determining the energy. Generally, ε is given a fixed value 0.2
in our algorithm. Note that even if a model has large variations of
relief step height, satisfactory results can be obtained by setting h
as the minimum relief step height: note that point qout in Figure 4
will still be the first location of local minimum energy encountered
by the snake.

In practice we observe that using the function E3f as the feature
energy locates the relief contour very well when either the bottom
or the top of the step is a sharp edge, and still produces good results
when the relief blends into the background. It works well in practice
as shown by the examples in Figures 6–8.

5.3.4 Deflation Energy

For the external energy, in addition to the feature energy, we also
use a deflation energy Ed producing an extra force which tries to
force the snake inwards. If global optimisation were used, the ten-
sion energy term in Eqn. 3 would make the snake shorter, but un-
fortunately this does not occur in a greedy algorithm which moves
one snaxel at a time and only considers its immediate neighbours.
The tension energy in this case simply tends to make the snake flat
rather than shrink.

Our deflationary force is similar to that used in the balloon
model [Cohen 1991], but it dynamically balances the internal en-
ergy taking into account the length of each snake segment and the
speed of movement of the snake. Generally, the contour of a relief,
when considered as a curve on an underlying surface, is composed
of convex regions (e.g. around the beak of the duck in Figure 1),
concave regions (e.g. around the neck of the duck in Figure 1) and
flat regions (neither especially convex nor concave). Let us recon-
sider Eint. Snaxel vi gets a smaller internal energy if it is moved
towards the line between its neighbours. The result is that the snake
does not move further inwards in concave regions, or even in flat re-
gions, if we only use the internal energy alone: it would be moving
to a position of higher energy. We must add a deflationary energy
term to overcome this problem.

The deflationary energy Ed is defined to produce a corresponding
force which acts inwards. The minimum deflationary force at a
given point vi is required when vi−1, vi and vi+1 lie in a straight line,
and in such cases the force should be just sufficient to disrupt the
flat status, while not being so large as to cause the snake to overrun
the relief boundary. If correctly balanced, the snake will continue

to move until it meets the relief boundary, but will not enter con-
cavities. (We discus later how the snake is forced into concavities).
For conciseness, let li be the length 0.5(|vi−1vi|+ |vivi+1|); we start
evolution with all snaxels having values li = l, some desired ini-
tial value, and add or remove extra snaxels as evolution proceeds
to keep snaxels about l apart, as explained in detail later. Suppose
the movement step size for the snaxel vi is τ li. The just sufficient
deflationary energy required can be derived from Eqns. 3 and 4.
Taking into account that the background may be somewhat noisy,
we define Ed at the inside candidate point for snaxel vi to be:

Ed(i) = −1
2
α(

√
1+ τ2−1)li−2β τ2

(1+ τ2)2l2i
− γσ2, (9)

where σ is the standard deviation of the planarity of the background
surface, which can be estimated using points on the initial contour
on the background as indicated by the user, and γ is the same pa-
rameter as in Eqn. 7. This equation comprises three terms. The
first two resist the internal energy and the term −γσ2 eliminates
the influence of any noise on the background surface.

6 Evolution

We now discuss how the snake moves from its initial contour to
the final relief contour, which we call its evolution. The evolution
of the snake occurs in three phases: firstly, coarse evolution, sec-
ondly, contour refinement, and thirdly, final stabilisation. Coarse
evolution is used to approach the relief contour quickly. The snake
stabilises close to most of the relief boundary except near concav-
ities. Coarse evolution is carried out using large snake segments
for efficiency. Contour refinement is then used both to explore the
concavities, and to better capture fine detail of the contour. Smaller
snake segments are used, and the internal energy is decreased. Final
stabilisation is then used to accurately locate the snake at the relief
contour and produce a smooth result.

In one evolutionary step, every snaxel is moved inwards or out-
wards a step, or kept still, depending on which of these three po-
sitions has minimum energy. Then a postprocessing process is ap-
plied before the next step to keep the snake regular, as done by
Milroy et al. [1997]. First, any sharp notches which are smaller
than a given sharpest angle are removed. Snaxels can be randomly
distributed so without this it would be possible for the snake to fold
over itself: there is no explicit control of the topology of the snake
in our algorithm. Secondly, the length of each snake segment is
kept within a desired range by merging any snaxels which are too
short, and subdividing ones which are too long. Evolution stops af-
ter the snake has converged to a position when no snaxels move (or
may be aborted if the iteration count exceeds some large number).

6.1 Coarse Evolution

Because the initial contour is far from the relief contour, we initially
aim to move quickly across the background triangles on the mesh,
while avoiding becoming stuck on local noise. During this phase,
we define energy to be the internal energy, plus the feature energy
and deflation energy. After the snake has stabilised, it will have
reached a position which matches the relief boundary expect near
some of the concavities, as shown for example in Figure 6(b).

Long snake segments are used at this stage, causing the snake to
move quickly and capture the relief contour coarsely. Given a relief
with step height h, we use a discrete curve with segment lengths
about h to coarsely represent the relief boundary.

For efficiency, the status of whether each snaxel has moved or not
during the current iteration is stored. If a given snaxel and its two
nearest neighbours did not move on the previous iteration, we know
that the centre snaxel must remain still during the current iteration,
so we can save time by not bothering to compute its energy.

It is possible for small oscillations to occur in the positions of snax-
els. We check after every 10 iterations whether the distance moved
by each snaxel is less than a small amount (we use 2τ l, twice the
movement step size), and if so, the snaxel is locked in position, to
avoid it oscillating forwards and backwards.

6.2 Contour Refinement

After the snake has stabilised at the coarse contour, we now refine
it, both to more accurately capture the details of the model, and to
drive it into any concavities. We change the energy terms used, and
the snake segment length, in this step.

Using the energy terms used for the coarse contour does not permit
the snake to explore concavities, as its internal energy term prevents
it from locally bending or expanding enough. Thus, we now modify
the energy used to drive evolution.

Firstly, we adjust the deflation energy given in Eqn. 9, replacing
the term −γσ2 by 0. This term is useful when coarsely finding
the contour, as it allows us to step over noise in the background.
However, when we are near the relief contour, we deactivate this
term to prevent the snake from crossing the relief boundary. This is
important to prevent snake entering the relief where its boundary is
weakly defined.

We also add weights to the energy terms. Initially, during the coarse
phase, each energy term had unit weight. Now the energy is rede-
fined as

E =Wint(Et +Eb)+Wf E f +WdEd . (10)

DecreasingWint reduces the internal energy, allowing the snake to
bend more, while having less tendency to shrink. Increasing Wf
helps to force the snake to stop at the relief boundary. IncreasingWd
helps to drive the snake into concavities. Clearly, it is the relative
sizes of these weights which are important. In practice we fixWf at
1. Wint is chosen by the user, as described later.Wd is then set to be
larger than one, keeping the sum of the weights 2Wint +Wf +Wd =
4.

During the refinement step, we set the initial snake segment length
appropriate to the resolution of the mesh: half the average triangle
edge length. The inserted snaxels are computed by resampling the
snake on the mesh between the coarse snaxels.

6.3 Final Stabilisation

After the the refined snake has converged near the relief boundary,
using the approach described above, we perform a final adjustment
step to restabilise the snake, to remove unnecessary noise and yield
a smoother boundary. We turn off the deflationary force by setting
Wd to 0, to stop pushing the snake inwards—we have now driven
the snake into the concavities, and now it is important not to overrun
the boundary. Wf is again set to 1, to localise the snake at the relief
boundary. We set Wint = 1 to help make the final snake smooth.
The snake is re-adjusted until its position converges.

Section Plane

Figure 5: Intersecting the mesh with a section plane

7 Implementation Details

We now give various further implementation details of our algo-
rithm.

7.1 Initial Contour

The user selects a few (say 4, or 6) mesh points around the outside
of the relief, which are then joined across the mesh to give the ini-
tial snake. Normally this is a closed curve, but an open curve can
also be used, for example if the relief runs to the edge of the mesh.
We could use a shortest path algorithm to construct the initial con-
tour [Kanai and Suzuki 2001; Surazhsky et al. 2005]. However, our
snake is insensitive to the initial contour, so any cheap and simple
method for constructing a reasonable connecting path between each
pair of vertices can be used. We use the simple method (illustrated
in Figure 5) of creating a section plane through the two vertices and
the average of their normals, and intersecting the plane with the
mesh. This is simple, fast and effective.

These intersection curves are sampled as described earlier to get
the initial snake segments. Though the snake segments initially
have equal lengths, there is no need to keep this restriction dur-
ing evolution as our energy expressions properly take into account
the lengths of individual snake segments. However, we do merge
or divide any that become too long or too short.

7.2 Parameters

Snake-based methods are usually sensitive to choice of parameters.
We have tried to make our method depend on few parameters, or at
least to operate in a way which is insensitive to precise choice. The
main parameter required is a user estimate for the relief step height
h at the boundary of the relief; if this is variable, an estimate for its
minimum value should be given.

Other factors affecting the discretised snake are adjusted according
to the mesh model, as described next.

7.2.1 Parameters for Planarity Calculation

The number of neighbours of a given point to use when calculating
planarity at a point depends on the resolution of the input mesh.
We use all neighbours within a geodesic distance equal to the relief
step height for this planarity calculation, as this is a length scale ap-
propriate to the problem. The fast-marching method [Kimmel and
Sethian 1998] is used to compute the geodesic distance to the neigh-
bours of every vertex. For planarity bilateral filtering, the Gaussian
filterWc in Eqn. 6 decreases quickly as the distance increases. As
further neighbours do not affect the filtering result much, just the
2-ring neighbours are used. Following Fleishman et al. [2003], σc

is set to half of the maximum distance to any of the two-ring neigh-
bours, and σs is set to the variance of the planarity.

7.2.2 Parameters for Snaxel Control

The relevant parameters here are, l, the initial length of each snake
segment, the range of permitted snake segment lengths, and the
sharpest permissible angle between segments (used to avoid self-
intersections). The length of the snake segments affects speed of
movement towards the contour, as well as its ability to precisely
locate details of the contour and to explore concavities. As noted
earlier, at the start of the coarse evolution phase, l is set to h, while
at the start of the refinement phase, l is set to half of the average
triangle edge length.

Segment lengths can vary in length as evolution proceeds, and al-
though small changes are unimportant, they may change greatly
wherever the snake shrinks or lengthens significantly. Redundant
snaxels slow the algorithm down, while snaxels which are too
sparse will not capture enough details of the contour. Thus, dur-
ing both phases, extra snaxels are added, or snaxels are removed, if
the snaxel spacing varies outside the range [0.5 l,1.5 l].

If two neighbouring segments form a sharp angle, self-intersection
of the snake may occur after a few more steps. Thus, snaxels are
removed if θi (see Figure 3) is larger than some maximum angle,
set to 160◦ in our program.

7.2.3 Parameters for the Energy Terms

Various parameters are used to control the relative importance of the
different energy terms. These are three normalisation parameters α ,
β , γ (see Eqns. 3, 4 and 7) and three weightsWint ,Wf andWd (see
Eqn. 10).

The parameters α , β and γ are used to normalise the different en-
ergy terms. The snake segment length is initialised to l and it ranges
between lmin = 0.5l and lmax = 1.5l. Thus Et lies in the range
0.5αlmin ≤ Et ≤ 0.5αlmax. From this, it is easy to choose α to
normalise Et to lie in the range [0,1]. Note, however, that different
values are used in the coarse evolution and refinement phases. β
and γ can be determined in a similar way.

The deflation energy is dynamically defined by snaxel length and
speed of movement according to the internal energy at concavities,
and is not normalised.

The weights Wint , Wf and Wd are used during refinement and sta-
bilisation to adjust the relative importance of the energy terms as
explained earlier. As noted, the only free parameter isWint which is
chosen by the user. Typically, the user only has to try a very small
number of values, each of which should be half the previous value,
before satisfactory results are obtained.

7.2.4 Other Parameters

Our method is relatively insensitive to choice of other parameters,
and these are fixed in the algorithm. These include:

τ : the movement step size: 0.2;

ε : for locating candidate points for feature energy: 0.2;

length tolerance used for oscillation detection: 2τ l.

(a) (b) (c)

(d) (e) (f)

Figure 6: Relief segmentation of a model with a deep concavity: (a) initial contour, (b) coarse result, (c) refined result, (d) final contour
(h= 1.0), (e) final contour with h= 0.6, (f) final contour with h= 1.4

The step height of the relief h need not be estimated very accu-
rately by the user. In our experiments with the duck model (see
Figure 8), good results were obtained using estimates in the range
from 0.4mm–1.0mm. We provide the user with an interactive tool
to calculate the geometric distance between two user-defined ver-
tices on the mesh, allowing the user to easily estimate h.

Overall, our algorithm simply requires the user to estimate the pa-
rameter h and to tune the parameterWint . All other parameters are
fixed, automatically calculated or adaptively change according to
the model and the snake evolution process. It is not hard for a non-
technical user to produce good results.

8 Experimental Results

A variety of real scanned geometric models have been tested, hav-
ing different relief contour shapes and with different resolutions
and characteristics. All examples were tested on a computer with a
2.4GHz CPU and 1GB RAM.

8.1 Examples

Figure 6 shows the process of relief segmentation for a relief whose
contour has a deep concavity. The model has 287446 triangles,
with average edge length 0.21mm. Figure 6(a) shows the initial
contour as created from a typical set of 7 user-specified points. Fig-
ures 6(b–d) illustrate the snake evolution process. A coarse relief
contour with 175 snaxels is obtained after 131 iterations of energy
minimisation during the coarse step, taking 21 seconds, as shown
in Figure 6(b). Figure 6(c) shows the result after the refinement
step; in this case the weightWint was set to 0.25. It took 60 seconds
using 459 iterations to produce the contour which comprises 1136
snaxels. Figure 6(d) is the result after final stabilisation. This pro-
cess took 10 seconds and 94 iterations. Overall, the total process
took 91 seconds. Throughout Figures 6(a–d), the parameter h was
set to 1.0mm. Figures 6(e) and 6(f) show other final results when h
was set to 0.6mm and 1.4mm respectively. Note that the final result
does not change greatly.

Relief segmentation results for a variety of reliefs on a variety of
backgrounds are shown in Figure 7. Figure 7(a) shows a model
where the initial contour has deliberately been drawn as a zigzag

(a) (b)

(c) (d)

Figure 7: Relief segmentation for various relief and background shapes: (a) snake evolved from a zigzag initial contour, (b) background of
varying curvature, (c) an open snake, (d) horse relief

(a) (b)

Figure 8: Segmentation results for duck relief with different mesh resolutions: (a) scanned by Minolta VI-910, (b) using decimated mesh

shape to demonstrate that our method is insensitive to choice of
initial contour. The snake both explores the concavities very well,
and also represents the shape of the convex part in detail. For this
model, it took 20 seconds to get the coarse contour using 194 snax-
els and another 66 seconds to obtain the final results using 1525
snaxels. Figure 7(b) shows an example where the initial contour
is far from the relief, and where the background surface has both
positive and negative Gaussian curvature. In Figure 7(c), the relief
boundary is an open contour, ending at the mesh boundary; for this
example the background is also very noisy. Again we get a good re-
sult. Figure 7(d) is an another example which shows that the snake
goes into deep concavities while not overrunning the convex parts.

Figure 8 shows segmentation results for a duck relief using 2 differ-
ent mesh resolutions. The mesh used in Figure 8(a) was scanned us-
ing a Minolta VI-910, and has 168700 triangles with average length
0.227mm. The initial model for Figure 8(b) was produced by dec-
imation of the mesh used in Figure 8(a), and has 47327 triangles
with average edge length 0.555mm.

8.2 Discussion

Our testing has shown that the coarse evolution phase readily pro-
duces reasonable and stable results however the initial contour is
chosen. During the coarse phase, sensitivity to h and other param-
eters is low, but it is higher in the later phases. For example, for
Figure 6, h can be successfully set anywhere in the range [0.3,1.6]
during the coarse phase, but must be in the range [0.6,1.4] during
the refinement phase.

Our method can deal with most concavities except those having
very narrow entrances. Adjusting the method to force the snake
into such concavities also generally results in the snake overrun-
ning the relief contour elsewhere. Generally, the snake cannot enter
concavities whose widths at their mouths are less than 4 to 6 times
the average edge length of the mesh.

9 Conclusions and Future Work

In this paper, we have shown how to uses snakes for segmenting
isolated reliefs lying on a smooth and slowly varying background
surface. After user delimitation of a few background points sur-
rounding the relief, the algorithm automatically creates an initial
contour and actively evolves it to the relief boundary through a
coarse phase, a refinement phase and a stabilisation phase. The
process is controlled by a user estimate of relief step height, and
one other parameter.

For future work, we intend to deal with reliefs with small inter-
nal holes, as well as coping with concavities with narrow mouths,
by first estimating a continuation of the background surface. We
also intend to extend our algorithm to cope with more complicated
reliefs such as those having textured backgrounds, and cyclic re-
liefs. For textured background, we hope to drive the snake using an
energy based on classification of the mesh into texture and relief.
Closed cyclic reliefs, necessitating analysis of repeating items.

Acknowledgements

The authors wish to acknowledge the support of Delcam plc, in-
cluding many helpful discussions with Richard Barratt and Steve
Hobbs, and the support of EPSRC grant GR/T24425, for this work.

References

BISCHOFF, S., AND KOBBELT, L. 2004. Parameterization-free ac-
tive contour models with topology control. The Visual Computer
20, 4, 217–228.

BISCHOFF, S., WEYAND, T., AND KOBBELT, L. 2005.
Snakes on triangle meshes. http://www-i8.informatik.rwth-
aachen.de/publications/publications.html.

COHEN, L. D., AND COHEN, I. 1993. Finite element methods
for active contour models and balloons for 2d and 3d images.
IEEE Trans. Pattern Analysis and Machine Intelligence 15, 11,
1131–1147.

COHEN, L. D. 1991. On active contour models and balloons.
CVGIP: Image Understanding 53, 2, 211–218.

FLEISHMAN, S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral
mesh denoising. ACM Transactions on Graphics 22, 3, 950–953.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P.,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. ACM Transactions on Graphics
23, 3, 652–663.

JUNG, M., AND KIM, H. 2004. Snaking across 3d meshes. Pro-
ceedings of the Computer Graphics and Applications 12, 87–93.

KANAI, T., AND SUZUKI, H. 2001. Approximate shortest path
on a polyhedral surface and its applications. Computer-Aided
Design 33, 11, 801–811.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1988. Snakes:
Active contour models. International Journal of Computer Vi-
sion 1, 4, 321–331.

KIMMEL, R., AND SETHIAN, J. A. 1998. Computing geodesic
paths on manifolds. Proceedings of National Academy of Sci-
ences 1995 15, 8431–8435.

LEE, Y., AND LEE, S. 2002. Geometric snakes for triangular
meshes. Computer Graphics Forum 21, 3, 229–238.

MILROY, M. J., BRADLEY, C., AND VICKERS, G. W. 1997.
Segmentation of a wrap-around model using an active contour.
Computer-Aided Design 29, 4, 299–320.

SURAZHSKY, V., SURAZHSKY, T., KIRSANOVAND, D.,
GORTLER, S., AND HOPPE, H. 2005. Fast exact and approx-
imate geodesics on meshes. Proceedings of ACM SIGGRAPH
2005 24, 553–560.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. Proceedings of the 1998 IEEE Interna-
tional Conference on Computer Vision, 839–846.

WILLIAMS, D. J., AND SHAH, M. 1992. A fast algorithm for
active contours and curvature estimation. CVGIP: Image Under-
standing 55, 1, 14–26.

XU, C., AND PRINCE, J. L. 1998. Snakes, shapes, and gradient
vector flow. IEEE Trans. Image Processing 7, 3, 359–369.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

