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Fig. 1: A pen container showing a relief on a textured background and a corresponding segmentation. 
 

ABSTRACT 

 
Segmentation of geometric reliefs from a textured background has various applications in 

reverse engineering. We consider two approaches to solve this problem. The first classifies parts 
of a surface mesh as relief or background, and then uses a snake which moves inwards towards 
the desired relief boundary, which is coarsely located using an energy based on the 
classification. The second approach initially smoothes the surface to eliminate the background 
texture, and locates the snake at the relief boundary using an energy based on the step between 
the background and the relief. 
Both snakes start at simple user-drawn contours, and are driven towards the relief boundaries 

by the snake energy functional. In both cases, the snake has different evolution phases with 
different energy terms, to initially rapidly drive the snake towards the relief boundary, and to 
later accurately match it. 
To describe geometric textures, we analyze surface differential properties, and integral and 

statistical quantities based upon them, computed at multiple scales taken over local 
neighborhoods, following similar ideas from image texture processing. For classification, we use 
a support vector machine together with sequential forward floating search for feature selection. 
A straightforward Laplacian method is used for smoothing. 
We use example scanned models to demonstrate that both approaches are useful, but are 

suitable for different types of model.  
 

Keywords: Reliefs, segmentation, geometric texture, snakes, mesh processing, reverse 
engineering. 
 

 
1. INTRODUCTION 

Sculptured reliefs are widely used in various industries for purposes such as applying brands to products, decorating 
craftwork, and beautifying packaging. For example, in the packaging market, the requirement for more elaborate 
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designs continues to grow as manufacturers wish to distinguish their products, and as consumers come to expect 
superior packaging. Along with the growing significance of product packing, there is pressure to minimize costs and to 
keep the time-to-market to a minimum. Thus, it is often not possible for an artist to spend days producing detailed 
relief designs. Instead, there is a necessity for relief decoration to be produced quickly. One approach to doing so is for 
a reverse engineering process to extract previously designed and manufactured reliefs, and reapply them to new CAD 
models, providing large cost and time savings for the packaging industry. 
 
The reverse engineering of reliefs requires several steps. Firstly, triangle mesh data must be captured from the surface 
of the object bearing the relief, using a 3D scanner. The relief must then be separated from the background in a 
segmentation step. Finally, the relief must be applied to the new surface, which typically will have a different geometric 
shape. This paper addresses the segmentation stage of reverse engineering of reliefs. 
 
Generally, we may define a relief to be an area of a surface with sculpted features different from those of the 
underlying surface, and which is raised by a small height; this height is typically (but not always) larger than the 
characteristic size of features on the background. There are various kinds of reliefs, and they can be imposed on 
diverse backgrounds. The simplest case is that of an isolated relief delimited by a single outer contour, lying on a 
smooth and slowly varying background. We have already addressed the segmentation problem for such reliefs in [30]. 
 
Here we consider the segmentation of reliefs lying on a textured background, as in Fig. 1. While we could consider 
the container in Fig. 1 to bear an all-over relief, in many cases of this kind, we are more interested in segmenting e.g. 
the bird and branch in the foreground from the underlying textured background pattern. Note that this is a geometric 
texture, a small displacement field superimposed upon a base surface which is assumed to be smooth. The texture 
itself may be repetitive, or it may be stochastic in nature. It may also vary from place to place, according to the shape 
of the underlying surface, or otherwise. Our goal is to take as input a triangular mesh created from data points 
captured by a 3D scanner, and to produce as output a single connected component of the mesh representing the 
relief. In practice we find a boundary curve separating the relief from the rest of the mesh, as shown in Fig. 1. 
 
Two alternative approaches to this problem are readily apparent. The first is to classify each part of the mesh as 
belonging to the textured background, or to the relief, and then to place an optimal boundary curve separating these 
regions which is both smooth, and which minimizes the amount of mesh lying on the wrong side of the boundary 
curve according to the classification. The second approach starts by smoothing the surface to eliminate the background 
texture (and detail inside the relief), and then uses our previous method for segmenting reliefs lying on smooth 
backgrounds [30]. The classification approach relies on the assumption that there is sufficient difference in surface 
properties between the textured background and the relief. The key issues are which surface properties to use to 
analyse the surface locally, and which classification method to use to combine them to give a classification for each 
vertex. The smoothing approach relies on being able to remove the texture but at the same time leaving a clear step to 
the relief, and not smoothing that away too. Thus, the height of the relief above the background should be sufficiently 
large compared to the variations in height of the background texture. This requirement is often satisfied—a relief is 
supposed to stand out from its background—but not always, so this approach is not universally applicable. 
 
This paper considers methods for segmenting reliefs on textured backgrounds based on these two approaches. In both 
approaches we use a snake to move from an initial user-given contour to the desired boundary. Minimizing its energy 
is used to finally obtain the optimal relief boundary. To analyze geometric texture, we measure various local surface 
differential properties, and integral and statistical descriptors based upon them, computed at multiple scales taken over 
local neighborhoods. For classification, we apply a non-linear supervised learning method, a support vector machine 
(SVM). In this approach, the snake first coarsely approaches the classification boundary, and is then adjusted to the 
desired relief boundary. In the smoothing approach, a simple Laplacian surface smoothing method is adopted. Here, 
we first move the snake to approximately the correct location using the smoothed model; subsequently, further 
optimization is used on the original unsmoothed model to make the snake accurately lie at the desired final position. 
 
In Section 2 we review related work: we briefly discuss image texture segmentation methods (little work has been 
done on geometric texture segmentation), classifier selection, mesh smoothing, snakes, and our previous relief 
segmentation method. In Section 3 we present an overview of our two approaches, while details are discussed in 
Sections 4 and 5 individually. Results are demonstrated in Section 6, and conclusions are drawn in Section 7. 
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2. RELATED WORK 

 

2.1 Texture Segmentation in Images 

Texture segmentation in digital images has been widely studied for several decades. Numerous approaches are used; 
good surveys are provided in [45] and [53]. Generically, many approaches follow independent phases of feature 
extraction, classification (after perhaps selecting certain features), and clustering. 
 
The first important phase is feature extraction, where a set of feature descriptors is generated to represent the 
characteristics of each pixel or region. Feature extraction methods are categorized in [53] into statistical methods (e.g. 
co-occurrence matrix features and autocorrelation features [18]), model-based methods (e.g. autoregressive 
features [32] and Markov random field models [31]), signal processing methods (e.g. Laws masks, Gabor filters and 
wavelet transforms [44]) and geometrical methods (e.g. Voronoi tessellation features [52]). The first three methods 
are most commonly used in practice. Various comparative studies have been performed, usually coming to the 
conclusion that co-occurrence features are the most useful [10, 38, 49, 57], or occasionally that no single feature 
extraction method is consistently superior [6, 44]. Methods are still being improved. For example, Deng and Clausi 
[11] recently gave a superior scheme for implementing the Markov random field model, while Montiel et al. [36] 
usefully extended co-occurrence matrices to one-dimensional conditional histograms. Further papers [5, 37, 59] use a 
combination of features of several types to achieve improved texture segmentation performance. 
 
Some texture feature extraction methods, such as autocorrelation features and Markov random field models, rely on 
the regular grid structure of a 2D image, so are difficult to directly extend to an irregular 3D triangle mesh. Others are 
more readily modified, such as co-occurrence matrix features, and we adopt these for our algorithm. The co-
occurrence matrix approach allows many features to be extracted, such as energy, entropy, correlation and contrast, 
which are usually referred to as second-order statistics [18]. We also extend the first-order statistical features described 
in [33], such as mean, variance and energy, to characterize geometric texture. 
 
Geometric texture on 3D surfaces has mainly been studied for purposes of texture synthesis, to produce geometric 
details for visual realism. Recent literature on this work includes papers such as [1] and [26]. There is little on 
geometric texture segmentation or classification, although Lai et al. [27] gives one approach. 
 

2.2 Classifiers 

As well as the features used, another crucial component in texture segmentation is the classifier, which decides to 
which region (in our case, foreground or background) each point belongs. Various commonly used classifiers include 
the k-nearest neighbor approach (KNN), Fisher linear discriminants, support vector machines (SVMs) and neural 
networks [12]. 
 
Support vector machines, introduced by Vapnik [54] solve the two-class pattern recognition problem, based on 
structural risk minimization. The idea is to map the input feature vectors into a high dimensional feature space through 
some non-linear mapping (chosen a priori), and then to construct an optimal separating hyperplane in this space. 
SVMs have proven successful for various tasks such as text categorization [21], face detection [39], gene 
selection [17], and importantly, image texture classification [24, 29].  
 
In this paper, we apply an SVM to the problem of classification of mesh points as textured background or relief, as 
SVMs offer the following advantages which are relevant to our application: 
 

•    SVMs are usually based on a linear decision hyperplane and a simple kernel function, so they are relatively 
robust to problems of overfitting the training data.  

•    SVMs avoid the need for a large training set when used with many features, again because of their simple 
model.  

•     SVMs are relatively insensitive to inclusion of features which provide little discrimination between the classes.  
 
2.3 Mesh Smoothing 

Mesh smoothing, or fairing, is a technique generally based on minimization of some kind of fairness energy functional. 
It is usually implemented by modifying the locations of mesh points without changing the mesh topology. Some 
approaches for discrete meshes are non-linear: for example, Welch and Witkin [55] minimize a functional based on 
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total curvature using a local quadratic least-squares approximation, while Schneider and Kobbelt [46] propose an 
algorithm satisfying boundary conditions based on solving a partial differential equation. However, most mesh 
smoothing schemes are based on linear operators, leading to simple and fast algorithms: for example, the well-known 
Laplacian smoothing method [13, 51], and mean filtering and median filtering [60] which are extensions of ideas from 
image processing. Recently, more attention has been paid to feature-preserving smoothing, which tries to minimize the 
effects of noise while simultaneously preserving features such as edges [3, 15, 48, 60]. 
 
Our previous relief segmentation method relies on a smooth background surface and a small but definite relief step 
height [30]. Thus, to be able to use the same method in our smoothing approach, ideally, the details of the texture 
should be removed but the step feature at the relief boundary would be kept. We considered various feature-preserving 
smoothing methods, including those in [15, 48, 60]. Unfortunately, if such methods are tuned to retain the step 
feature, they also preserve the features in the background texture too much, causing our previous relief segmentation 
algorithm for smooth backgrounds to fail. Thus, we adopt in this paper the fastest and simplest smoothing method—
the classical Laplacian approach [13]. However, it only works well when there is a sufficiently large relief step height. 
 

2.4 Snakes 

Snakes, or, more formally, active contour models, were proposed by Kass [23] to detect features in an image or image 
sequence. A snake is an energy-minimizing spline (here, a polyline) controlled both by internal forces, such as rigidity 
and elasticity of the curve, which tend to make it smooth, and shrink inwards, and external forces such as constraint 
and image forces, which help to drive it toward the desired image features. Various later improvements to image 
snakes allow them to avoid sensitivity to choice of the initial contour [9], and to explore image boundary 
concavities [7, 58]. 
 
Snakes have also been used on surface meshes for segmentation [35], and for detection of features such as sharp 
edges and corners [22, 28]. Other studies of snakes on meshes have considered the problem of topology control [2, 
22].  
 
2.5 Relief Segmentation on a Smooth Background 

The relief segmentation problem on a triangle mesh in the simplest case of an isolated relief lying on a smooth and 
slowly varying background was addressed in our earlier paper [30]. A snake was used to solve the problem. The snake 
starts from a user-drawn curve on the mesh, and evolves until it matches the boundary of the relief. To deal with the 
particular problem of relief segmentation, various specific features were needed:  
 

• A feature energy term specifically designed to detect the step at the edge of a relief.  
• A deflation force with strength determined dynamically to balance the snake’s internal energy, to make the 
snake insensitive to choice of initial contour.  

• A refinement phase designed to make the snake explore relief contour concavities.  
 

Encouraged by the successful use of a snake in our earlier work, we also use a snake in this paper to locate the relief 
boundary, in both the texture classification, and surface smoothing, approaches. The details of the snake and its use 
differ in each case, however. 
 
3. ALGORITHM OVERVIEWS 

We now outline our two approaches to relief segmentation on textured backgrounds: the classification approach and 
the smoothing approach. 
 

3.1 Overview of the Classification Approach 

The classification approach is based on extending ideas of texture classification from image processing. There are three 
main steps (see Fig. 2): calculation of surface properties at mesh points, classification of mesh points using an SVM, 
and boundary curve location using a snake. We assume that the user indicates a few small typical areas belonging to 
the relief, and a few belonging to the background, using a simple point-and-drag interface, to provide training 
information for the classifier (see Fig. 4(a)). We also assume the user specifies an initial starting contour lying on the 
background, which may be quite far from the final segmentation boundary. The algorithm moves it to the final 
boundary.  
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Fig. 2:  Flowchart of classification approach. 
 
•  Property calculation 
Firstly, we calculate various local surface differential properties at each mesh point (such as planarity, curvature and 
normal difference). These properties are estimated using a small neighborhood of nearby mesh points. We also 
calculate integral property estimates at multiple scales corresponding to neighborhood balls of different radii. In 
addition to the basic properties themselves, we also compute multiple-scale statistical properties from the differential 
properties including first- and second-order statistics, which measure the probabilities of individual vertex values and 
the probabilities of their co-occurrence. We discuss later the choice of particular properties used. 
 
•  Classification by SVM 
The user-specified training data provides several surface regions known to belong to background or relief. To train the 
SVM model, we may use all property features or only certain selected features. To perform feature selection, we first 
use the SVM to determine how well each property can distinguish the mesh points inside the training regions. For a 
given input mesh, certain properties may give good discrimination, while others only poor discrimination, between 
background and relief. We then build a classifier based on the ones which give good discrimination, using the 
technique of sequential floating forward search (SFFS) [43] to choose the best set of properties to use for this mesh. 
After training the SVM with these properties, we use it to classify each mesh point as background or relief. 
 
•  Snake segmentation 
Given the user-specified initial contour, the snake is evolved to find a coarse boundary between the texture and relief 
using a feature energy term based on the classification. However, individual vertices at the relief boundary can easily 
be misclassified, so this coarse snake needs to be optimized. The final accurate relief boundary is found by giving the 
snake a new attractive energy term and a revised feature energy term. Both terms are based on integral properties 
which are good at locating the boundary when calculated at an appropriate neighborhood size. 
 

3.2 Overview of the Smoothing Approach 

The mesh smoothing approach has three main steps: mesh smoothing, snake-based segmentation on the smoothed 
mesh, and snake location optimisation on the original mesh, as shown in Fig. 3. In this approach, the user simply 
draws an initial contour for the snake, which again may be far from the final boundary. 
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Fig. 3:  Flowchart of smoothing approach. 
 
•  Mesh smoothing 
Initially, Laplacian smoothing is applied to the mesh, with the aim of removing the texture. After several iterations of 
smoothing, small mesh features such as the background texture, and details on the relief, are removed. 
 
•  Snake segmentation on the smoothed mesh 



 

Computer-Aided Design & Applications, Vol. 4, No. 5, 2007, pp 565-583 

 

570 

On the smoothed mesh, we apply our previous approach, for relief segmentation on a surface with a smooth 
background, to move the initial contour to the relief boundary [30]. In the coarse evolution phase, we adopt the same 
energy terms as before such as internal energy, feature energy and deflation energy. The refinement evolution phase 
can be omitted when there are no deep concavities; we note that this smoothing approach is not well suited to reliefs 
which have deep concavities, and in such cases the classification approach may be better. 
 
•  Snake optimisation on the original mesh 
The above step locates the snake on the smoothed mesh. However, because smoothing causes significant shape 
distortion of the original mesh, a final step is needed to accurately locate the final contour on the original mesh. The 
snake output from the previous stage is mapped back to the original mesh and its position is optimized. We use the 
same snake optimisation method as in the classification approach, adding a new attractive energy term and a revised 
feature energy term. 

 

4. TEXTURE CLASSIFICATION APPROACH 

 

4.1 Texture Properties 

We now consider in detail differential geometric properties, and derived properties, of a surface. These are local surface 
properties, integral surface properties, and statistical properties derived from them. The integral and statistical 
properties are considered to be geometric texture properties, which we use for classification. 
 
4.1.1 Surface Properties 

Differential geometric quantities such as normals and curvatures may be used to describe the local shape of a surface. 
On discrete surfaces such as triangle meshes, they can be estimated at each vertex as spatial averages around this 
vertex. The normal at a vertex can be estimated by various methods. Two commonly used approaches are to use 
weighted averages of face normals in a neighborhood [50], and to fit a least-squared plane [40] or higher-order 
surface. Many methods have also been proposed for curvature estimation, such as least-squares paraboloid surface 
fitting [35], Taubin’s discrete approximation [50], and a method using Voronoi cells [34]. Here we follow [50] 
and [35] to estimate normals and curvatures. 
 
From normal vectors, the derived local surface properties of planarity and normal difference can be computed [47]. 
These give information about how the surface is varying in a small neighborhood. The planarity Lpl at a vertex is 
defined as the signed distance between the vertex and a plane fitted to its neighbors. One method to compute this 
quantity at a vertex v is:  

 ),)(
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vvn  (1) 

where N  is some neighborhood of v. The normal difference Lnd at a vertex is defined as the average absolute 

difference between the vertex normal and the normal at each neighbor. It can be computed using:  
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N
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where n is the normal at v and n' is the normal at the neighbor v'. 
 
Various differential attributes are associated with curvature: mean curvature, Gaussian curvature, principal curvatures 
and principal directions. We choose the mean curvature LH, which is less sensitive to noise than Gaussian curvature, as 
a representative curvature property. 
 
Thus, for every vertex on the triangle mesh, we so far have three surface properties—planarity, normal difference and 
mean curvature. We estimate these using the immediate 1-ring neighbors, and refer to them as local surface properties. 
 
Other papers have suggested using extended neighborhoods to deal with noisy data, for example using neighbors 
inside a given geodesic distance [41], or calculating properties on multiple scales [42]. In particular, for a relief on a 
textured geometric background surface, use of integral surface properties covering neighborhoods chosen according to 
the size of texture seems particularly appropriate for classifying surface points, while neighborhoods of a similar size to 
the relief step height are useful for distinguishing the relief boundary in the snake segmentation phase. The texture 
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pattern size and the relief step height can be easily estimated by asking the user to select an appropriate pair of points 
on the mesh. In fact, we adopt here the idea of using multiple scales. Balls of different radii are used to collect 
neighbors to estimate the above three surface properties. The radii of the balls used can specified by the user, or more 
simply, the largest radius can be set by the user and other sizes generated according to some simple rules. Most of our 
tests use the latter method. For example, if we wish to use three sizes of balls, where the largest has radius r, the other 
two radii might be set to be 0.5r and 0.25r. 
 
4.1.2 Statistical Properties 

Image texture has been widely studied for a long time, but there is still no universally accepted definition of image 
texture. It can be regarded as a function of the spatial variation in pixel intensities (in a grayscale image). Two intuitive 
characteristics have been agreed. Firstly, there is significant variation in grey levels between nearby image elements 
within a given texture. Secondly, texture is a homogeneous property at some spatial scale larger than the resolution of 
the image. 
 
Geometric texture can be defined analogously as spatially-varying surface displacements (in a normal direction) 
relative to an assumed underlying surface, which is smooth at some larger scale than the texture. Because the 
underlying surface of the scanned mesh model is a priori unknown, the displacement for every vertex is not known, 
either. However, variations in the local surface properties we have discussed previously can in practice be used instead 
of variations in displacements: these properties vary significantly between nearby vertices, and are homogeneous at 
some scale larger than the resolution of the mesh. This allows statistical methods such as first- and second-order 
statistics as used for image texture analysis to be extended to geometric textures. Using the same neighborhoods as for 
computing integral surface properties, we compute the following statistics on multiple-scale balls. 
 
First-order statistics in an image measure the probability of a given grey value occurring at a randomly chosen location. 
We may apply the same idea to geometric properties, computing the first-order statistics for neighborhoods of various 
scales. Any local surface property L can have its value normalized, and discretized as ι , into B bins ( ι  = 0,…,B-1). B 
is set to 32 in our algorithm. For each vertex v, a histogram of the values of ι  at v and its neighborhood N is then 
computed using  

 ,1,...,0;
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where N
ι  is the number of vertices having value ι . 

 
First-order statistical features such as mean, variance, energy and entropy at v can then be computed from the 
corresponding histogram for a geometric property L using the following equations: 
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Second-order statistics in an image measure the probability of a pair of pixel values occurring at some vector d apart in 
the image; the probability function is represented by a co-occurrence matrix. As vertices on triangle mesh are 
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distributed irregularly, it is not possible to find vertex pairs at a fixed vector apart. Instead, we choose a fixed direction 
corresponding to some diagonal direction of the bounding box of the model, and a distance equal to the length of a 

typical triangle edge as a stand-in for the displacement vector d. Then, for every vertex, we choose as its partner in a 
pair that particular 1-ring neighbor which is most nearly separated by this vector. (This approach relies on all triangles 
having a reasonably uniform size, which is the case for the meshes output by many scanning devices). The B×B co-
occurrence matrix Cd for local surface property L is now defined as follows: Cd(i,j) at vertex v is the number of 
occurrences of pairs of values i and j, at vertices with a displacement of approximately d, with one vertex in the 
neighborhood of v:  
 

 ,)(,)(:),(),( jijiCd =+′=′+′′= dvvdvv ιι  (8) 

where },{ vv N∈′ . 

 
Second-order statistical geometric texture features such as energy, entropy, contrast and homogeneity can now be 
computed at v from the co-occurrence matrix using the following equations, where we now write just C for Cd for 
simplicity: 
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4.2 SVM Classification 

The SVM classifier is used to identify vertices of the mesh as belonging to relief or background. All integral and 
statistical properties can be combined together as its input, or a feature selection method can be used to choose a 
particular set of properties. The latter can save computation time, while still producing good classification results for a 
particular relief. 
 
4.2.1 Basic SVM Procedure 

Given objects in two classes, represented by a set of properties in a multidimensional space, an SVM classifier works by 
seeking the optimal hyperplane which separates objects from the two classes. The optimal hyperplane has maximum 
margin, i.e. the distance from the hyperplane to the closest data point for each class. Thus, the classifier is determined 
only by those data points which are at the margin: the support vectors. An SVM can solve nonlinear problems by using 
a set of nonlinear basis functions such as polynomial functions, radial basis functions, etc., to map the input features 
into a new space. 
 
The problem to be solved can be stated in the following way: given m training samples (xi,yi) where xi is a vector of 
property values at a vertex, and yi is the class label for the vertex (texture or background), we wish to produce an SVM 
model such that  yi can be reliably predicted from xi for the remaining vertices.  
 
A large number of software implementations of SVM have been developed. We use LIBSVM [20] which is an efficient 
open source SVM package written in C++, with a helpful guide to its use for practitioners [19]. 
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The SVM procedure comprises the following five steps: 
 

1. Training data selection.  The user chooses a few representative regions of the mesh belonging to the 
background, and a few belong to the relief. These are specified by selecting a centre point and dragging to a 
radius, as shown in Fig. 4(a).  

2. Feature vector preparation. The input features for the SVM can be any of the texture properties described in 
Section 4.1. We may use all of the properties, or a subset can be chosen using a feature selection method 
described later in Section 4.2.2. Each feature in the feature vector xi is linearly scaled into the range [–1,+1] to 
prevent attributes with greater numerical ranges dominating those with smaller ranges, and to also numerical 
difficulties during the calculation [19].  

3.Choosing SVM kernel and parameters. We use a radial-basis-function (RBF) kernel )exp(),(
2

jijiK xxxx −= γ , 

where xi and xj are input vectors. This means there are two main SVM parameters to be determined, 0 and the 
penalty factor C (see [19]). The optimal values can be found by cross-validation, but our tests show that using 
the default values provided by LIBSVM gives good results.  

4. SVM model construction. Using the labeled training data, the SVM uses the kernel function to map the input 
vectors into a high-dimensional feature space, and thence constructs a decision hyperplane to discriminate 
between the background and relief. This is the SVM model.  

5. SVM classification. Given the model, the SVM is now used to classify all vertices. Note that these include the 
original training points, which can help to identify outliers that may have previously been assigned to the 
incorrect class in the training set. Doing so improves the accuracy of the classification.  

 
4.2.2 Feature Selection 

The sizes chosen for the vertex neighborhoods significantly affects the values computed for texture properties, and 
thereby affects success of classification. To avoid the issue of having to carefully choose a particular neighborhood size, 
we initially calculate properties using balls of multiple sizes. This generally results in more texture features than are 
really needed, and some are usually poor classifiers. However, different background textures may be better 
discriminated by different sets of texture properties. Although the SVM approach has the advantage of avoiding over-
fitting, it is still important to find the best feature combination, both to reduce computational costs, and for good 
generalization performance. Thus, we normally select the features to be used for classification. 
 
Weston et al. [56] propose a feature selection method embedded in the SVM which works by minimizing bounds on 
leave-one-out error. Chen and Lin [4] combine several feature selection strategies with LIBSVM, although the 
strategies (e.g. F-score) are independent of the SVM. Here we use sequential forward floating search [43] as a 
classifier-independent feature selection strategy. It provides a good trade-off between the optimality of the feature set 
chosen, and efficiency of choosing the feature set. It starts from an empty feature set, and iteratively adds or removes 
features as appropriate to improve the classification accuracy achieved on the training set. Further feature selection 
methods are discussed in [16] and [25]. 
 
To measure classification accuracy during training and feature selection, a confusion matrix is used, which contains 
information about actual and predicted classifications. In our background-and-relief two-class model, it contains four 
elements as shown in Tab. 1. 
 

 Actually is Background Actually is Relief 

Classified as Background a b 

Classified as Relief c d 

 
Tab. 1: Confusion matrix. 

 
Here, a is the number of vertices correctly classified as background, b is the number of relief vertices classified as 
background, and so on. From the confusion matrix, a variety of accuracy or error measures can be calculated, such as 
true positive rate: a/(a+c), true negative rate: d/(b+d), accuracy: (a+d)/(a+b+c+d), etc: see [14]. We choose to 
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optimize the Kappa statistic1 (κ ) [8, 14] which can be shown to lead to a high overall classification accuracy with few 
errors:  
 

 ,
)/)))(())((((

)/)))(())(((()(

MdcdbbacaM

Mdcdbbacada

+++++−

+++++−+
=κ  (13) 

where dcbaM +++= . 

 
We now explain our use of sequential floating forward search for feature selection, using the confusion matrix based on 
the training data. Suppose there are D elements in the overall set of possible features which are available for use: 
F={fi; i=1,…,D} . Our task is to select a subset G={gi; i=1,…,k; g i∈ F} with optimization criterion the Kappa statistic, 
κ . We do the following:  
 

1: Initialization: start with an empty output set G = F. 
2: Select the best feature: g+ = argmaxg∈ {F–Gk} κ  (Gk +g) 

3: if adding it gives an improvement: κ  (Gk + g) > κ  (Gk) then 
4: Add this feature to the set: Gk+1 = Gk + g

+; k = k + 1 
5: else 
6: return the solution: G 
7: end if 
8: Select the worst feature: g- = g+ = argmaxg∈ {Gk} κ  (Gk – g) 

9: if deleting it gives an improvement: κ  (Gk – g
-) > κ  (G k-1) then 

10: Delete this feature from the set: G k-1 = Gk – g
-; k = k – 1 

11: goto step 8 
12: else 
13: goto step 2 
14: end if 

 

4.3 Snake-Based Segmentation 

We use a snake for segmentation on a textured background; the snake is represented as a set of connected straight line 
segments, joining an ordered list of discrete vertices (snaxels). We use a somewhat different approach to the snake 
used on a smooth background in our earlier work [30]. There, snake evolution has three basic phases, each with a 
particular goal: coarse evolution, contour refinement and final stabilization. Coarse evolution moves the snake quickly 
from its initial position far from the relief to the approximate relief contour. The refinement phase explores concavities 
in the relief contour. Final stabilization captures fine detail. For the textured background case, we divide the evolution 
process into two phases: coarse evolution and contour optimization. 
 
Both evolution phases start with an original snake contour and produce a new contour according to some energy 
functional. The energy generally includes four terms: internal tension energy (Et) and bending energy (Eb), and external 
feature energy (Ef) and deflation energy (Ef) terms. The basic difference between the snake used here, and on a 
smooth background, lies in different choices for the energy terms, especially the feature energy. We follow our earlier 
approach except as where noted. 
 
4.3.1 Coarse Evolution 

The initial contour is constructed by joining several user-chosen vertices on the background. The snake segment length 
is set to be slightly less than the approximate relief step height. This result provides a good starting snake for the 
following contour optimization phase, which works in a more local manner. 
 
Our previous approach [30] to segmenting reliefs on a smooth background is based on detecting a step variation in 
height approximately equal to the relief height, and uses a feature energy based on the value of the planarity property. 
However, when the background is textured, large planarity variations occur on the background as well as at the edge 
of the relief, so planarity is no longer appropriate for defining feature energy. Instead, we define an energy based on 

                                                 
1
 Note that Kappa does not mean curvature in this paper. We use the symbol LH for mean curvature. 
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the difference in classification as either background or relief, enabling the snake to move towards the relief and stop at 

the boundary we define the feature energy c
fE  based on classification at vertex vi as:  

 ),(5.0)( i
c
f vLabeliE ×=  (14) 

where Label(vi) is the classification label for a vertex, with a value of –1 for a vertex classified as background and +1 

for relief. When the snaxel inside a face or on an edge of the mesh, the label is computed by linear interpolation. c
fE  

takes a minimum value of –0.5 for snaxels on the background, and a maximum 0.5 for snaxels on the relief. On areas 
(mainly) classified as background, the feature energy is almost the same everywhere, so the snake will move towards 
the relief under the constraint force. When snaxels approach the relief boundary, they will stop moving because of the 
larger feature energy on the relief side. 
 
4.3.2 Contour Optimization 

In this phase, the snake is sampled with a segment length equal to the average triangle edge length, to be able to better 
capture the fine details. The snake resulting from the coarse evolution stage is near the relief boundary, and is usually 
less than the relief step height away from the boundary. Thus, we can now replace the feature energy by another one 
designed to place the snake exactly where the planarity has a local maximum, i.e. at the relief boundary. The feature 
energy at vertex vi used in this case is:  

 ,))())(((sign )( 20
iif vPvPiE ⋅−= γ  (15) 

where γ  is a normalization parameter, and P is the integral planarity computed over a ball with radius equal to the 

approximate relief step height h. 
 
Unlike in our approach to reliefs on a smooth background, this energy term may cause the resulting snake position to 
lie outside, or just inside the relief, due to imperfect classification. To prevent such problems, we turn off the deflation 
energy, which drives the snake inwards, and may cause the snake to overrun. Instead, we introduce another external 
energy: an attraction energy term Ea which essentially enlarges the search area to a radius equal to the relief step height 
h, in order to help prevent the snake from coming to rest in local minima. Ea is given by  

 ,))()(()( 2
iia qPvPiE −−= γ  (16) 

where γ  and P are defined as in Eqn. 15, and qi is the point on the mesh with maximum planarity value within a 

geodesic distance h along a mesh curve perpendicular to the snake at vi. 
 
Ea is only added to candidate snaxel points on the same side of the snake as qi, to provide a force in the appropriate 
direction. Because Ea only has an effect inside a radius of h, it cannot be used to make the snake explore relief contour 
concavities which are deeper than h. 
 
5. SMOOTHING APPROACH 

5.1 Mesh Smoothing  

We adopt the traditional Laplacian mesh smoothing method [13]. The smoothing process updates the mesh vertices 
according to  

 ∑
∈′

−′+=
Nv

new vv
N

vv )(
1

. (17) 

Generally, several iterations are needed until the texture is sufficiently smoothed: e.g. 5 to 10 iterations suffice for the 
‘Bird’ model shown later. 
 

5.2 Snake Segmentation on the Smoothed Mesh 

Iteratively smoothing the mesh removes the texture, but at the same time significant shape distortion and surface 
shrinkage may also result, so the relief boundary on the smoothed mesh is not at the same position as on the original 
mesh. Thus, we only apply the coarse evolution phase of our previous method [30] to find the relief boundary on the 
smoothed mesh.  
 

5.3 Snake Optimization on the Original Mesh 

Note that Laplacian smoothing keeps the mesh topology and simply modifies the locations of mesh points. After the 
snake has been coarsely located on the smoothed mesh, it is easy to map the snake back to the original model, using 
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barycentric coordinates, providing a contour close to the true relief boundary. The snake’s location is now optimized 
on the original mesh in the same way as in Section 4.3.2. 
 
6.  EXPERIMENTS 

We carried out experiments on a variety of relief models having different texture sizes and shapes, scanned by a 
Minolta Vivid VI-910. All computations were performed on a PC with 2.4GHz AMD Athlon CPU and 1GB of RAM. 
 
6.1 Results using the Classification Approach 

6.1.1 Choice of Properties 

As computing many properties takes a long time, it is important not to compute properties which have little 
classification power. We thus performed various experiments to evaluate the usefulness of different properties. We used 
the user-supervised training data to evaluate how well each property can classify the regions in each example, using 
the Kappa statistic, κ , to assess performance. [14] suggests that poor accuracy corresponds to κ <0.4; good 
classification accuracy to 0.4<κ <0.75 and excellent classification to κ >0.75. Correct prediction for every vertex 
would correspond to a value of κ =1.0. 
 
For each model, the features used in the SVM comprise the integral properties and statistical measures based on the 
three local surface properties over multi-scale ball neighborhoods. We used three ball sizes, giving a total of 9×3×3 
input features. The radii of the balls used were 0.25r, 0.5r and r, where r is chosen by the user to be large enough to 
cover the characteristic size of the texture. 
 
In Tab. 2, we give an example showing the Kappa statistic κ  for each different feature for the ‘Bird’ model shown later 
in Fig. 5. Clearly, certain features give poor classification results, while other features give very good prediction, such 
as the second order energy of normal difference for balls of size 3. 
 
We carried out further experiments on the SVM using three kinds of feature set: using all features, using features 
chosen by SFFS, and using features whose κ >0.75. The corresponding classification results are illustrated in Figs. 4–
6. For all three models and for all three kinds of feature sets, the classification accuracy on the training data is very 
close to the perfect value κ =1.0. While using all the features is generally slightly better, SFFS always produces much 
smaller feature sets; however, these were different for the different models. Referring to the feature in the ith row and jth 
column of Tab. 2 as Fij, SFFS produced the following feature sets for each example in turn: ‘Men’ model: {F36, F12}, 
‘Bird’ model: {F69, F39, F12}, ‘Lady’ model: {F 73, F 89, F 31}. 
 
A comparison of computation times taken for performing classification using different feature sets is shown in Tab. 3; 
the most time-consuming part of our program is calculation of the texture properties at multiple scales. Doubtless our 
algorithm could be optimised significantly; for example, it took 25 minutes just to calculate the mean of planarity on 3 
balls for all the vertices of the ‘Bird’ model shown in Fig 5. When using SFFS, or only features with κ >0.75, all 
texture properties only need to be calculated on the training data, and for the whole model, only a few selected 
properties need to be calculated. In particular, SFFS greatly reduces the calculation time required. 
 

Planarity Curvature Normal Difference 
Feature 

Ball-1 Ball-2 Ball-3 Ball-1 Ball-2 Ball-3 Ball-1 Ball-2 Ball-3 

 

 1 2 3 4 5 6 7 8 9 

1 Integral –0.57     –0.57 –0.44 –0.57 –0.57 –0.14 –0.57 –0.57 –0.57 

2 1st Mean –0.57 –0.57 –0.57 –0.57 –0.57 –0.43 –0.57 0.37 0.83 

3 1st Variance 0.63 0.56 0.34 0.75 0.81 0.75 –0.57 –0.57 –0.57 

4 1st Energy 0.71 0.80 0.84 –0.57 –0.57 –0.57 0.71 0.79 0.82 

5 1st Entropy 0.78 0.86 0.86 –0.57 –0.57 –0.57 0.71 0.80 0.79 

6 2nd Energy –0.57 –0.57 –0.57 –0.57 –0.57 –0.57 0.77 0.86 0.91 

7 2nd Entropy 0.32 0.88 0.94 –0.57 –0.57 0.48 0.82 0.87 0.89 

8 2nd Contrast 0.79 0.83 0.87 –0.57 –0.57 –0.49 0.79 0.81 0.76 

9 2nd Homo 0.68 0.80 0.88 –0.57 –0.57 –0.57 0.80 0.85 0.89 

 
Tab. 2: Classification Accuracy on training data for ‘Bird’ Model. 



 

Computer-Aided Design & Applications, Vol. 4, No. 5, 2007, pp 565-583 

 

577 

 

All Features SFFS κ >0.75 

Model Vertices Faces 

Texture 
Training 
Vertices 

Relief 

Training 
Vertices 

Properties 

(h) 

SVM 

(min) 

Properties 

(h) 

SVM 

(min) 

Properties 

(h) 

SVM 

(min) 

Men 70,284 139,380 2377 1535 6.8 1.3 1.3 6.0 3.4 2.1 

Bird 55,955 110,945 3843 2209 5.2 1.3 1.1 8.7 2.4 2.6 

Lady 62,404 123,748 2012 1596 6.1 1.2 1.5 8.0 2.6 2.3 

 
Tab. 3: Time taken for SVM classification. 

 
6.1.2 Segmentation Results 

Fig. 4 illustrates segmentation of a ‘Men’ relief from a textured background using our classification approach. This 
model was scanned from a vase; note that there are actually two distinct textures in the background (corresponding to 
sky and floor). Fig. 4(a) shows the user-selected training data: the light (green) spots belong to the background and the 
dark (red) ones to the relief. These areas were chosen without particular care to select typical or interesting regions. The 
radius of the largest ball for property calculation, r, was set to 8 times the average triangle edge length for the whole 
model, which is about the same size as the sample spots in Fig. 4(a). Using all different sets of features in the SVM 
provided the classification results shown in Fig. 4(b)–(d). Using all features (b) resulted in slightly better classification 
than using SFFS (c) or features with κ >0.75 (d). Fig. 4(e) shows the original snakes created from a few user-selected 
vertices; in this case we sought two separate open contours. The coarse relief contour obtained, based on the 
classification result of (b), is shown in Fig. 4(f). During the optimization phase, the relief height was estimated to be 
2.4mm, giving the final contour shown in Fig. 4(g). Fig. 4(h) shows the final result from another viewpoint. 
 

     
(a)                                                  (b)                                                  (c) 

     
(d)                                                  (e)                                                  (f) 
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(g)                                                  (h) 

 
Fig. 4:  Segmenting the ‘Men’ relief using the classification approach: (a) training data, (b) classification using 81 
features, (c) classification using features selected by SFFS, (d) classification using features with κ >0.75, (e) original 
contour, (f) coarse contour based on classification result of (b), (g) final contour, (h) final contour, another view.  
 

Coarse Evolution Optimization 
Model Boundary 

Snaxels Time (seconds) Snaxels Time (seconds) 

Upper 272 9 605 56 
Men 

Lower 145 7 246 26 

Left 162 13 234 11 
Bird 

Right 120 8 225 58 

Lady Left 220 11 385 22 

 
Tab. 4: Time taken for snake computations. 

 
Tab. 4 shows the computation times taken for the snake phases of the process, for this and subsequent examples; the 
classification times were given in Tab. 3. 
 
 

     
(a)                                                  (b) 

     
(c)                                                  (d) 
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(e)                                                  (f) 

 
(g) 
 

Fig. 5:  Segmenting the ‘Bird’ relief using the classification approach: (a) training data, (b) classification using 81 
features and training data (a), (c) another training data, (d) classification using 81 features and training data (c), (e) 
original contour, (f) coarse contour based on classification result of (b), (g) final contour.  
 
Fig. 5 shows segmentation of a ‘Bird’ model using the classification approach. Again, r was set to 8 times the average 
edge length (2.2mm); the relief height h was estimated as 2.4mm. Fig. 5(a) shows the training data. Fig. 5(b) shows the 
classification result produced using all 81 features and the training data in (a) which were again randomly selected. A 
different choice of training data is shown in Fig. 5(c), where no training points were chosen on the narrow parts of the 
relief. In this case the classification result in Fig. 5(d) is poorer, and does not recognize such areas well. Fig. 5(e) shows 
the original user specified snakes—again we seek two open contours on left and right. Fig. 5(f) shows the snakes after 
coarse evolution using the classification result in (b), while (f) is the result after the optimization step. 
 
Fig. 6 shows a final example. In this ‘Lady’ relief model, r was again 8 times the average edge length (1.7mm), and 
the relief height h was estimated as 1.2mm. Unlike the first two examples, the texture here is stochastic, and 
furthermore there is no sharp step at the relief boundary; the relief step height in some places is only as high as the 
depth of the pits in the texture. However, we still achieve reasonable segmentation results using the classification 
approach. Fig. 6(a) shows the training data and (b) shows the initial snake contour. Fig. 6(c) shows the classification 
results produced using all 81 features. Fig. 6(d) and (e) shows the snake its coarse and final states based on the 
classification result in (c). Fig. 6(f) shows the classification results produced using features selected by SFFS, and (g) 
and (h) are the snake results from (f). Although there are slight differences between (c) and (f), the final snake is nearly 
the same in each case. 
 

 
(a)                                                  (b) 
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(c)                                                  (d)                                                  (e) 

 
(f)                                                  (g)                                                  (h) 

 
Fig. 6:  Segmenting the ‘Lady’ relief using the classification approach: (a) training data, (b) original contour, (c) 
classification using 81 features, (d) and (e) corresponding coarse and final contours, (f) classification using features 
selected by SFFS, (g) and (h) corresponding coarse and final contours.  
 

6.2 Results using the Smoothing Approach 

The smoothing approach was also tested on the same three models. However, the ‘Lady’ model only has a weak step 
between the textured background and the relief, which is no higher than the detail within the texture. As a result, 
smoothing destroys this step before it smoothes the background sufficiently, and the smoothing approach fails to 
produce a result as the smoothing approach cannot locate the relief boundary for this model. 
 
Fig. 7 shows segmentation of the ‘Bird’ relief using the smoothing method. Fig. 7(a) shows the smoothed mesh after 5 
iterations of Laplacian smoothing and the resulting snakes on either side. The outer red lines are the original contours 
specified by the user and the inner black lines are the extracted relief boundary on the smoothed model. These black 
lines mapped back to the original unsmoothed mesh are shown in Fig. 7(b); they are already very near the exact 
boundary. Fig. 7(c) shows the final contour after the snake optimization phase. Fig. 8 shows similar results for the 
‘Men’ relief. 
 

 
(a)                                                  (b)                                                  (c) 

 
Fig. 7:  Segmenting the ‘Bird’ relief using smoothing: (a) smoothed mesh and resulting snake on coarse mesh, (b) 
snake transferred to original mesh, (c) final optimized snake. 
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(a)                                                  (b)                                                  (c) 

 
Fig. 8:  Segmenting the ‘Men’ relief using smoothing: (a) smoothed mesh and resulting snake on coarse mesh, (b) 
snake transferred to original mesh, (c) final optimized snake. 
 
The smoothing approach is much more efficient than the classification one. For all the models, the Laplacian 
smoothing step took only a few seconds and the snake evolution time was about 2 or 3 minutes. 
 
7. CONCLUSIONS 

Segmenting a relief from a textured background is a challenging task in relief reverse engineering. In this paper, two 
approaches have been proposed to deal with this task. Both are based on snakes, but to initially locate the contour, 
one uses a feature energy based on classification, while the other is based on mesh smoothing and detecting the step at 
the edge of the relief. From our experiments, the following conclusions can be drawn. 
 
•   Clearly, certain features give poor classification results for all examples, such as integral planarity for balls of size 1. 

Other features reliably give very good prediction such as homogeneity of normal difference for balls of size 3. 
•   Three feature selection strategies, using all features, features selected by SFFS, and features with κ >0.75 were 

considered. Using all features can give slightly better results, but takes much longer. Using SFFS for feature 
selection on user-chosen training data significantly reduces the number of properties and computing time. Using 
features with κ >0.75 is not recommend as it both takes a long time, and does not give significantly better results 
than SFFS. 

•   Clearly, the smoothing approach is much faster than the classification approach, and so for a given model, it is 
better to try this approach first if possible. However, it does not work well, if at all, if the relief contour has deep 
concavities, or if the relief step is no longer distinct after the textures have been smoothed. 

•   Overall, both approaches are useful when segmenting reliefs on textured backgrounds, but the results are not 
completely reliable and a modest amount of hand-editing may still be necessary. 
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