
Approximate Symmetry Detection For Reverse Engineering
B. I. Mills F. C. Langbein A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University,
PO Box 916, 5 The Parade, Cardiff, CF24 3XF, UK,

{B.I.Mills, F.C.Langbein,Dave.Marshall, Ralph.Martin}@cs.cf.ac.uk.

Abstract

The authors are developing an automated reverse engineering sys-
tem for reconstructing the shape of simple mechanical parts. B-rep
models are created by fitting surfaces to point clouds obtained by
scanning an object using a 3D laser scanner. The resulting models,
although valid, are often not suitable for purposes such as redesign
because expected regularities and constraints are not present. This
information is lost because each face of the model is determined
independently. A global approach is required, in particular one that
is capable of finding symmetries originally present. This paper de-
scribes a practical algorithm for finding global symmetries in suit-
able B-rep models built from planes, spheres, cylinders, cones and
tori. It has been implemented and used to determine approximate
symmetries of models with up to about 200 vertices in reasonable
time. The time performance of the algorithm in the worst case is
bounded by O(n3.5 log4 n), and a justification is given that on com-
mon engineering objects it takes about O(n2 log4 n), making it a
practical tool for use in a reverse engineering package. Details of
the algorithm are given, along with some results from a number of
illustrative test runs.

Keywords: Beautification; Approximate Symmetry; Reverse En-
gineering; Geometric Interrogations and Reasoning.

1 INTRODUCTION

Reverse engineering is a topic of current interest in computer-aided
design [13]. Here we take it to mean generating a boundary rep-
resentation CAD model of the shape of a mechanical component.
Unlike conventional engineering, which begins with a description
of what the part should do, and produces a geometric model suit-
able for manufacturing, reverse engineering begins with the man-
ufactured part itself and produces a geometric model [13]. This
process involves scanning the surface of the object in order to pro-
duce a solid model. The authors’ current project concerns B-rep
models that have been derived from fitting surfaces to a point cloud
obtained using a commercial 3D laser scanner.

The B-rep model is constructed using previously developed soft-
ware [2]. This software produces a model with natural faces. For
example, processing clean data from a cube produces a model with
six planar faces, twelve straight edges, and eight vertices. However,

Sixth ACM Symposium on Solid Modelling and Applications,
Ann Arbor, Michigan, June 4 – 8, 2001.
Copyright c© ACM 2001, 1-58113-366-9/01/06.
This version is posted by permission of ACM and is limited to personal use
only and may not be redistributed. The official version is available at the
ACM Digital Library.

due to the response of the algorithms to noise in the data, and the
fact that the faces are fitted individually, even if a perfect cube is
scanned, the resulting faces and edges are not typically parallel and
orthogonal. It is also possible that a single square face might be
incorrectly interpreted as two triangular faces, adding a new edge
on the diagonal.

The current project considers objects with only planar, spheri-
cal, cylindrical, conical and toroidal surfaces that either intersect
at sharp edges or are connected by fixed-radius rolling ball blends.
It has been shown [10] that many mechanical components can be
described by these surfaces, and algorithms are available [9] that
reliably determine these faces from point clouds. The long term
goal of the current project is to produce a system that will modify
the parameters of these surfaces to produce a model that is more
suitable for redesign. The model can be improved, for example, by
adjusting it so that it becomes exactly symmetrical where before it
was only approximately so, by lining up parts that lie in almost the
same direction, and by making repeated features exactly congruent.
This process of model improvement is called beautification.

Part of the information required for beautification of the model is
obtained from the approximate symmetries of special points on the
surface of the object. This paper shows how to find these approx-
imate symmetries. A polyhedron is completely determined once
the geometric and combinatorial information about the vertices is
known. The geometric information is the location of each vertex.
The combinatorial information1 indicates which vertices are on a
common edge, and which are on a common face. The symmetries
of the polyhedron are exactly those symmetries of the points which
preserve the combinatorial information. When the faces are curved,
other points, such as the centroids of faces, or their centres of curva-
ture, need to be used as well, to maintain the relationship between
the symmetries of the points and the symmetries of the object.

This paper only deals with finite symmetry groups. The case of
infinite symmetry groups is covered in other work by the same au-
thors [7]. Any bounded single sheet surface with an infinite number
of geometric symmetries must be a (possibly composite) surface of
revolution. Of these, only the sphere has more than one axis of
continuous rotational symmetry. We are considering only objects
made from planar, spherical, cylindrical, conical and toroidal sur-
faces. The axes of any cones, cylinders and tori will be coincident.
The planes will be perpendicular to all these axes. Any centres of
spheres, centres of tori and apices of cones will lie on a single line.
The detection of these characteristic regularities has been consid-
ered separately. Practical algorithms are presented in another pa-
per [7]. These methods can be included as a preprocessing stage
for the algorithm presented in the current paper.

For the finite symmetry groups, the symmetries of the object as
a whole are also symmetries of certain sets of points derived from
the object, for example, the set of vertices of the object, the set of
centres of spheres, the set of centres of tori, the set of centroids
of the faces and the set of centroids of the edges. For non-collinear
collections of points the number of symmetries is bounded by twice

1more often called ‘topological’ information in solid modelling literature

the number of points or 120 [8], whichever is the larger. So, first
we generate the symmetries of the set of points, and then we retain
only those that preserve the type of each point (vertex, centroid of a
torus, etc.), the adjacency, and the orientation information stored in
the model. Each of these tests takes constant time per permutation
per point. So, with only linear amounts of extra work this approach
generates exactly the symmetries of the whole B-rep model from
those of the points.

The symmetry of the object is not always reflected in the sym-
metry of the B-rep model. For example, when a sphere is modelled
as two half spheres joined at the equator, symmetries of the B-rep
model must preserve the equator. Because of this the algorithm has
two stages. The first stage is a partial solution to the problem of ad-
justing the structure of the model so that it reflects the symmetries
of the object. This stage determines ways of grouping and identify-
ing points to obtain new collections. It determines all the ways of
grouping the points subject to constraints that are made clear in this
paper. The second stage determines the approximate symmetries of
each of the new collections. The input to the whole algorithm is a
list of points, and the output is a collection of adjusted point lists
each paired with a list of permutations expressing the symmetry of
that model (the nature of the adjustment is explained later on). An
explicit example of this is given in Section 3, including the the input
data, and an explanation of the output. Following this, adjusting the
equations of the surfaces to fit the new centres and vertices can be
done by standard geometry.

The aim of the project is to develop algorithms and heuristics
that can generate an ideal model of an observed object. The model
must conform exactly to regularities only approximately present in
the object. Several interpretations of the requirement are discussed
in this paper. Some regularities are related to decomposition of the
object into congruent parts, such as cutting a cube into octants, and
a long prism being cut into a number of slices. Other regularities are
not so directly related to the shape of the object, but to computable
properties of the object. These properties include directions along
edges and orthogonal to faces or the axis of a cylinder, cone or
torus. Special points such as the centre of a sphere, the apex of a
cone, and the centre point of a torus are also interesting. These lines
and points may be coincident, parallel, coplanar, co-cylindrical and
so on. The computing of related regularities is a subject on its own,
as discussed in [7].

The rest of this paper concentrates on the determination of sym-
metries of collections of points. In particular, a number of defini-
tions put forward in the literature are discussed in the current con-
text, our algorithm is described and analysed in some detail, and
empirical performance and time complexity are presented. Finally
there is a brief discussion of the significance and future develop-
ment of the algorithms.

2 PREVIOUS WORK

The case of determining exact symmetry has been well studied.
Sugihara [11] considers congruence of polyhedra, Jiang [6] con-
siders simple algorithms for polyhedral symmetry, and Wolter [14]
considers optimal algorithms for polyhedra in three dimensions.
These researchers show that polyhedral symmetry can be deter-
mined in three dimensions in O(n log n) time (where n is the num-
ber of vertices) by the use of symbolic sorting algorithms. However,
in practice, these results do not transfer to the approximate case be-
cause they require the ability to tell locally whether one point can
be mapped to another. In the approximate case the decision has to
be a global one based on the behaviour of the entire object.

Approximate symmetry can be defined in more than one intu-
itively acceptable manner. Three central definitions exist in the
literature, each of which is difficult to use for the beautification
problem because of (1) the requirement to determine an arbitrary

threshold or (2) the time requirements of the algorithm. The reason
for the latter is illustrated by the sock matching problem. If a num-
ber of paired grey socks are mixed together, a direct attempt to pair
them might start by pairing two of similar but different shades. The
problem might not be discerned until eventually a black sock and a
white sock are all that are left. The problem with this approximate
matching of the socks is a global phenomenon, requiring knowl-
edge of the entire collection. The specific problems with the three
definitions are discussed below.

Zabrodski [16] considers the problem of constructing a measure
of approximate symmetry for molecules. The elements of the ob-
ject may be seen as coloured points. The motivation is to determine
a numerical quality of molecules that can be related to things such
as melting temperature of solids. The distance between two collec-
tions of points is defined as the root mean square distance between
the individual points of closest approach. The symmetry measure
is the distance between a set and its transforms according to the
‘most likely’ symmetry group. In defining the most likely group
Zabrodski makes use of orbits of group actions, but only for mirror
symmetry and rotation taken individually, and does not generalize
this to an arbitrary symmetry group. However, in our paper general
symmetry groups are considered. Zabrodski’s work is interesting,
but aimed mainly at continuous measures of symmetry, rather than
determining whether or not that symmetry exists. With a contin-
uous measure the distinction between symmetric and asymmetric
disappears and arbitrary thresholds must be chosen. In Zabrodski’s
scheme a triangle is at least somewhat like a square. This is not a
robust solution to the problem of finding the intended symmetry in
a physical object.

Iwanowski [5] considers the difficulty of determining the exis-
tence of a nearby collection of points with a specified symmetry.
The notion of neighbourhood used here is that two collections are
close to each other if there is a one-to-one correspondence between
them such that the distance between corresponding points is less
than a specified tolerance. Iwanowski shows that this problem is
NP-hard even when limited to two dimensions. At the end of the pa-
per Iwanowski suggests that this work might be sped up in practice
if we could assume that the orbits are already known. This begs the
question. The algorithm presented in our paper could also be made
much faster if the orbit structure was already known, but when we
begin fully automated search we do not know what it is, and it can
take some time to determine it. Our algorithms use a different def-
inition, which leads to a much faster implementation. Iwanowski’s
work is significant in two respects. Firstly, he emphasises that the
approximate problem can be much harder than the exact problem,
and secondly, the question can be paraphrased as asking whether
the object can be made symmetric by changes to within a given
tolerance. This is the style of question which the current paper con-
siders. However, Iwanowski’s work is too exacting, and the difficult
cases are not of interest in the analysis of physical objects.

Alt [1] considers a different definition. An approximate symme-
try is not specifically referred to a symmetric object. He determines
whether an isometry can be found that maps the points of the col-
lection close to themselves, in a one to one fashion. The notion of
closeness is essentially that of Iwanowski, but the set is compared
with a transformed version of itself, rather than an example of a
perfectly symmetric collection. This definition is significant in re-
lation to this paper since the basic idea of the correspondence is the
same. Alt’s definition of symmetry seems as intuitively justified as
Iwanowski’s definition, but it is easier to compute. Nevertheless for
general symmetry in the plane Alt’s method still takes time O(n6).
Alt’s work is related to ours by the similar definition of approximate
symmetry, but like Iwanowski’s work the emphasis is on finding a
given symmetry to a given tolerance.

We are firmly committed to the idea that neither the symmetry
nor the tolerance should be predetermined. Our algorithm deter-

2

mines maximal symmetry, and the level of tolerance that will gen-
erate it. The difficult cases in previous work relate to problems in
determining the existence of precisely, no more and no less, the
symmetry being sought. In this paper, with an emphasis simply on
finding the maximal symmetry, the pragmatic problem of finding
regularity in the object is solved, and the difficult cases involving
ambiguity in matching points are avoided.

Another approach entirely warrants mentioning at this point. The
thesis of Tate [12] describes an implementation of an algorithm for
determining partial symmetry. The idea is to match every pair of
edge loops and find the isometries that relate the two, and then to
group these isometries according to similarity. The actual imple-
mentation only checks for axes of continuous rotation, and mirror
planes. The result is an algorithm that is expressed by Tate as be-
tween O(n2) and O(n4), where n is the number of loops. Test runs
show, for example, that 188 loops take 72 seconds on a 200Mhz
Pentium. There are more loops than faces, but in general there
would be typically a limit to the number of loops per face, such
that the number of loops and the number of vertices are of the same
order. Comparisons of Tate’s results with ours in Table 1 show that
her algorithm runs a few times faster for a couple of hundred points.
Comparison of theoretic complexity suggest a similar order. How-
ever, the two algorithms are not computing the same thing.

Tate’s algorithm computes partial symmetries and runs faster, but
the order is the same within the ability to test this, and Tate’s algo-
rithm as implemented admits less isometries as potential symme-
tries. Our algorithm uses all possible isometries, as implemented,
and detects approximate symmetries. Tate has no definite strategy
for the detection of approximate symmetries other than to try the
same thing with lower tolerance. Our algorithm comes complete
with a direct means of computing a rectified (i.e. symmetric) object,
while Tate’s is interested in finding gripping positions, and mainly
refers to rectification generically rather than having a distinct strat-
egy. In summary, the two algorithms compute different but related
things, of possibly similar difficulty, in similar times. They appear
to be complimentary rather than working on the same thing.

3 ALGORITHM OUTLINE

Before we give a detailed explanation of the algorithm, we outline
the principles using a simple example. In the following example,
ten points are roughly at the corners of a cube, but one corner has
three points near it (see Figures 1 and 3). The first part of the al-
gorithm replaces certain groups of points by their centroid. The
second part finds the approximate symmetries of the collection of
points remaining after this grouping.

If the positions in the example are considered exactly then the
points are not in symmetrically related locations. However, the
three points labelled 0 are much closer to each other than to the
other seven points. If these are grouped as a single point then the
set of points are approximately located at the eight corners of a cube
(see Figures 2 and 3). The first stage of the algorithm looks for tol-
erance levels for which the grouping of points is consistent. The
exact value of this tolerance is not important. It is only required
that there exists some level of tolerance that produces the group-
ing. In this example the first stage determines that the three points
labelled 0 could be treated as one, thus making a total of 8 rather
than 10 points. The overall algorithm determines a small number
of such groupings dependent on the structure of the object. Each
grouping of points is examined for approximate symmetry. In this
example three groupings were returned: (1) the approximate cube,
(2) a grouping in which each point was on its own, and (3) the
grouping into a single group containing all the points.

If the approximate cube is rotated so that it comes into correspon-
dence with itself, then each corner will be moved near to the old
location of some (other, or possibly the same) corner. This induces

(0.90 1.00 1.00) # 0
(1.00 0.90 1.00) # 0
(1.00 1.00 0.90) # 0
(1.00 1.00 -1.00) # 1
(1.10 -0.90 1.00) # 2
(1.00 -1.00 -1.00) # 3
(-1.00 1.00 1.10) # 4
(-1.10 0.90 -1.00) # 5
(-1.00 -1.00 1.00) # 6
(-1.00 -1.00 -0.90) # 7

Figure 1: The Input Vertices Approximately on a Cube

(0.97 0.97 0.97) # 0
(1.00 1.00 -1.00) # 1
(1.10 -0.90 1.00) # 2
(1.00 -1.00 -1.00) # 3
(-1.00 1.00 1.10) # 4
(-1.10 0.90 -1.00) # 5
(-1.00 -1.00 1.00) # 6
(-1.00 -1.00 -0.90) # 7

Figure 2: The Vertices after the Algorithm’s First Stage

� � �� �

� �� �

� �� �

� �� �

� �	 	

� �

� � �

� � �� �

� �� �

� �� �

� �� �

� �� �

� �� �

� �� �

� �� �� � �� �

 ! !

" "# #

Figure 3: Input (left) and Output (right) of the First Stage

a permutation. The vertices are rearranged by the symmetry. The
second stage of the algorithm determines the set of permutations
induced by approximate symmetries of the collection of points. In
the example given there are 48 approximate symmetries. The first
eight permutations are listed in Figure 4 as sets of ordered pairs.
For example (0, 4) means that the point labelled 0 is moved to the
location of the point labelled 4.

These permutations not only map vertices to vertices, but also
implicitly (by mapping end points) edges to edges. The length of
an edge is adjusted to the average length of the edges that it can
be mapped to. Then the entire cube can be reconstructed using
triangulation to determine the location of each vertex. The resulting
structure has the geometric symmetry determined by the group of
permutations.

4 THE ALGORITHM

We now describe the algorithm in detail. Pseudo code for the first
and the second stage of the algorithm is presented as Algorithms 1
and 2 respectively. We assume that various abstract data types
such as points, graphs, sets, partitions and priority queues are avail-
able [15]. In the pseudo-code the priority queue automatically sorts
the pairs of points placed on it, so that the pair with the least dis-
tance of separation is placed at the head of the queue and will come
off first.

The input to the first stage of the algorithm is a list of points, and
the output is also a list points, the centroids of the classes of some
partition of the input list (Algorithm 1, line 19). The major task of
the first stage is to compute the partition. During this process a dis-

3

00: First_Stage of (Points : set of point) :-
01:
02: Q : priority_queue based on distance() = empty_queue
03: G : graph of points = empty_graph
04: P : grouping of points = {{X} for X in Points}
05:
06: for each X in Points
07: for each Y in Points
08: push (X,Y) onto Q
09:
10: while(Q is not empty_queue)
11:
12: pop Q into Pair
13: add Pair to G
14: merge group containing left of Pair with
15: group containing right of Pair in P
16:
17: if distance(top of Q) > distance(Pair) and
18: each of components of G is complete graph
19: then Second_Stage of {centroid of S for S in P}

Algorithm 1: First Stage Pseudo Code for Generating Lists of Points

1: (0,4)(1,0)(2,5)(3,1)(4,6)(5,2)(6,7)(7,3)
2: (0,2)(1,0)(2,3)(3,1)(4,6)(5,4)(6,7)(7,5)
3: (0,1)(1,0)(2,5)(3,4)(4,3)(5,2)(6,7)(7,6)
4: (0,2)(1,0)(2,6)(3,4)(4,3)(5,1)(6,7)(7,5)
5: (0,4)(1,0)(2,6)(3,2)(4,5)(5,1)(6,7)(7,3)
6: (0,1)(1,0)(2,3)(3,2)(4,5)(5,4)(6,7)(7,6)
7: (0,3)(1,7)(2,1)(3,5)(4,2)(5,6)(6,0)(7,4)
8: (0,6)(1,7)(2,4)(3,5)(4,2)(5,3)(6,0)(7,1)

Figure 4: Output of the First Eight Approximate Symmetries

tance known as the level of tolerance is also determined implicitly
as explained later (see Section 4.1). The first stage actually com-
putes a number of output lists (Algorithm 1, line 17). For each of
these it calls the second stage to determine what the symmetries are
(Algorithm 1, line 19).

The physical significance of the level of tolerance is clearest
when motions of the collection of points are considered. A rigid
motion of the collection that moves each point onto another is an
exact symmetry. An approximate symmetry is a rigid motion that
moves each point to within the tolerance of its nominal target. If in
the original collection two points are within the tolerance of each
other then no movement at all is required to bring the one approx-
imately onto the other. In this case the two points within tolerance
of each other are treated as being at the same location. But if three
points are close to each other so that the first is within tolerance of
the second and the second within tolerance of the third, it is possi-
ble that the first will not be within tolerance of the third. In this case
it is not possible to consistently decide whether multiple points are
in the same location. However, for each collection of points there
are intervals of levels of tolerance such that the grouping of points
is consistent, at least for all the points in that collection. It is only
those levels of tolerance that are consistent that need to be consid-
ered.

Multiple entries in the input list of points that are identical should
be replaced by a single entry. When a non-zero level of tolerance is
used, groups of points that are within tolerance should be replaced
by a single point. The first step in the algorithm is to determine
those levels of tolerance for which such replacement is consistent.
Given a sorted list of the distances that occur, as the tolerance is

varied from just above one distance on the list to just below the next,
no change in the grouping of points will occur. But as the tolerance
passes each distance on the list, it is possible that the grouping will
change. Thus only tolerances corresponding to these distances need
to be considered explicitly.

4.1 The First Stage – Generation Of Lists
Of Points

Given an input list of points, the first stage generates the list of
unordered pairs of these points (Algorithm 1, line 06), and sorts
that list in order of increasing distance apart. A partition of the
points is initialized (Algorithm 1, line 04) so that it classes each
point as distinct. A graph is also initialized to the empty graph. The
connected components of the graph are the classes of the partition.
The number of nodes and edges in each connected component is
stored, as well as a global count of the number of components that
are not complete subgraphs. (When each connected component is
a complete subgraph the graph represents a consistent grouping).
In this way the operations indicated in the pseudo code are quite
efficient. The initial counts are zero edges and one node for each of
the classes, with a total count of zero incomplete components.

A tolerance level is implied, initially being zero, but no storage
of this value is required. To increase the tolerance, the pairs are
taken from the sorted list one at a time (Algorithm 1, line 12). If the
current pair has both points in the same class, then both the edge
and node counts for the component of the graph are incremented.
A class is a complete graph if and only if the number of edges is
equal to m(m − 1)/2 where m is the number of points. So, if the
status of this equality changes, then the global count of incomplete
subgraphs is adjusted accordingly. If the current pair has points in
distinct classes, then these classes are merged, and the counts ad-
justed appropriately. The tolerance is nominally half way between
the current distance and the next distance to be added.

From the tolerance analysis we obtain a number of tolerance lev-
els and corresponding consistent groupings of points. The collec-
tion of centroids of these groups is then subjected to symmetry anal-
ysis in stage 2. Each point in the new collection is the centroid of
a cloud of points from the old collection. Each point in the cloud
is no further from the corresponding centroid than the tolerance.
Since the grouping is consistent, each point in a cloud is closer to

4

00: Second_Stage of (M : set of point) :-
01:
02: i : integer
03: X[0 .. size of M] : point
04: Y[0 .. size of M] : point
05:
06: X = [centroid of M | list of M]
07:
08: i = maximal j in [1 .. size of m] for length(X[0 .. 0],X[j])
09: swap X[1] with X[i]
10: i = maximal j in [2 .. size of M] for area(X[0 .. 1],X[j])
11: swap X[2] with X[i]
12: i = maximal j in [3 .. size of M] for volume(X[0 .. 2],X[j])
13: swap X[3] with X[i]
14:
15: Y[0] = X[0]
16:
17: for each Y[1 .. 3] in permutations size 3 of X[1 .. size of M]
18: backtrack Y[1 .. 3] when not preserve(Y)
19: if extend(Y,X) output(Y)

Algorithm 2: Second Stage Pseudo Code for Symmetry Analysis

the centroid of the cloud than it is to the centroid of any other cloud.
So a tolerance of half the minimum distance between any two cen-
troids will generate the same grouping as the tolerance used by the
algorithm in determining the grouping. This tolerance is used in
the symmetry analysis. Classing two points as the same only when
the distance between them is strictly less than this tolerance means
that every point in the space is close to at most one point in the col-
lection. It is certain that there is no ambiguity in the approximate
matching of points under an isometry.

An example of the input, and one of the corresponding outputs
has already been given in Figures 1 and 2.

4.2 The Second Stage – Symmetry Anal-
ysis

The symmetry analysis stage (Algorithm 2) of the algorithm deter-
mines the set of all permutations of the points that preserve the dis-
tances between points to within the tolerance level selected by the
first stage. The pseudo code shows two major sections. Firstly, a list
of points consisting of the centroid of the input points, three special
input points on the convex hull of the input points, which form a
non-degenerate tetrahedron together with the centroid, followed by
the remaining input points is constructed (Algorithm 2, lines 06–
13). The location of these three points and the centroid determines
the location of all the points in the collection, so, once the mapping
of these points is established, the mapping of all the other points
follows directly. Secondly (Algorithm 2, line 17) a limited depth
first search of a tree of permutations is performed. Once a depth of
four has been obtained (i.e. the tetrahedron has been mapped) the
search proceeds by an alternative extension process, which checks
if all other points are consistently mapped (Algorithm 2, line 19).
The motivation for the structure of this code is efficiency. The most
robust algorithm is to simply try every permutation, but this is pro-
hibitive of resources. The operation of the actual code is explained
in the rest of this section, and Section 5 which derives the complex-
ity.

A permutation is a list of pairings of the points in the collection.
The action of the permutation is to take the first element of each pair
and move it to the corresponding second element. In a permutation
each point occurs exactly once as a first element and exactly once
as a second element. A list of pairs is a part of a permutation if each

point occurs at most once as a first element, and at most once as a
second element. Such a list is a partial injection. Partial injections
form a tree. The root of this tree is the empty list and the children
of any given partial injection are those obtained by appending one
more pair to the list. The permutations are the leaves of the tree.

A partial injection is approximately distance preserving if the
absolute difference between the separation of two given points,
and the separation of their images, under the partial injection, is
less than the tolerance. Most of the partial injections of the points
are not approximately distance preserving. A proto-symmetry is a
partial injection that is approximately distance preserving. Proto-
symmetries form a subtree of the partial injection tree. The ap-
proximately distance preserving permutations are exactly the max-
imum depth leaves of this subtree, the other leaves being proto-
symmetries that cannot be extended. This subtree is typically much
smaller than the full tree of partial injections.

To scan just the tree of proto-symmetries, in order to find all the
leaves of this tree, a scan of the larger partial injection tree is con-
ducted in a depth first manner, backtracking whenever a node is
found not to be a proto-symmetry. In the pseudo code, extend
adds an element onto the current tree, extending its depth, and
backtrack goes up a level if adding an element creates an non-
proto-symmetry. Practice, and some theoretical considerations, in-
dicate that this approach considerably decreases the number of per-
mutations actually considered during execution of the algorithm.
Section 5 gives a discussion that indicates the worst case and ex-
pected running time in Euclidean three dimensional space for this
algorithm. Also discussed are a number of symmetry concepts, and
some modifications to the algorithm to help ensure that the theoret-
ical performance is achieved in practice.

5 PERFORMANCE ANALYSIS

Our algorithm is presented as two routines the first of which is a
loop which sometimes calls the second, which is also a loop. In
order to estimate the time taken it is sufficient to know how long
the outside loop takes on the assumption that the inner loop takes
no time, how long the inner loop takes, and the number of times
the inner loop is called. The conclusion is that the inner loop has a
time complexity of O(n2.5 log4 n) where n is the number of points.
The inner loop can be expected to be called at most O(n) times, and

5

Name Time (sec) Points Symmetries

penta 0.02 5 (5:10) (4:2) (3:6)
cube1 0.07 8 (8:48)
cube2 0.09 10 (10:6) (8:48)
cubeoct1 0.15 12 (12:48)
icosa1 0.39 14 (14:1) (13:1) (12:120)
cubeoct2 0.60 24 (24:48) (8:48)
tcube 2.92 24 (24:48) (16:16)
snubcube 3.38 24 (24:24) (12:48)
icosido1 5.66 30 (30:120) (18:24)
icosido2 5.88 32 (32,31:1) (30:120)
icosido4 6.87 36 (37,36,31:1) (30:120)
icosido3 7.11 34 (34,33,32,31:1) (30:120)
icosido5 24.88 74 (74,73,68,67,66,62,61:1) (60:120)
icosido6 64.45 148 (148,110,105,104,99,98,97,91:1) (90:120)
prism60 165.76 180 (180:240) (156,132:16)
prism50 401.31 250
rhombix 831.52 120 (120:120) (104:8)

Table 1: Time Taken and Symmetry Found for Sample Input Shapes

the outer loop takes O(n2 log n). So the order of the algorithm in
the worst case is O(n) × O(n2.5 log4 n) + O(n2 log n) which is
O(n3.5 log4 n). However, taking into account the improbable na-
ture of objects that would cause this worst case behaviour to occur, a
more pragmatic upper bound of O(n2 log4 n) is obtained for likely
engineering objects.

The inner loop begins by matching four points of the collection
with four other points. One of these is the centroid matched to it-
self, which takes constant time. The time for matching the next
two points is bounded by O(n2) operations. A bound on the num-
ber of matches for these two points can be found from the result
that the number of points a given distance apart is no more than
O(n1.5) [4]. After three points have been matched, the next point
can only match a constant number of points, but it takes O(n) time
to find out which points. So the total time taken in matching is
bounded by O(n2 + n2.5) = O(n2.5) time, producing O(n1.5)
possible matchings for the four points. In order to match the rest of
the list our implementation uses the direct O(n2) approach. How-
ever, we can treat this as a problem of finding a data point in a
rectangular piece of four dimensional space (defined by the dis-
tance from each of the four points). This can be done [3] with a
once off O(n log3 n) setup time, for each set of four points, and
then order O(log4 n) query time for each point. This means that
O(n1.5n log3 n) = O(n2.5 log3 n) time will be taken over the
whole execution, doing the setup operations, and O(n log4 n) time
per set of four will be spent doing the matching. In each case this
is O(n2.5 log4 n), which is thus the order of the total time taken by
the inner loop each time it is called.

Other than calling the inner loop, the outer loop has O(n2) setup
time building the list of pairs of points, and the time spent in merg-
ing the classes. The merging of classes is a fast operation because
the classes are stored as balanced binary trees. This entire operation
is conducted on an integer array. Each entry in the array stores the
location of the node that is its parent in the binary tree storing the
points in the class, except for the root of each class which stores its
own location. There is a trade off here. If we store the parent, then
merging takes constant time, but finding out which class a point be-
longs to takes O(log m) time, where m is the average size of the
classes. If we store the root, then finding the class takes constant
time, but merging takes longer. With the choice made here, the in-
clusion of a new edge takes O(log m) time. Thus, determination of
the acceptable tolerance levels, and the corresponding groupings, is
of complexity O(n2 log n + n2 log m). This complexity class is

also O(n2 log n) since m ≤ n.
This gives us the time taken for the outer loop itself, and the

time taken for the inner loop each time it is called. Since the in-
ner loop takes a greater order of time, the time for the entire algo-
rithm is the product of the time for the inner loop and the number
of times the inner loop is called. This is O(n2.5 log4 n) × O(n) =
O(n3.5 log n).

Each time the inner loop is called the outer loop has made the
partition of points coarser. So the immediate limit to the number
of calls is n, the number of points. This limit can be reached by a
collection of points built up one at a time, adding each point a bit
further away each time.

The order of the inner loop is actually an overestimate because
the figure O(n1.5) (for the number pairs at a given distance) is an
overestimate. The actual value is between O(n) and O(n1.5), most
likely rather closer to the lower than to the upper value. In practice,
with normal engineering objects, even reaching the bound of O(n)
is unlikely. For an object to have as many distinct partitions as
points would require the object to have interesting features on as
many scales as there are points. In practice an engineering object,
even a complex one, will have only a few levels of size of feature.
Thus the actual number of times that the inner loop would be called
is bounded by a constant, and is O(1). These two issues taken
together lower the order by n1.5 bringing the expected performance
in practice on engineering objects to O(n2 log4 n).

6 DATA CONDITIONING

If the tolerance is non-zero, then the approximate distance to each
of the first four points does not always identify a point uniquely.
The problem occurs when the distance between two of the four
points is small compared to the distance from those points to the
point being identified. For a tall triangle on a small base, a small
change in the length of the sides changes the position of the vertex
opposite the base by a much greater distance, possibly to the loca-
tion of another point. This problem is solved by the combination
of two ideas. Firstly, the first four points are selected as the cen-
troid, and three points on the convex hull, as far from the centroid
and each other as possible. In this way no point in the collection is
further from the first four than they are from each other. Secondly,
elongated collections of points are handled separately as discussed
below.

6

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300

PSfrag replacements

theoretical time = (log3
n)(2+n

2)
2000

time (seconds)

= measured data

number of points

Figure 5: Measured and Theoretical Performance

Symmetries of collections of points can be split into two cate-
gories. Firstly we have the prismatic groups comprising of some
collection of rotations about a specific axis, and reflections parallel
and orthogonal to this axis. Then there is a finite number of other
possible collections of symmetries. A collection of points that is
several times as long as it is across can only have prismatic sym-
metries. The result of applying the above algorithm, scanning only
to a depth of four points, is that a long collection of points is seen
approximately as a linear arrangement. The collection is then mod-
ified by magnifying the distance of each point radially from the
central line. As this does not affect the rotational or mirror symme-
tries referred to that line, the radially magnified collection is then
analysed for approximate symmetry in a second pass. The other
collections, which have a lower aspect ratio, will be correctly anal-
ysed the first time.

7 TESTING

A number of point collections derived from vertices of polyhedra
were used as test cases for the algorithm. The original shapes
were: pentagon, cube, cube-octahedron, icosahedron, icosidodec-
ahedron, and rhombicosidodecahedron. The actual collections of
points were obtained by combining scaled versions of the originals,
and by replacing single points by one, two or three randomly trans-
lated points. Two further collections were generated as the vertices
of 50- and 60-fold regular prisms, together with some extra points.
Because of the relatively large number of symmetries that these ob-
jects have they are trickier to process than a typical engineering ob-
ject. In practice objects which can be reverse engineered are limited
in complexity, for example to no more than about 200 vertices, and
so these examples cover the more difficult cases for the algorithm.

The implementation of the algorithm was run on a 450Mhz Pen-

tium III machine with 128MB of RAM, under the GNU/Linux op-
erating system. Timings were obtained using several runs with each
data set, and the results were averaged. No time variation of more
than one hundredth of a second was noted for the same data set. Ta-
ble 1 lists the names of the data sets, the time taken, and the number
of points in the set. An indication of the symmetry determined is
also given: an entry of the form (a, b, c : d) indicates that toler-
ances were found that created consistent groupings of a, b and c
groups, and that each of these had d symmetries. An entry with one
symmetry means an asymmetric object, since this one symmetry is
the permutation that maps each point to itself. Sometimes many
asymmetric collections were considered, but the larger part of the
time was spent on the symmetric collections.

In Table 1 the names of the data sets reflect the content. Penta is
a pentagon, cube is a cube, cubeoct1 and cubeoct2 are variants of a
cubeoctahedron, and so on.

The time taken by the algorithm is considered in terms of a scat-
ter plot of time and number of points. Since the time taken depends
non-trivially on the symmetries found, the plot is not fundamentally
a plot of a function. However we consider the asymptotic worst
case running time in terms of the number of points. Previous analy-
sis indicated that a function of the form (a+bnc)(logd n) would be
appropriate. Informal analysis found a best fit for c ≈ 2 and d ≈ 3.
The data file that does not fit this pattern is rhombix. It consists
of 120 structurally equivalent points. Rhombix is unusual in that
it has as many symmetries as there are points and, other than the
regular prisms (which can be checked for) it has the largest number
of points for which this is possible and so, as a special case it does
not affect the order of the algorithm. Figure 5 shows a graph with
the function (log3n)(2 + n2)/2000 together with the data points
listed in Table 1.

Prism60 is a 60 sided prism with 180 points, prism50 is a 50
sided prism with 250 points. It is noted that these test objects

7

take considerably less time in relation to the number of points than
rhombix does. In particular we need to go to more than twice the
number of points before we get up to the time taken by the heavily
symmetric rhombix.

The ability of the algorithm to find exactly the same symmetries
reported by a human is very good. In all the above test cases it
determined exactly those symmetries that a human found, the only
issue being that some symmetries of size 1 were output, which of
course is simply a case of an asymmetric object. However, as these
are not impossibly numerous they can simply be eliminated from
consideration afterwards, and only non-trivial symmetries can be
included.

Trials with many objects showed that prisms with an aspect ratio
of greater than 5:1 could not typically be analysed with the algo-
rithm as described. For example a 10:1 pencil shaped prism with
6 fold rotational symmetry was judged only to have mirror reflec-
tion about the mid point. The algorithm grouped the points at each
end into a single point. The line between these two points was the
symmetry axis of the collection.

The case that takes the least time is that of a completely asym-
metric object as there are no non-trivial matches for the registration
set. Thus, after running several scans of about n steps, the algo-
rithm will terminate upon the discovery that it can extend this to a
complete match. This takes O(n log4 n) time. The worst case for
a typical engineering object is a simple prism with a large number
of sides. In this case the number of registration maps is roughly
equal to the number of symmetries, which is 2n. Thus the number
of rotations is n/2 and the number of symmetries including reflec-
tions, is four times this. So, in this case, the total time taken is
O(n2 log4 n).

8 SUMMARY

The concept of exact geometric symmetry is well defined, and there
are a number of algorithms that will compute the symmetries of a
polyhedron in time bounded by O(n log n). The exact symmetry
of an object is not robust. It is typically destroyed by any errors
in the data. However, in reverse engineering the notion of approxi-
mate symmetry is useful. In order to robustly compute approximate
symmetry a new precise definition has been given. A given data set
might not possess a unique approximate symmetry. This makes it
difficult to construct an algorithm to determine it. The pragmatic
problem is to determine something to compute that will suggest
and validate modifications of the model so that the new model has
an exact symmetry that was not previously present.

The particular definition of approximate symmetry presented
in this paper has been designed to be physically significant, non-
arbitrary, to lead to methods for fixing the symmetry and to be fast
to compute. In practice it has been shown that this algorithm runs in
an acceptable time. The computation generates approximate sym-
metries that are not arbitrary, but rather exist or do not exist in a
collection of points with good reason. Furthermore, this computa-
tion is quite robust to noise in location of the points to beyond the
level at which the algorithm is required to work for the purposes
envisaged in reverse engineering.

Our next goal is to extend this algorithm to finding partial asym-
metries, as real engineering objects typically are not completely
symmetric.

ACKNOWLEDGEMENTS

The authors wish to thank Peter Varley from Cardiff University for
valuable criticism of the exposition and Tamás Várady from the
Hungarian Academy of Sciences and CADMUS Consulting and

Development Ltd. for the model generating software. This research
was funded by EPSRC grant GR/M78267.

REFERENCES

[1] H. Alt, K. Mehlhorn, H. Wagner, E. Welzl. Congruence, Sim-
ilarity, And Symmetries Of Geometric Objects. Discrete and
Computational Geometry, vol. 3, pages 237–256, 1988.

[2] P. Benkő, R. Martin, T. Várady. Algorithms For Reverse
Engineering Boundary Representation Models. To appear in
Computer-Aided Design, 2001.

[3] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarz-
kopf. Computational Geometry, Algorithms And Applica-
tions, Springer, 1997.

[4] J. E. Goodman, J. O’Rourke (eds.). Handbook Of Discrete
And Computational Geometry, CRC Press, 1997.

[5] S. Iwanowski. Testing Approximate Symmetry In The Plane
Is NP-hard. Theoretical Computer Science, vol. 80, pages
227–262, 1991.

[6] X. Y. Jiang, H. Bunke. A Simple And Efficient Algorithm For
Determining The Symmetries Of Polyhedra. GVGIP: Graph-
ical Models And Image Processing, 54(1):91–95, 1992.

[7] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Mar-
tin. Finding Approximate Shape Regularities In Solid Models
Bounded By Simple Surfaces. These proceedings.

[8] E. Lockwood, R. Macmillan. Geometric Symmetry, Cam-
bridge University Press, 1978.

[9] G. Lukács, R. Martin, D. Marshall. Faithful Least-Squares
Fitting Of Spheres, Cylinders, Cones And Tori For Reliable
Segmentation. In: H. Budkhadj, B. Neumann (eds.), Proc.
5th European Conf. Computer Vision, vol. 1, Albert-Ludwigs
Universität, Freiburg, Germany, pages 671–686, Springer,
1998.

[10] B. I. Mills, F. C. Langbein, A. D. Marshall, R. R. Martin.
Estimate Of Frequencies Of Geometric Regularities For Use
In Reverse Engineering Of Simple Mechanical Components.
Submitted to Computer-Aided Design, 2000.

[11] K. Sugihara. An n log n Algorithm For Determining The
Congruity Of Polyhedra. Journal of Computer and System
Science, vol. 29, pages 36–47, 1984.

[12] S. Tate. Symmetry And Shape Analysis For Assembly-Ori-
ented CAD. PhD Thesis, Cranfield University, 2000.

[13] T. Várady, R. Martin, J. Cox. Reverse Engineering Of Geo-
metric Models – An Introduction. Computer-Aided Design,
29(4):255–268, 1997.

[14] J. Wolter, T. Woo, R. Volz. Optimal Algorithms For Sym-
metry Detection In Two And Three Dimensions. The Visual
Computer, vol. 1, pages 37–48, 1985.

[15] D. Wood. Data Structures, Algorithms, And Performance,
Addison-Wesley, 1993.

[16] H. Zabrodski, D. Avnir. Measuring Symmetry In Structural
Chemistry. Advances in Molecular Structure Research, vol.
1, pages 1–31, 1995.

8

