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Abstract

This paper considers an approach to mesh denoising based on the
concept of random walks. The proposed method consists of two
stages: a face normal filtering procedure, followed by a vertex po-
sition updating procedure which integrates the denoised face nor-
mals in a least-squares sense. Face normal filtering is performed by
weighted averaging of normals in a neighbourhood. The weights
are based on the probability of arriving at a given neighbour after a
random walk of a virtual particle starting at a given face of the mesh
and moving a fixed number of steps. The probability of a particle
stepping from its current face to a given neighboring face is deter-
mined by the angle between the two face normals, using a Gaus-
sian distribution whose width is adaptively adjusted to enhance the
feature-preserving property of the algorithm. The vertex position
updating procedure uses the conjugate gradient algorithm for speed
of convergence. Analysis and experiments show that random walks
of different step lengths yield similar denoising results. In particu-
lar, iterative application of a one-step random walk in a progressive
manner effectively preserves detailed features while denoising the
mesh very well. We observe that this approach is faster than many
other feature-preserving mesh denoising algorithms.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—Curve, surface, solid, and object
representations

Keywords: Mesh Denoising, Mesh Smoothing, Random Walk,
Feature Preservation

1 Introduction

3D surface mesh denoising has been an active research field for
several years. Although much progress has been made, mesh de-
noising technology is still not mature. When there are intrinsic fine
details or sharp features in a noisy mesh, it is hard to both denoise
the mesh and preserve the mesh features. In this paper, we present a
new feature-preserving mesh denoising method based on a random
walk model.

In basic terms, mesh denoising can be seen as a requirement to ad-
just vertex positions—vertices affected by noise are not where they
should be, and should be moved to their estimated noise-free po-
sitions. Generally, the vertex positions are the primary measured
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data, not mesh triangles, which is why we adjust vertex positions.
In practice, adjusting vertices directly is not always done, however.
New vertex coordinates are often computed in two steps. One-step
approaches directly update vertex positions using the original ver-
tex coordinates, sometimes together with face normal information,
in a neighbourhood around the current vertex. Two-step approaches
first adjust face normals and then update vertex positions using
some error minimization criterion based on the adjusted normals.

In many cases, a single pass of a one-step or two-step approach
does not yield a satisfactory result, and iterated operations are per-
formed. In iterative two-step approaches, the iterations can be per-
formed in two distinct ways: the two steps can be coupled as a
pair to give an overall iteration procedure informally described as
(Step 1+ Step 2)™, or two separate iteration procedures can be per-
formed, informally (Step 1) + (Step 2)"2, where ng, n; and n; are
numbers of iterations. To distinguish these two schemes, we call
these interleaved and consecutive iteration schemes respectively.

The relative advantages of these two schemes merits detailed inves-
tigation. One advantage of the interleaved scheme is that it only
depends on choice of a single iteration parameter rg, while the con-
secutive scheme involves two iteration parameters n| and n,. How-
ever, in an interleaved scheme, normal updating and vertex position
updating have different optimization end points, so their interaction
generally means that more iterations are needed for a given degree
of denoising than in a consecutive scheme, i.e. max(ny,ny) < ny.
In addition, small normal errors, but not vertex position errors, may
cause significant aliasing problems [Botsch and Kobbelt 2001], so
we need to pay more attention to the normal updating step. Hence,
it is preferable to separately process normal updating and vertex
position updating. The approach proposed in this paper is thus a
consecutive iterative method.

Random walks are used as models in many areas of mathemat-
ics and physics. Application of random walk models to computer
vision and image processing first appeared in the work of Wech-
sler and Kidode [1979] for texture discrimination. More recently,
random walks have been applied to image enhancement [Smolka
and Wojciechowski 2001; Azzabou et al. 2006], image filter-
ing [Smolka and Wojciechowski 2001; Szczepanski et al. 2003],
and image segmentation [Grady 2006]. Although image process-
ing is closely linked to mesh processing, it appears that applying
random walks to mesh processing is new. Random walks on an
image only deal with a 2D domain, which furthermore has a reg-
ular structure. It is not straightforward to extend such 2D meth-
ods to 3D mesh applications. In this paper, we provide a method
of applying random walks to 3D mesh denoising, motivated by the
random walk-based image denoising approach proposed by Smolka
and Wojciechowski [2001].

The rest of the paper is organized as follows. Section 2 gives a brief
review of previous work on mesh denoising. Section 3 describes
the notation used in this paper. Section 4 presents a simple intro-
duction to random walk models. Section 5 is the core of the paper,
discussing mesh normal filtering using random walks. We also in-
troduce an adaptive parameter adjustment method, and analyze the
feature-preserving property of our approach. Section 6 states how
we perform vertex position updating using the conjugate gradient
method. Section 7 presents experimental results and compares our



method to other recent feature-preserving mesh denoising methods.
Finally, Section 8 concludes the paper.

2 Previous Work

Many surface smoothing, fairing and denoising methods have been
proposed, and to a large degree their differing aims have been
confused—smoothing algorithms have often been suggested for
noise removal. Classical Laplacian smoothing [Field 1988; Vollmer
et al. 1999] is the fastest and simplest surface smoothing method.
However, when applied to a noisy 3D surface, significant shape
distortion and surface shrinkage may result in addition to noise re-
moval. To overcome the shrinkage problem, Taubin [1995] pro-
posed a filtering method with positive and negative damping fac-
tors. A first-order filter with positive damping factor shrinks and
smooths the mesh surface, while a first-order filter with negative
damping factor expands the surface, to compensate for the shrink-
age. This method is fast and simple, but still suffers from distortion
of prominent mesh features. In addition, if the parameters of the
two filters are not chosen carefully, the algorithm can be numeri-
cally unstable.

Desbrun et al. [1999] introduced diffusion and curvature flow into
surface fairing, proposing a simple and numerically stable implicit
filtering method which can deal with irregular meshes. They over-
come the problem of shrinkage by re-scaling the mesh to preserve
its volume. Again, however, distortion of prominent mesh features
occurs.

From the viewpoint of signal processing, Taubin’s [1995] and Des-
brun et al.’s [1999] methods can both be though of as filtering meth-
ods. The former can be considered as moving average (MA), or
finite impulse response (FIR) filtering, while the later can be seen
as autoregressive (AR), or infinite impulse response (IIR) filtering.
Combining the above two approaches, Kim and Rossignac [2005]
developed a general autoregressive moving average (ARMA) filter
approach. Through suitable choice of parameters, the filter can act
as a lowpass, bandpass, highpass, notch, band amplification or band
attenuation filter, thus enabling it to filter out e.g. high-frequency
noise and, at the same time, enhance or suppress certain features.
However, it is difficult to design a suitable filter that does both well.

The above are all isotropic filtering methods, in which the filter
acts independently of direction. This makes it hard for such fil-
ters to preserve prominent directional mesh features, particularly
edges. Thus, various anisotropic filtering schemes have been pro-
posed which smooth surfaces while simultaneously preserving edge
features. Anisotropic filtering schemes can be divided into three
main classes, plus various others.

The first class is based on anisotropic geometric diffusion [Clarenz
et al. 2000; Desbrun et al. 2000; Tasdizen et al. 2002; Bajaj and
Xu 2003; Hildebrandt and Polthier 2004]. Such methods have been
used for smoothing height fields and bivariate data [Desbrun et al.
2000], level set surfaces [Tasdizen et al. 2002], and general dis-
cretized surfaces [Clarenz et al. 2000; Bajaj and Xu 2003; Hilde-
brandt and Polthier 2004].

The second class is based on bilateral filters [Jones et al. 2003;
Fleishman et al. 2003]. Fleishman et al. [2003] use an iterative
one-step approach, in which new vertex coordinates are computed
directly from the vertex’s neighbourhood. This approach is rela-
tively fast because a one-step computation is used for each itera-
tion of vertex updating. However, our experiments show that this
method does not always accurately preserve fine features of a mesh.
Jones et al.’s [2003] robust estimation smoothing is a non-iterative

two-step approach. Although non-iterative, this approach is slow
because it treats normal smoothing and vertex updating as global
problems.

The third class is based on combining normal filtering and vertex
position updating [Ohtake et al. 2001; Taubin 2001; Yagou et al.
2002; Yagou et al. 2003; Shen and Barner 2004; Chen and Cheng
2005]. Ohtake et al.’s [2001] nonlinear diffusion method, Yagou et
al.’s [2002; 2003] mean, median, and alpha-trimming methods, and
Chen and Cheng’s [2005] sharpness dependent method are inter-
leaved iterative two-step approaches. Taubin’s [2001] anisotropic
filtering algorithm and Shen and Barner’s [2004] fuzzy vector
median filtering approach are consecutive iterative two-step ap-
proaches.

Other approaches have also been considered. Shen et al.’s [2005]
method consists of three steps: feature-preserving pre-smoothing,
feature and non-feature region partitioning, and feature and non-
feature region smoothing using two separate methods. Nehab et
al. [2005] give an energy minimization method in which the en-
ergy is the sum of the position error and the normal error. Diebel
et al. [2006] use a Bayesian technique for reconstruction and deci-
mation of noisy 3D surface models, again based on an energy mini-
mization problem where the energy is a sum of position and normal
errors. [Nehab et al. 2005] uses additional information about the
measured normals which the latter does not, yielding a linear solu-
tion unlike Diebel’s method.

The above-mentioned anisotropic filtering approaches generally
suffer from one of two problems: either they do not preserve fea-
tures effectively, or they are complex and computationally expen-
sive. Our approach preserves features efficiently and is computa-
tionally inexpensive.

3 Notation

We use T = (V,E, F,X) to reporesent a triangular mesh, where V =
{i:i=1,...,n} is the vertex set, E = {(i, ) : (i, j) € V x V} is the
edge set, F = {(i, j,k) : (i, ), (i,k),(j, k) € E} is the face set, and
X ={x;: x; € R3, i € V} is the vertex coordinate set. We use |- |
to denote the cardinality of a set: e.g. |V| denotes the number of
vertices. A vertex, edge, or face is sometimes loosely represented
by its corresponding index, i.e. a number i may be used to denote
the i vertex V;, edge E;, or face F;, where this is not ambiguous.
The area of face F; is denoted by A;; the normal of F; is denoted by
n;. JF; denotes the set of edges bounding face F;.

In algorithms, various quantities are iteratively updated. We use ’
to represent the updated value, relative to the current value: e.g. n}
denotes the updated value of n;.

The 1-ring vertex neighbourhood of a vertex V;, denoted by Ny (i),
is the set of vertices that are connected to V; by an edge. The set of
faces that share a common vertex V; is denoted by Fy (i). The faces
in the 1-ring face neighbourhood of a face F; can be divided into
two types. The first type, denoted by Ny (i), is the set of faces that
have a common vertex or edge with the face F;, and the second type,
denoted by Npys(i), is the set of faces that share an edge with the
face F;. Fig. 1 shows the two types of face neighbourhoods. Note
that the Np;(i) D Npy(i). We will also wish to refer to the union of
F; and its neighbourhood, so we define Ny, (i) = N/ (i) U{F;} and
Ny (i) = Ne (i) U{Fi}-
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Figure 1: Face neighbourhoods. Faces labeled I belong to Nr;(i);
faces labeled II belong to Nry;(i)

4 Markov Chains and Random Walks

In this section, we introduce random walks from a practical point of
view. For more mathematical descriptions of these concepts, read-
ers are referred to a standard textbook, e.g. [Spitzer 2001]. Because
random walks are closely related to Markov chains, we begin with
an explanation of Markov chains.

A Markov chain is a sequence of random variables {X; :
t=0,1,2,...} with the property that, given the present state, the
future state is conditionally independent of earlier states. In other
words,

P(Xn+1 :anrl‘Xn =Xn, Xn—1 = Xn—1,---,X0 :x0) =
P(Xny1 = Xns1 X0 = Xn). (D

The possible values of X; form a countable set called the state space
which can be either finite or infinite. In this paper, we only consider
finite state spaces, and we simply use an index set .# = {1,...,N}
to represent the state space.

In general, P(X,,+1 = x|X,, = y) need not equal P(X,, =x|X,,_1 =y).
However, if P(X,+1 = x|Xy =y) = P(X, = x|X,—1 =) for all n, we
have a stationary Markov chain, a stochastic process in which the
transition probabilities do not depend on #.

The transition probability from state i to state j at the n’” time step is
denoted by p; j(n) = P(X, = j|X,—1 =i). We can now construct an
N x N matrix I1(n), the transition probability matrix, whose (i, j)™
entry is p; j(n), where i, j € .#. Thus, Il(n) is a stochastic matrix
in which each row sums to 1. We denote the probability that the
Markov chain reaches the state i at time step n by p;(n) = P(X,, =i).
We can now use a vector P(n) = [p1(n),..., pn(n)] to represent the
probability distribution of the Markov chain over all states at time
n. Note that Y ;c » pi(n) = 1.

The transition probability matrices together with the initial prob-
ability distribution completely determine the Markov chain. Let
the initial distribution be denoted by P(0). Then the distribution
of the Markov chain is P(1) = P(0)II(1) after one step, and is
P(n) = P(0)IT" after n steps, where IT" =TI(1)---II(n). We call
I1" the n-step transition probability matrix. The (i, j)™ element of
IT" is denoted by p? ;»and is the probability of going from state i to
J after n steps. '

A random walk is a discrete stochastic process consisting of a se-
quence of steps, each in a random direction. A random walk can
be viewed as a special type of Markov chain. In general, a single
step of a random walk can only reach a small state set in the state
space—the neighbouring states of the current state. Thus its transi-
tion matrix I1(n) is sparse for small n. However, in the limit after
many steps, a random walk can reach any state, and as n grows, IT"
becomes non-sparse.

5 Normal Filtering

In this section, we discuss we use a random walk model to denoise
the face normals. The basic motivation is that if probabilities of
stepping from one triangle to another depend on how similar their
normals are, and then we average normals according to the final
probabilities, we will give greater weight to similar triangles (simi-
lar parts of the surface) and less weight to ones that are e.g. on the
other side of an edge feature. Similar ideas were used by Smolka
and Wojciechowski [2001] for image denoising.

5.1 Random Walk for Normal Filtering

At the initial time, we suppose that a single virtual particle is placed
on each face of the mesh, and this particle remembers the normal
of its original face. At each step, the virtual particle can move to
a neighbour of its current face, or stay in its current position, with
probabilities that depend on the face normals. After n steps of such
a random walk, the particles will have been redistributed on the
mesh surface according to the n-step transition probability matrix
IT", which we then use to compute the new face normals in our
normal filtering algorithm. We perform normal updating using
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The updated normal here is a weighted averaging of the normals of
the faces on the whole mesh. Note that weighted averaging is a fre-
quently used approach to updating normals in the literature: [Taubin
2001; Ohtake et al. 2001; Ohtake et al. 2002; Yagou et al. 2002;
Yagou et al. 2003; Shen and Barner 2004].

To implement Equation (2), we need to know how to compute p; -
This depends on two elements: the choice of n, the number of steps,
and p; j(n), the transition probabilities. We first discuss the single-
step transition probability.

Intuitively, the larger the difference between the normals of two
neighbouring faces, the less similar they are, and hence the less
appropriate it is that they should be included in the same aver-
age. Thus, the larger the difference, the smaller the probability we
should use of the virtual particle on one face visiting the other face.
Hence, the single-step transition probability p; j(n) should be a de-
creasing function of the normal difference ||n; —nj||. Moreover, it
is usually required that this function is also convex in [0, ), and
tends to zero as its variable tends to infinity (of course, the nor-
mal difference here is in the range [0, 2], rather than [0, ), but this
makes little difference for the function we choose later). Numerous
functions satisfy the above conditions. Typical functions used in
the literature are [Szczepanski et al. 2003]

fiky) = ce P 3)

hx) = Ce P “
1

flx) = S )
1

A = Cop ©)

f5(x) = C(l—%arctan(ﬁx)), @)
2

fo@) = o ®)

fil) = € : ©)

14+xB’



wo = (S0P B

where 8 € (0,e0) is a parameter, and C is a normalization coefficient
to make the probabilities of all possible events sum to one.

A priori knowledge and experiments can help to choose a suitable
function. In this work, we have used the Gaussian function fj(x)
since the Gaussian distribution occurs commonly in the real world,
and our experiments show that it yields very good results. We note
that Ohtake et al. [2001; 2002] also use a Gaussian function as a
weighting function in their weighted averaging of normals. The
difference between our approach and Ohtake et al.’s [2001; 2002]
is that we have chosen different variables, and our variable—the
normal difference—is simpler than their variable—the directional
curvature.

Because

|n; —n;[|? =2(1 —n;-n;), an

we have, after combining the above coefficient 2 into the parameter
B of the Gaussian function fj (x),

o f ce Bt i e N (i)
Pw(”)*{ 0 otherwise ’ (12)

where the normalization coefficient C is given by

c=1/ Y e Bl—ming) (13)
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and N (i) is the 1-ring face neighbourhood of the face F;, which we
may take to be either Nr; (i) or Npy(i).

Next, we consider the choice of the number of steps, 7, for the walk.
As discussed in Section 4, as n becomes larger, more nonzero ele-
ments appear in the matrix IT?, which means that more face normals
are used in the computation of the new normal in Equation (2), and
better results can be obtained. However, because the number of
nonzero elements increases, the computational cost of Equation (2)
also becomes larger. We must seek a tradeoft between computa-
tional cost and quality of results.

If we adopt a non-iterative scheme to update face normals, n must
be large enough to obtain a result satisfying the qualitative require-
ments of denoising. However, if we adopt an iterative scheme,
then using small » can also produce good results in conjunction
with several iterations. Because a non-iterative scheme only needs
to update face normals once, it might appear that a non-iterative
scheme would be computationally more efficient than an iterative
scheme. However, just as was found in a comparison of computa-
tional cost between two bilateral filtering schemes [Fleishman et al.
2003; Jones et al. 2003], the non-iterative scheme is in practice
more time-consuming. Thus, we adopt an iterative scheme to up-
date face normals.

To investigate the effect of n on the final quality and computational
cost, we first give the face normal updating formulae for different n.
In the simplest case n = 1, we get pl!j = pi,j(1). So the face normal

updating formula in Equation (2) becomes
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where N (i) is the union of F; and Np (i). These alternatives corre-
spond to the cases in which the virtual particle on the current face
F; is or is not allowed to stay on F; in the next step, respectively.
The normalization coefficient C does not need to explicitly appear
in the above formulae because the last step of computing n/ is to
normalize it.

Note that in each iteration, n; is computed sequentially from i = 1
to i = |F|. Thus when we compute n} using Equation (14) or (15),
some right-hand-side normals n; may have a new value n’j avail-
able. We can either use their old values n; obtained in the last
iteration, or the new values n/i in this iteration when computing nﬁ.
We call the former scheme the batch scheme and the latter the pro-
gressive one. It is expected that the progressive scheme will more
quickly give a result of the same quality than the batch scheme be-
cause n'j used in the progressive scheme is closer to the required
denoised normal than n; used in the batch scheme. Our experi-
ments justify this conclusion.

Now consider the case n > 1. If we directly use Equation (2) to
update normals, we need to compute IT*. Because 1" will become
non-sparse as n grows, the computational cost will grow quickly,
and additional memory will be required to store the whole matrix
IT". To save memory and computation time, we propose to update
normals sequentially:
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or, with a different neighborhood
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and finally,

;= n;(n) )
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The algorithm given by Equation (16) or (17) updates normals
{n;(k),i € V} starting from k = 1 with known {n;(0): j € V}
which take the values {n;} of the last iteration or the initial nor-
mals during the first iteration. This is repeated until the normal
values for k = n are computed. Then Equation (18) is used to give
n’;. It can easily be shown that Equation (18) together with Equa-
tion (16) or (17) is equivalent to Equation (2). However, because
for given k, only a sparse matrix II(k) is required in the compu-
tation of Equation (16) or (17), the memory requirement and the
computational cost are greatly reduced.

(18)

Note that the above implementation is a batch scheme for the case
n> 1. If we adopt a progressive scheme, i.e. once we obtain a n;(k),
we immediately normalize it, take it as n;(k— 1), and use it in the
computation of p; ;(k), then one iteration of the n-step algorithm
in Equation (16) or (17) is equivalent to n iterations of the 1-step
algorithm in Equation (14) or (15), respectively. Thus, when con-
sidering the progressive scheme, it makes no difference whether we
talk about it as a 1-step or n-step algorithm.

Another explanation of the progressive scheme can be given. We
can consider it as random walks in which different virtual parti-
cles on the surface start walking at different time—the particle on
face 1 begins walking first (which causes the first normal and cor-
responding probabilities to be changed), and then the one on face
2, and so on. After all the particles have taken one step, the first
particle begins its second step, then the second particle, and so on.
This process of updating normals and probabilities continues until
all particles have finished their n-step walks. We can consider this
procedure as n iterations of 1-step random walks. We can also con-
sider it as one iteration of n-step random walks, but with different
probabilities for different steps.



5.2 Adaptive Parameter Adjustment

In the computation of n, the only parameter involved is . Choos-
ing a suitable parameter value affects the quality of the result. Since
we have chosen a Gaussian function for the probability distribution
function, and B is inversely proportional to the variance, we can
give a qualitative indication for choice of 3: when the model noise
is high, B should be small, and vice versa. On the other hand, if
preservation of surface features such as sharp edges and corners is
important, we should make f large so that neighbouring normals
which deviate far from the current normal n; make a very small
contribution to the computation of n}. While the above qualitative
analysis can guide the choice of 8, more is needed to quantitatively
determine . One method of doing so is through experiments: our
experiments show that 8 € [8,12] generally works well for most
models we have tested.

If an iterative approach is used to denoising, normal noise will re-
duce after each iteration. The qualitative analysis suggests that we
should dynamically adjust 8 so that it becomes larger after each
iteration. In their work, Smolka and Wojciechowski [2001] sug-
gested that  should be adjusted using B’ = 53, where 8 > 1; see
also [Szczepanski et al. 2003]. We have performed experiments
using such a parameter adjustment scheme, but found that it only
provides a small improvement.

Instead, we introduce an alternative adaptive method for parame-
ter adjustment, using a similar idea to that introduced by Shen and
Barner [2004]. Let n;g be the initial noisy normal of face F;, and
let n}() be the updated normal using a parameter value of . We
wish to minimize the cost function J(8) = E(|njp — n(B)|), where
E is the expectation operator. This is equivalent to

J(B) =E (—ny-nj(B)). (19)

We use a stochastic gradient-based algorithm to solve the problem
of minimizing J(f). The parameter is updated using

r aJ
B fﬁ—u@, (20)

where U is the damping factor, and J is the current value of
[njp —n(B)|. In the following derivation, we use Equation (14) as
a specific example definition for n/(f); using Equation (15) gives
similar results. When Equations (16)—(18) are used to update nor-
mals, it is not as easy to derive similar results. However, fortunately,
when we adopt the progressive scheme, this is not a problem be-
cause, as we have pointed out, one iteration of the n-step scheme
in Equation (16) or (17) is equivalent to n iterations of the 1-step
scheme in Equation (14) or (15), respectively. Let us now define

=Y e Bl=ninj)y . Q1

JENE (i)

The derivative of f; with respect to f8 is given by
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By further noting that ||fy;||d||fi;]| /08 = f; - y;, Equation (23) be-
comes
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Combining (20) and (24), we obtain the parameter updating for-
mula
’ 1% N NN
B =B s (o )y — - ). 29
1

This gives a parameter updating rule based on only one face on the
mesh. Because the optimal parameter depends on all faces, we keep
the parameter unchanged during each iteration, and update the pa-
rameter only after a whole iteration step is finished. The magnitude
of the parameter update from one iteration to the next is the accu-
mulated update magnitude for all faces (while an average might be
more intuitively correct, we allow for this by scaling p appropri-
ately, as described shortly), i.e.,

B'=p= T o (o

ieF
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To implement the idea in Equation (26), initial values of 8 and u
need to be given. We have chosen p = 500/|F| in all of our ex-
periments, which seems to work well. Our experiments show that
B can vary over a large range with little difference in experimental
results. We have used 8 = 8 in most of our experiments.

5.3 Feature-Preserving Property

Equations (14)—(18) show that the updated normal of each face is
a weighted average of the normals of its neighbouring faces. Be-
cause the weight function is a decreasing function of the difference
between the normal of the central face and that of the neighbouring
face, the further the normal of a neighbouring face deviates from
that of the central face, the less influence this neighbouring face has
on the central face normal. Where part of a mesh lies on a fea-
ture, it is required that the neighbouring faces have small influence
on each other, and normals of neighbouring faces usually substan-
tially deviate from each other. Hence, our algorithm has an inbuilt
feature-preserving property. In addition, because the parameter f3 is
adaptively adjusted to minimize the cost of the difference between
the initial normal and the updated normal, the feature-preserving
property is further improved.

Various other anisotropic mesh filtering algorithms also compute
weighted averages of neighbouring face normals. Mean filtering
algorithms [Taubin 2001; Yagou et al. 2002] treat all neighbour-
ing faces the same, and so do not have a feature-preserving prop-
erty. Median filtering algorithms [Yagou et al. 2002] use the me-
dian of neighbouring face normals for the updated normal. This
can preserve features but cannot satisfactorily smooth the mesh sur-
face. The alpha-trimming filtering algorithm [Yagou et al. 2003]
is a simple compromise between mean and median filtering algo-
rithms. However, it is not a good compromise because the feature-
preserving property can easily be ruined. The fuzzy vector median
filtering algorithm [Shen and Barner 2004] can effectively preserve
features and smooth the mesh. However, it is time-consuming in
comparison to our algorithm given here.

6 Vertex Position Updating

After adjusting the face normals, the vertex positions are up-
dated based on the new normals. Several algorithms exist to do
this [Taubin 2001; Ohtake et al. 2001; Ohtake et al. 2002; Yu et al.
2004]. Taubin [2001] uses orthogonality between the face normal
and the face plane on the mesh to give a system of linear equations



for vertex position updating. Since in general this system of equa-
tions has no non-trivial solution, he solves it in a least-squares sense
using the gradient descent method. Unfortunately, this method con-
verges slowly, and if the step size is not suitably chosen, it may be
unstable. Ohtake et al. [2001] gave a vertex updating algorithm
similar to Taubin’s with a particular step size and additional area
weights. Because it is intrinsically a gradient descent method, it
also converges slowly. Ohtake et al. [2002] propose another ver-
tex position updating algorithm based on the minimization of the
area-weighted sum of the squared differences between the original
and the new face normals. The solution to this minimization prob-
lem is also performed using gradient descent. However, since its
gradient computation is more complex, it is computationally more
expensive than Taubin’s algorithm. Again, it also has the problem
of choosing a suitable step size. Yu et al. [2004]’s method is an
implicit method which updates vertex positions through gradient
field manipulation. A gradient field is first computed using a lo-
cal rotation matrix derived from n; and n;, which is then used in a
Poisson equation to compute the updated vertex positions. Because
the Poisson equation is linear, a linear system solver can be used.
Compared to Taubin’s method, Yu et al.’s method is computation-
ally more complex, however, because of its extra computation of
the gradient field.

The least-squares problem for vertex position updating is linear and
its normal equations are given by a symmetric sparse matrix, so
there are various efficient linear solvers available which could be
used. Botsch et al. [2005] discuss various linear solvers and their
respective advantages and disadvantages. Here, we adopt a simple
and yet relatively efficient approach, the conjugate gradient method.
We start with the face orthogonality conditions which yield the fol-
lowing family of simultaneous linear equations [Taubin 2001]:

- (Xkl _sz) =0
n;c (X, —X,) = 0 , VkeF, 27
nk . (Xk3 - Xk1 ) =0

where ki, k», and k3 are the vertices of face k. The least-squares
cost function corresponding to the above system is

X)=Y ¥ (n-(xi-xp)> 28)

kEF (i,j)€0F;

We could generalize the right hand side of Equation (28) to add
weights related to the triangle areas, edge lengths, or shapes. Suit-
ably chosen weight functions might produce better quality meshes
according to particular criteria. However, introducing weight func-
tions also requires additional computational effort. Because many
meshes in practice have fairly uniform triangle sizes, we only con-
sider Equation (28) itself in this paper. In fact, our experiments
show that we can obtain satisfactory results by simply using Equa-
tion (28) even for nonuniform meshes.

General formulae for solving least-squares problems using the con-
jugate gradient method can be found in many standard textbooks:
e.g. [Press et al. 1992]. However, as the problem here is reduced
to solving a sparse system, we give detailed formulae here to make
our paper self-contained.

Let us introduce vectors {g; € R3, i € V}, {p; € R3, i € V}, and
{qx €R3, k € F}, and separately concatenate {g;}, {p;},and {q;},
respectively, to form three long vectors G € R3lVI, p e R3IVI, and
QeR3IF |. The initial values of g; and p; are computed by

gi=pi=3 Y m-(X—x)), (29)
keFy (i)

where X; = %):3:1 Xy, is the mid-point of face k. The conjugate
gradient method then updates the vertex positions together with g;,
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Figure 2: Effect of varying numbers of random walk steps n =
1,...,10. Top: optimal mean square angular errors acheived. Cen-
ter: computational times. Bottom: number of iterations needed for
optimal errors.

pi, and gy in the following way:

ng - (P, — Pk,)
qr = ny - (pk2 - pk}) ) Vk € F7 (30)

ny - (pk'; 7pk1)
a=|G|*/el? (31
X =x;+oap;, Vi€V, (32)
gi=g+3a Y mm-(p—p)), VieV, (33)

keFy (i)

r=IG1*/IG]?, (34)
p; =g+, VieV, (35)

where Py = %2‘3:1 Pk, and G’ is formed by concatenating {g;}.

The conjugate gradient algorithm in Equations (29)—(35) is iterated
until it reaches a given maximum number of iterations, n7, or meets
a given tolerance € such that || X’ — X|| < €, or ||G|| < €. In all of
our experiments, we have set a fixed maximum 7n, = 50 and the
tolerance ||G||? < 1076|V|.

7 Results and Discussion

This Section demonstrates results of tests carried out on our ran-
dom walk filtering (RF) approach, which we also compare to sev-
eral other approaches: Yagou et al.’s [2002] median filtering (MF),
Fleishman et al.’s [2003] bilateral filtering (BF), and Shen and
Barner’s [2004] fuzzy vector median filtering (FF). The algorithms
were implemented in VC++.net, and our experiments were per-
formed on a PC with a 3.2GHz Intel Xeon CPU and 2.0GB of
RAM. Both synthetic and scanned models were used.

7.1 Experiments on Random Walk Filtering

In Section 5 we presented several alternative schemes of imple-
menting the random walk-based normal filtering algorithm. Here,
we compare these schemes experimentally to determine the best
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Figure 4: Denoising a double-torus model (|V| = 2,686, |F| =
5,376) using our approach. (a) Original model, courtesy of MPII,
(b) noisy model (Gaussian noise, standard deviation = 0.2 mean
edge length), (¢) B = 8, no adaptive parameter (n = 1, n; = 50), (d)
B =8, adaptive parameter (n = 1, n; = 50), (e) B =5, no adaptive
parameter (n = 1, n; = 50), (f) B = 5, adaptive parameter (n = 1,
ny = 50)

scheme among them. In some cases, it is easy to distinguish the
quality of different schemes by means of a visual comparison.
However, when only small visual differences are apparent, we need
a numerical criterion to distinguish them. The criterion used here
is the mean square angular error (MSAE) between the ideal and
the denoised normals. This criterion was also used in [Nehorai and
Hawkes 2000] and [Shen and Barner 2004]. It is defined as

MSAE =E (£ (ng4,n)), (36)

where Z(ng,n) is the angle between the denoised normal n; and
the original normal n: we compare the normals produced by each
scheme with those of the original synthetic model (before addition
of noise). To implement the expectation operator, we take a simple
average over all face normals in the mesh. We conducted experi-
ments with various meshes; all the experiments result in the same
conclusions.

Firstly, we discuss the effect of varying the number of random walk
steps n. Fig. 2 shows the optimal MSAEs achieved, the correspond-
ing computation times, and the numbers of iterations needed for
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Figure 5: Algorithms with and without center face, using the
double-torus model.

several models illustrated later in the paper. It can be seen that lower
n generally produces slightly smaller optimal MSAE, but there are
no clear trends in computation time. Because the variations in these
optimal MSAESs and computation times are not significant, no clear
preference exists for the choice of n. We suggest choosing n = 1
for simplicity. It can also be seen from Fig. 2 that the optimal
number of iterations reduces gradually as n increases, and in the
limit, only one iteration is required, which corresponds to a non-
iterative scheme. This corresponds with the qualitative analysis in
Section 5.1.

Secondly, we consider the relationship between the MSAE and
the number of iterations n;. Fig. 3 shows the variation of MSAE
with n; for several models. It can be seen that for the double-
torus model, which has sharp edges and flat surfaces, as n; grows,
the MSAE first decreases and then, after reaching a minimum, in-
creases slightly. For other models having similar sharp features to
the double-torus model, we can safely choose large n; to obtain
good quality results. For the bunny model, which has a curved,
textured surface, as n; grows, MSAE first decreases and then in-
creases notably. Thus for models with similar features to the bunny
model, careful choice of n; is necessary to get good quality results.
Fig. 3 also shows that MSAE reaches a minimum faster for large n.
Specifically, when n = 10, only one iteration leads to the minimum
MSAE for the bunny model.

In the rest of this Section, we only discuss the case n = 1 since, as
we have shown above, the results obtained for n > 2 do not differ
significantly from those for n = 1; we only analyze results from the
double-torus model for reasons of space.

Thirdly, we discuss the effect of adaptively adjusting the parame-
ter B. Experiments show that when 8 € [6,12], both adaptive and
non-adaptive schemes yield good results. However, when f is cho-
sen smaller, the non-adaptive scheme causes sharp edges to become
rounded, while the adaptive scheme can still yield good results if
B > 3. Fig. 4 shows the results obtained after n; successive iter-
ations using adaptive and non-adaptive schemes when = 8, and
B =5. Tt can be seen that when 8 = 8, both schemes produce almost
perfect results. However, when 8 = 5, the non-adaptive scheme dis-
torts the mesh, while the adaptive scheme still yields very good re-
sult. This experiment shows that the adaptive scheme can robustly
adjust the parameter 3.

Fourthly, we discuss the effect of whether it is preferable to include
the central face normal in the computation. Fig. 5 shows variation in
MSAE with n; when applying the variant methods with and without
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Figure 6: Progressive and batch schemes, using the double-torus
model.

the central face to the double-torus model. It can be seen that using
the central face yields larger MSAE at first, but produces smaller
MSAE after several iterations. Thus, using the central face is to be
preferred

Fifthly, we compare the results of our approach when used in ei-
ther a progressive or a batch scheme. Fig. 6 shows variation in
MSAE with n; when applying the each scheme to the double-
torus model. The progressive scheme almost always yields smaller
MSAE than the batch scheme. Thus the algorithm based on a pro-
gressive scheme is preferable to one based on a batch scheme.

Finally, we briefly discuss the two possible types of face neighbour-
hood. Our experiments show that our algorithm using Type I face
neighbourhoods generally produces better qualitative mesh results
than using Type II face neighbourhoods. On the other hand, the
algorithm is faster when using Type II face neighbourhoods. On
balance, we suggest using Type I face neighbourhoods in our ap-
proach; all other comparisons are based on using Type I face neigh-
bourhoods.

In summary, our experiments show that progressively using Equa-
tion (14) with B adjusted adaptively is the best scheme when using
our approach. Thus, we use this scheme in the rest of our experi-
ments and comparisons.

7.2 Comparisons with Other Approaches

We now turn our attention to comparing our RF approach with
Yagou et al.’s [2002] MF, Fleishman et al.’s [2003] BF, and Shen
and Barner’s [2004] FF approaches.

7.2.1 Quality

We first visually compare the results obtained. In each case, we
show the best results we were able to obtain for each approach after
carefully tuning its parameters. All models are rendered using flat
shading to aid in comparing normals.

Fig. 7 shows denoising results for a CAD-like model with sharp
edges—a double-pyramid. It can be seen that all the four filtering
method approaches preserve sharp features to some extent. How-
ever, the BF approach cannot smooth vertices with large errors,
as Fleishman et al. [2003] point out. The MF approach cannot

(d) (e) (®

Figure 7: Denoising of a double-pyramid model (|V| = 1026, |F| =
20438). (a) Original model, (b) noisy model (Gaussian noise, stan-
dard deviation = 0.2 mean edge length), (c) BF result, (d) MF result,
(e) FF result, (f) RF result (n; = 10, = 12).

(b)

(d) (e) )

Figure 8: Denoising of a cylinder model (|V| =404, |F| = 804). (a)
Original model, (b) noisy model (Gaussian noise, standard devia-
tion = 0.2 mean edge length), (c) BF result, (d) MF result, (e¢) FM
result, (f) RF result (n; = 10, = 8).

smooth flat areas completely, and cannot preserve corner features.
In contrast, the FF approach and our RF approach produce surfaces
that look very like the original model. (We also tested mean filter-
ing [Yagou et al. 2002] and alpha-trimming filtering [Yagou et al.
2003], but both methods blur sharp edges, so we have not illustrated
the corresponding poor results.)

Fig. 8 shows denoising results for a faceted and triangulated cylin-
der, which has both flat and curved areas, and sharp edges. It can
be seen that the BF approach does not preserve sharp edges in this
case. The MF approach preserves sharp edges, but also introduces
spurious additional sharp edges. The FF approach and our RF ap-
proach preserve both sharp edges and the surface characteristics.

Fig. 9 shows denoising results for a fandisk model. All four ap-
proaches preserve most of the sharp edges. The BF and MF ap-
proaches even preserve those sharp edges with small angles be-
tween the neighbouring surfaces, but on the other hand some cor-
ner vertices are not correctly smoothed. Furthermore, the surfaces
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Figure 9: Denoising of a fandisk model (|V| = 6,475,|F| =
12,946). (a) Original model, courtesy of H. Hoppe. (b) noisy model
(Gaussian noise, standard deviation = 0.1 mean edge length), (c) BF
result, (d) MF result, (e) FF result, (f) RF result (n; =4, = 8).

produced by the MF approach are not particularly smooth in other
areas. The FF approach and our RF approach produce smooth sur-
faces and preserve most sharp edges, but blur edges with small an-
gles. The BF approach preserves sharp edges better on this model
than on the previous models. The reason seems to be that the noise
level in this model is relatively small, and few iterations of filter-
ing are required. We also performed a test on the fandisk model
after adding Gaussian noise with a standard deviation of 20% of
the mean edge length. In this case, bilateral filtering blurs the sharp
edges if we try to achieve a reasonably smooth final surface.

Fig. 10 shows denoising results on a mesh model with details at
various sizes—the “iH” embossed Stanford Bunny Model. All ap-
proaches do well apart from the MF approach. The MF approach
has a tendency to enhance features in the noisy model, and the re-
sulting surface is not smooth. For this model, perhaps the BF ap-
proach provides the best overall result, with the FF approach, and
to a lesser extent the RF approach, losing a little of the finer detail.

Fig. 11 shows results of denoising a scanned model with tiny
details—the Maoi model. For this model, MF cannot effectively
smooth the surface. FF smoothes some tiny details away. The BF
and RF approaches both preserve tiny details and smooth the sur-
face better. Again, the BF approach seems provides the best overall
result.

Fig. 12 and 13 show the results of denoising two 3D photography
mesh models. From the figures it can be seen that, as for the Moai
model, the MF method enhances certain details, but cannot effec-
tively smooth the surfaces. All three other methods both smooth
the mesh surfaces while preserving tiny details to some extent. The
differences between the results of these three methods are visually
very small. It seems that the results of the BF approach and our RF
approach are very close and preserve details a little better than the
FF approach.

From the above comparisons we can see that the results from the FF
approach and our RF approach are generally visually similar, and
both produce better results than either the BF or MF approach in
cases where sharp edges exist in the models. In cases where there
are tiny details in the models, the BF approach probably produces
the best results, while our RF approach produces results slightly
better than the FF approach.

| Fandisk [ iH Bunny | Igea [ Dragon | Buddha |

Vv 6475 34834 | 134345 | 437645 757490
F 12946 69451 | 268686 | 871414 | 1514962
RF 0.703 4.078 15.391 47.657 83.078
FF 9.391 48.406 | 196.531 | 677.719 | 1263.06

Table 1: Normal updating times for RF and FF methods (seconds,
for 50 iterations)

[ [[ Fandisk [ iHBunny [ Igea | Dragon | Buddha |

BF 0.046 0313 [ 1313 375 7.094
) ) o) &) ®)

MF 0.281 2594 | 725 | 33219 | 39.047
(10) as) (10) as (10)

FF 1.891 5.141 | 12.641 | 140.438 | 70.093
(10, 10) (5.20) | (3,10) | (10,15) | (3,10

RF 0.078 0422 [ 1484 | 6.078 [ 6922
“4) 3) 3) ®) 3)

Table 2: Overall times for various methods (seconds, for given
numbers of iterations)

7.2.2 Speed

We now compare the computational cost of the approaches dis-
cussed above. Since Shen and Barner’s [2004] FF approach gener-
ally produces similar results to our RF approach, we first compare
these two approaches. Both approaches use a consecutive, iterative
scheme. Because the vertex position updating stage takes very lit-
tle time compared to the normal updating stage, we first compare
specifically the times taken by the normal updating stages of the
RF and BF approaches. Table 1 shows the CPU times recorded in
our experiments. Note that we have used some other large (well-
known) models which are not shown in this paper. For comparative
purposes, we performed 50 iterations of normal updating for each
algorithm, although it is not necessary in practice to use so many
iterations. From the table it can be seen that our RF approach is
more than ten times faster than the FF approach.

We continue in Table 2 by comparing the overall time taken by
our approach with that required by other approaches. The values
in parentheses are the numbers of iterations we found necessary to
satisfactorily denoise the models. For the BF and MF approaches
these correspond to ng, for the FF approach to ny,n, and for our RF
approach to nj. Overall, the BF (bilateral filtering) approach is gen-
erally fastest. However, our approach requires a time similar to that
of bilateral filtering; sometimes, our approach is even faster than
bilateral filtering. The other approaches take significantly longer.

Opverall, our method can provide denoising results of a quality often
comparable to the slowest of these methods, with nearly the speed
of the fastest.

8 Conclusions

In this paper, we have shown how to use random walks for mesh de-
noising, and proposed a new consecutive iterative mesh denoising
algorithm. In the first stage, the face normals are updated through
weighted averaging of the face normals, with the weights being de-
termined by probabilities of random walk steps between the current
face and neighbors. Analysis and experiments show that the scheme
in Equation (14), together with adaptively adjusting parameter f3,



Figure 10: Denoising of an “iH” embossed Stanford Bunny model (|V| = 34,834, |F| = 69,451). (a) Original model, courtesy of A. Belyaev,
(b) noisy model (Gaussian noise, standard deviation = 0.2 mean edge length), (c) BF result, (d) MF result, (e) FF result, (f) RF result

(n1=3,B=8).

(b)

(d) (e

Figure 11: Denoising of the Moai model (|V| = 10,002, |F| = 20,000). (a) Original model, courtesy of Y. Ohtake, (b) BF result, (c) MF

result, (d) FF result, (e) RF result (n; = 3,8 = 30).

and progressively updating face normals, provides the best imple-
mentation of our approach. In the second stage, we use a conjugate
gradient algorithm to solve the vertex position update least-squares
problem rather than the more generally used gradient descent algo-
rithm [Taubin 2001; Ohtake et al. 2001; Shen and Barner 2004].
The conjugate gradient algorithm is stable and converges rapidly,

and is particularly suitable for solving the least-squares problem
arising here as it results from a sparse system.

A basic requirement for a mesh denoising algorithm is that it can
both remove noise and preserve mesh features effectively. How-
ever, many early mesh denoising algorithms did not consider the
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Figure 12: Denoising of a 3D photography model (|V| = 14,770, |F| = 28,878). (a) Original model, courtesy of J.-Y. Bouguet, (b) BF result,

(c) MF result, (d) FF result, (e) RF result (n; =5, 8 = 30).

Figure 13: Denoising of a head model (|V| = 19,324, |F| = 37,922). (a) Original model, courtesy of J.-Y. Bouguet, (b) BF result, (c) MF

result, (d) FF result, (e) RF result (n; =3, = 30).

feature-preserving requirement. Several more recent mesh denois-
ing methods do consider it, but most such methods are computa-
tionally expensive. Our proposed mesh denoising algorithm effec-
tively preserves features and yet is very simple and computationally
cheap. Experiments presented here have compared our approach
with other recent feature-preserving mesh denoising approaches.
Bilateral filtering [Fleishman et al. 2003] is a fast feature-preserving
mesh denoising approach. Experiments show that our approach is
as fast as the bilateral filtering approach [Fleishman et al. 2003]:
e.g. it can denoise the well-known Buddha model with 1.5 million
triangles within 7 seconds; however, our approach preserves sharp
edges better than the bilateral filtering approach. Compared to the
fuzzy vector median filtering approach [Shen and Barner 2004], our
approach is over ten times faster, yet produces a final surface quality
similar to or better than that approach.

Although our algorithm is simple and efficient for feature-
preserving mesh denoising, it is not immune to certain problems
that other algorithms also meet. One is that we have to interactively
determine the number of normal updating iterations. Using too few
iterations fails to fully denoise the mesh normals, while too many
causes oversmoothing of the mesh. Future work is needed to find an
automatic method of determining the optimal number of iterations.
Other problems such as mesh folding, self interaction and poorly-
shaped triangles caused by vertex position updates should also be
considered in future work.
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