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Introduction
 Noise is ubiquitous in measured data.

 Measurement noise is often assumed to be 
Gaussian white noise in many disciplines.

 Real 3D laser scanner noise is neither Gaussian 
nor white, according to our observations (even 
within a smooth surface).

 Denoising algorithms often depend on the noise 
model or assume a particular noise model.



Data Acquisition
 The scanner: 

 Konica Minolta Vivid 910
 Claimed height accuracy: 50µ m

 Test object used for scanning:
 The higher the precision of the specimen, the more 

certain we can be that the noise is due to the 
scanning process.

 A standard gauge block is too flat and polished. 
Measurements cannot be reliably obtained.

 A slightly rough surface is needed to obtain 
satisfactory measurements.



Data Acquisition (cont.)
 Our choice of test object:

 Microsurf 315 N1 specimen (Rubert & Co Ltd)
 Size 22.5 ×  15mm2

 Flat on a small length scale
 Mean roughness Ra=0.025µ m over 0.8mm

 Mean roughness depth Rz=0.29µ m over 0.8mm
 Thus, roughness << claimed scanner accuracy.

 Scanner data format: {xi, yi, zi}
 {xi, yi} are gridded points on the surface with 

interval about 0.1734 mm.



Ra and Rz

 Two roughness parameters defined by ISO Standard 
4287/1:1984
 Ra : the arithmetic average of absolute values of 

roughness profile ordinates over sampling length
 Rz : the arithmetic mean value of single roughness depth, 

taken over consecutive sampling lengths



Data Preprocessing
 Trim off data near the edges of the test piece to avoid 

edge effects, leaving 125 ×  75 =  9375 gridded points

 Fit a smooth surface (see next slide) around each surface 
point i in 3D space using the measurement data in 
someneighbourhood. The fitted surface is represented by
          z = f(x,y,p)     
where p is a parameter vector depending on surface type

 Estimate the measurement noise ei corresponding to each 
surface point i by:

ei = zi – f(xi,yi,p)



Data Preprocessing (cont.)
 In fitting a smooth surface, we tried three 

alternative assumptions:

 A1: A plane gives an adequate global fit to the data 

 A2: A quadratic surface gives an adequate global fit 
 to the data

 A3: No simple global shape model; a local 
procedural model is used based on iterative fitting 
of  planes to data in local regions (see paper).



Data Preprocessing 
(cont.)
      Extracted noise using global planar model,

measurements in two orientations

 Colour scale in mm. Noise
    values are enlarged 50 
    times for visualisation.



Data Preprocessing 
(cont.)
 Extracted noise from one orientation 

measurement shows apparent curvature.

 This may be due to actual curvature of the test 
surface or due to some systematic errors 
produced by the scanner.

 Measurement in a second orientation shows that 
the curvature is due to the test surface.

 A planar model is not a good fit for the overall 
surface.



Data Preprocessing 
(cont.)
      Extracted noise, global quadratic model

 Overall curvature is no longer present: it is a better fit 
than the planar model. 

 Differences in residual errors when fitting quadratic (or 
higher order) surfaces are less than the roughness 
heights Ra and Rz of the test specimen. Thus a quadratic 
surface adequately represents the underlying surface of 
the specimen.



Data Preprocessing 
(cont.)
     Extracted noise, iterative local fitting

 There is no significant difference between this 
result and that from quadratic model fit.



Data Preprocessing 
(cont.)
   Difference between A2 and A3

 The difference is slowly varying over a long 
distance with low amplitude



Noise Analysis-
Quasi-Statistical Analysis

 We do statistical analyses on the extracted noise, 
not the real scanner noise, so we call our method 
quasi-statistical analysis of the real scanner 
noise.

 Because the extracted noise is an approximation 
to the real scanner noise within the level of the 
roughness of the test surface, the analysis results 
are reliable.  



Noise Analysis-
Quasi-Statistical Analysis
 Is the noise distribution Gaussian?

 Although the noise histogram appears to agree well with a 
Gaussian distribution, a χ 2 test shows that at a 5% significance 
level, we should reject the hypothesis that the estimated 
noise distribution is Gaussian.



Noise Analysis-
Quasi-Statistical Analysis (cont.)
 Is the Noise Auto-correlated?

 Although visually the noise looks auto-correlated, we 
still need to statistically verify the autocorrelation 
hypothesis.

 Because the noise is not Gaussian distributed, we 
cannot perform a t-test on linear correlation coefficients 
to assess the autocorrelation.

 We perform a nonparametric test: Spearman rank-order 
correlation coefficients in combination with a t-test.

 Autocorrelation tests are performed along x and y 
directions separately.



Noise Analysis-
Quasi-Statistical Analysis (cont.)

 Green lines show the 5% significance level for the t-test using 
Spearman rank-order auto-correlation coefficients. Correlation lengths 
whose probabilities lie over the green lines exhibit autocorrelation.  

 Overall, the estimated noise exhibits autocorrelation in both x 
and y directions for various correlation lengths.



Noise Analysis- 
Fourier Analysis
 Quasi-statistical analysis is based on the 

estimated noise, not the real noise, hence we can 
only state that the above analysis provides a 
qualitative indication. 

 Fourier analysis can directly analyse the real 
measurement data, and thus provide more 
reliable results.

 We first perform 1-D Fourier analysis to clearly 
show the autocorrelation in each direction, and 
then 2-D Fourier analysis to show more complex 
autocorrelation between x and y directions.



Noise Analysis- 
Fourier Analysis-1D

 The vertical green lines are at the frequency f=1/0.8mm, 
where 0.8mm is the sampling length for calculating the 
surface roughness of the test block. 

 The surface roughness below the sampling length is negligible, 
thus the spectral power for frequency f>1/0.8mm (to the right 
of the green line) is essentially due to scanner noise.

Power spectrum along x and y direction



Noise Analysis- 
Fourier Analysis-1D (cont.)

 Conclusion from 1D-Fourier analysis:
 The measurement data are auto-correlated in both x 

and y directions since the power spectra are not 
constant.

 Because the measurement data consist of both 
measurement noise and surface signal, the overall 
correlation could be from either the noise or the signal 
itself.

 The right-hand side of the green line mainly reflects 
noise, and since it is not constant, the measurement 
noise is certainly not white (independent). 



Noise Analysis- 
Fourier Analysis-2D

Logarithmic Magnitude of 
Fourier spectrum

(zero frequency at centre 
and high frequency towards 
the boundary)

Phase of the spectrum



Noise Analysis- 
Fourier Analysis-2D (cont.)
 Conclusion from 2D-Fourier analysis:

 Because the overall power spectrum is not constant, we 
again conclude as for 1D Fourier analysis that the 
measurement data are correlated in the x-y plane.

 The phase of the 2D Fourier transform varies randomly 
with little regularity. 



Noise Analysis- 
Summary

 The scan.

 The noise at each measurement point is 
not independent, but there are longer 
range interactions in the noise.



Noise Synthesis
 To numerically evaluate the effectiveness of 

denoising algorithms, we need some model for 
generating synthetic noise. 

 Previous algorithms used Gaussian white noise 
for testing, which is not a good model.

 We use an inverse Fourier transform to generate 
synthetic noise.



Noise Synthesis
Inverse 2D Fourier Transform 
 Original phase and original magnitude with low frequency 

components set to zero (to get rid of coarse surface shape). 

■ The general structure of the original noise is preserved, while 
the obvious curvature of the specimen surface is removed.



Noise Synthesis
Inverse 2D Fourier Transform (cont.)
 Original phase and magnitude determined by a simple model 

(see paper) with low frequency components set to zero. 

■ This generated noise has a structure quite close to the original 
noise.



Noise Synthesis
Inverse Fourier Transform (cont.)
 Random phase, and magnitude determined by a simple 

model with low frequency components set to zero.

■ This noise has structure yet further from measured noise, but the 
structure is similar to measured noise at least with respect to the 
magnitude, sizes, shapes and density of the bumps.

■ This is a better method of generating synthetic noise than 
independent noise per measurement point. 



Denoising experiments
 Many people devising denoising methods have evaluated 

them using Gaussian white noise, not real noise, so their 
results are suspect. 

 We now demonstrate the differences between the denoising 
results for surfaces with independent Gaussian noise and 
real noise. 

 We use two typical denoising algorithms in our 
experiments: 
 the original Laplacian algorithm (Vollmer et al,1999) 
 a recent feature-preserving algorithm (Sun et al, 2007). 
(The following slides give the number of iterations used).



Denoising experiments-
Gaussian white noise

              Laplacian,10                    Feature-Preserving, 10
         

             Laplacian,50                     Feature-Preserving, 50



Denoising experiments-
Real scanner data

              Laplacian,10                    Feature-Preserving, 10
         

             Laplacian,50                     Feature-Preserving, 50



Denoising experiments-
Summary
 Fewer iterations of denoising algorithms are needed to 

remove Gaussian white noise than to remove real scanner 
noise.

 Denoising algorithms are generally less successful at 
removing the structural features present in real scanner 
noise.

 Feature-preserving algorithms have more difficulty than 
non-feature-preserving algorithms in removing structural 
features in real scanner noise.

 Many previous papers claiming good smoothing results 
based on experiments with synthetic noise are over-
optimistic in their assessment of their ability to remove real 
scanner noise.



Conclusions
 Real scanner noise is not quite Gaussian, and more 

importantly, shows significant correlation from point to 
point.

 Inverse discrete Fourier transforms plus a simple model can 
be used to generate fairly realistic synthetic noise.

 It is more difficult to remove noise from real measurement 
data than from synthetic data with Gaussian white noise.

 Future denoising algorithms should take into account the 
real nature of scanner noise.


