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Abstract

This paper discusses noise in range data measured by a Konica Mi-
nolta Vivid 910 scanner. Previous papers considering denoising 3D
mesh data have often used artificial data comprising Gaussian noise,
which is independently distributed at each mesh point. Measure-
ments of an accurately machined, almost planar test surface indicate
that real scanner data does not have such properties. An initial char-
acterisation of real scanner noise for this test surface shows that the
errors are not quite Gaussian, and more importantly, exhibit signif-
icant short range correlation. This analysis yields a simple model
for generating noise with similar characteristics. We also exam-
ine the effect of two typical mesh denoising algorithms on the real
noise present in the test data. The results show that new denoising
algorithms are required to effectively remove real scanner noise.

Keywords: 3D laser scanner, correlation analysis, Fourier analy-
sis, noise modeling.

Index Terms: G.1.2 [Numerical Analysis]: Approximation—
Approximation of surfaces and contours; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Curve, sur-
face, solid, and object representations

1 Introduction

Noise is ubiquitous in measured data. Surface mesh models built
using measurement data obtained using 3D range scanners neces-
sarily contains some type of noise. To remove the noise in sur-
face mesh models, many mesh denoising algorithms have been de-
veloped, for example [1, 3, 4, 5, 6, 8, 9, 13, 14, 17, 19, 20, 21,
22, 23, 24, 25, 26, 27] and other references therein. In evaluating
the effectiveness of denoising algorithms both visual and numeri-
cal comparisons are used [20]. For meshes corresponding to real
scanned data, however, we can in most cases only perform visual
comparisons, because ground truth data required for evaluation are
almost always unavailable. However, to provide a more objective
evaluation and more thorough testing, numerical comparisons are
required. Having synthetic models of real scanner noise would be
useful for evaluating denoising algorithms.

Any synthetic model used for evaluating denoising algorithms
should take an exact model surface and add noise, which is to be
removed by the algorithms. The noise should have the same char-
acteristics as noise in real measurement data. Experimentally, mea-
surement noise is often assumed to be Gaussian in wide range of
disciplines. Thus, various mesh denoising algorithms have been
developed based on the Gaussian noise assumption [1, 6], while
others used synthetic models with Gaussian white noise (that is,
independent Gaussian noise per mesh vertex) in evaluation of their
algorithms [3, 13, 20, 26, 27]. However, real 3D laser scanner noise
is, in practice, not quite Gaussian according to our observations, and
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is correlated at adjacent mesh points. Shen [18] has also previously
observed that real measurement noise on edges does not exactly fol-
low the pattern prescribed by a random number generator, and has
given a new method of generating synthetic edge noise.

One approach to understanding system noise is to combine noise
models for the components of the measurement system. For ex-
ample, an optical sensor is used, and intensity noise models for
optical sensors have been discussed in the literature [10]. However,
depth values are not computed directly from intensity values, but
instead triangulation is used after locating pixels of maximum in-
tensity. Other sources of noise might include optical components
such as the lens, the mirror (and its drivers), and laser, as well as
electronic noise. Furthermore, numerical errors may also arise in
the proprietary software used to calculate positions. Ultimately, es-
pecially as we do not have access to all the components of a com-
mercial system, and even if we did, the noise coming from some
components may not be well characterised, we suggest that such a
componentwise modeling approach is not practical. Instead, there-
fore, we simply consider the overall noise present in the output of
the scanner.

In this paper, we show that the measurement noise in a flat area
does not follow the common assumption of Gaussian white noise,
and we analyse real measurement noise from a 3D range scanner.
We also give a method to synthesise noise with similar character-
istics. We then discuss the different results obtained by applying
certain denoising algorithms to remove real scanner noise, and syn-
thetic Gaussian white noise. The aim of this paper is to bring the
attention of the mesh processing community to the fact that real
scanner noise is not independent Gaussian noise per mesh ver-
tex—any algorithm evaluation and development should be based
on more realistic assumptions about 3D scanner noise.

The remainder of this paper is organised as follows. Section 2
discusses our approach to acquisition of the test data we used to
characterize noise. We explain the choice of test specimens and
various data preprocessing procedures, and discuss our assumptions
about the shape of the underlying test surface. In Section 3 we anal-
yse the noise in the test data based on a quasi-statistical approach
to describe the distribution and correlation of the scanner noise. We
further employ the discrete Fourier transform to characterise the
scanner noise. Section 4 describes artificial noise synthesis based
on this analysis using the inverse discrete Fourier transform. Sec-
tion 5 presents the results of using two typical mesh denoising al-
gorithms to demonstrate the difficulties of removing real scanner
noise, compared to removing synthetic Gaussian white noise. Fi-
nally, Section 6 concludes this paper.

2 Data Acquisition and Preprocessing

2.1 Data Acquisition

We describe in this section the methods used to acquire noisy data
using a commercial scanner, and a standard test object. The ap-
proach was to use a highly accurate test object, so that any noise in
the measurements would be attributable to the scanner, and not to
the test piece itself.

The scanner we used in our test was a Konica Minolta Vivid
910, which has a specified point accuracy of 50µm. Boehnen and
Flynn [2] reviewed several different 3D scanners, and found that
that Konica Minolta Vivid 910 was the most accurate scanner in a



face scanning scenario. Here we take it as a representative com-
mercial scanner using laser triangulation to capture range data. To
acquire noisy data from this scanner, some specimen must be mea-
sured. Clearly, the higher the precision of the specimen, the more
certain we can be that the noise is due to the scanning process. We
first tried to use a standard gauge block as the specimen. While
it was very flat, it was too polished and almost mirror-like, with
the result that the scanner was unable to acquire satisfactory mea-
surements. It was thus clear that a slightly rough surface would be
needed to obtain satisfactory measurements. (The standard alter-
native, coating the test part with a white powder, would lead to an
unacceptably uneven surface due to the nature of the powder spray-
ing process).

We chose to use the N1 specimen from a Microsurf 315 test
surface produced by Rubert & Co Ltd as our test surface. Such
test plates are notionally produced for the purpose of testing sur-
face roughness measuring machines. This specimen is a 22.5×
15mm2 rectangular flat metal plate with mean roughness Ra =
0.025µm and mean roughness depth Rz = 0.29µm. Here Ra and
Rz are parameters of surface roughness as defined by ISO Standard
4287/1:1984 [11]. Ra is the arithmetic average of the absolute val-
ues of the roughness profile ordinates, and Rz is the arithmetic mean
value of the single roughness depths, taken over consecutive sam-
pling lengths [16]. The sampling length used to compute Ra and Rz
was given as 0.8mm according to Rubert & Co Ltd. Since both Ra
and Rz are significantly smaller than the point accuracy specified for
the Konica Minolta Vivid 910 scanner, in the rest of the paper, we
may simply consider any sub-area on the test surface with diameter
smaller than the sampling length as planar, and ignore noise due to
the surface roughness. However, over sub-areas larger than 0.8mm
in extent, we must be careful not to assume that the surface is ex-
actly planar—on the scale of the whole test piece, it may exhibit
non-negligible curvature.

Having chosen the test specimen, we collected measurement data
as follows. During the scanning, the test plate was fixed at about
585mm from the focus of the scanner, with its normal approxi-
mately aligned with the scanner’s optical axis (unless stated other-
wise). (Although we did not use an instrument to align the optical
axis precisely with the normal to the test surface, the actual angle
between the optical axis and the normal to the test plate could be
computed accurately from the test data itself). Unless otherwise
stated, we aligned the long side of the N1 specimen with the x di-
rection (this is relevant as the N1 specimen is produced by grinding,
so its surface finish is anisotropic, albeit on a very fine scale). For
each complete scan we obtained an array of 3D point coordinates
{xi,yi,zi} in the scanning coordinate system, where x and z axes are
along the scan line and the optical axis, respectively, and the x,y,z
axes form a right-hand coordinate system. Here, {xi,yi} are coordi-
nates on a grid with an interval of approximate 0.1734mm between
successive points in both x- and y-directions, and zi is the distance
in the z-direction from a surface point i to the focus of the scanner.

To analyse the properties of the noise produced by the scan-
ner, we captured data from the test plate in several different ways.
Firstly, in order to test the repeatability, we fixed the test plate in
the same place and repeatedly scanned it several times. Test results
showed that the noise properties were repeatable in the statistical
sense that the noise mean, standard deviation, and correlation var-
ied little between scans, and visually, the scans had similar raised
and sunken areas as shown in Fig. 1. This repeatability justifies the
use of a single set of test data in our analysis except where more
data are required.

Secondly, to analyse the effect of surface orientation on noise,
we rotated the test plate through varying angles about the x-axis
and scanned the plate to obtained different data. Test results showed
that varying orientation had little effect on the results—only minor
changes were found in standard deviation and correlation, and ob-

vious raised and sunken areas still existed. We thus only present our
analysis on the data measured when the optical axis was orthogonal
to the test plate.

Thirdly, to assess the effect of the scan line direction on the noise,
we took two scans with the test plate aligned so that first its long
side ran approximately in the x-direction, then in the y-direction.
This test allowed us to verify that the anisotropy of the test surface
does not affect the noise.

2.2 Data Preprocessing

After capturing the raw measurement data we preprocessed the data
to separate the noise from the background surface. We performed
the following preprocessing steps:

S1: Trim off data coming from near the edges of the test piece,
as the noise in such regions has quite different characteris-
tics from that at interior points, and needs to be analysed
specifically [18]. Our trimmed data consist of 9375 grid-
ded points with 125 columns in x-direction and 75 rows in
y-direction, and the intervals between successive points in x-
and y-directions are 0.1735mm and 0.1733mm, respectively.

S2: Fit a smooth surface around each measured surface point i in
3D space using the measurement data in its neighbourhood
Ni, {(x j,y j,z j) : j ∈ Ni}. We represent the fitted surface as

z = f (x,y,p), (1)

where p is a parameter vector of the surface. We will discuss
shortly the choice of surface model used and neighbourhood
size.

S3: Estimate the measurement noise ei corresponding to each sur-
face point i by

ei = zi− f (xi,yi,p). (2)

In the second preprocessing step above, we need to choose a
surface model for fitting, and also the size of the neighbourhood
used. For this we examined the following three assumptions about
the shape of the underlying test surface:

A1: A plane gives an adequate global fit to the data;

A2: A quadratic surface gives an adequate global fit to the data; or

A3: No assumption is made about the global shape. Instead a pro-
cedural model is used based on iterative fitting of planes to
data in local regions taking into account the ISO noise char-
acterization parameters.

If we make Assumption A1, we fit a plane to the whole set of
measurement data. Function f in Eqn. (1) is defined as

f (x,y,p) = a+bx+ cy. (3)

where the parameter vector is p = [a,b,c].
Fig. 1 shows the measured noise using Eqn. (2) in accordance

with Assumption A1. To help visualise the noise surface, we have
enlarged the noise values ei 50 times, and used Phong shading to
produce Fig. 1(a); actual noise heights (in mm) are given by the as-
sociated colour bar, that is, the shading effects have been exagger-
ated while the colouring is unalterated. Similar Figures discussed
later have also been processed in a similar way. Fig. 1(b) simply
shows the signs of the noise values as binary values: black (nega-
tive) and white. From Fig. 1, it can be seen that the noisy surface
has obvious raised and sunken areas, and is obviously curved—its
top-right and bottom-left corners are visibly higher than other parts
of the surface.



(a)

(b)

Figure 1: Extracted noise given Assumption A1, shown with Phong
shading: (a) measured noise (colour scale in mm), and (b) the sign
of the noise: positive, white; negative, black.

(a) (b)

Figure 2: Extracted noise given Assumption A1 (specimen rotated
90◦ relative to Fig. 1 before scanning), else as per Figure 1.

Firstly, we note that bumps of the magnitude present in the noise
surface would easily be visible to anyone examining the test plate
visually, if they were actually present. The test plate does not show
an appearance anything like that in Figure 1, but instead, a very
fine pattern of x-direction scratches at a much smaller size (due to
the grinding process used to make the test plate). It is clear then
that the short distance scale structure visible in Figure 1 is due to
measurement errors, and not due to surface bumps in the test plate
itself. This is backed up by the observation that the measured bumps
are much greater than the manufacturer’s claimed roughness of the
test plate.

A second issue is whether the apparent curvature of the noise
surface is due to actual curvature of the test surface (again, it is
only guaranteed to be locally flat), or whether it is due to some
systematic error on a long scale produced by the scanner.

To try to resolve the second issue, we rotated the specimen by
90◦ around the z-axis, and obtained another data set. Fig. 2 shows
the extracted noise in this case, again using Assumption A1. It can
be seen that while the detailed noise pattern is somewhat differ-

(a)

(b)

Figure 3: Extracted noise given Assumption A2, as per Figure 1.

(a)

(b)

Figure 4: Extracted noise given Assumption A3, as per Figure 1.

ent, the overall curvature in the noise surface has also rotated with
it—its top-left and bottom-right corners are now visibly higher than
other parts of the surface. This leads us to believe that the curva-
ture of the noise surface comes from the specimen itself, and is not
due to systematic structuring of noise produced by the scanner—in
the latter case, the noise distribution would not have rotated. As a
result, we can thus rule out Assumption A1 as being unsatisfactory,
and do not use it for further analysis.

We also note that while in Fig. 1 the noise shows a diagonal
structuring tendency, in Fig. 2 this is less clear, and even in some
places tends perhaps more to a horizontal structuring. This is
probably due to interaction between the laser striping system, the
anisotropy of the test surface, and the relative angles of laser and
camera systems. Apart from this question of directionality, how-
ever, the general structure of the noise appears similar in both orien-



tations. Thus, future experiments were restricted to data measured
when the long side of the specimen was aligned with the a-axis.

Next, we consider Assumption A2. In this case, we fit a
quadratic surface to the whole set of measurement data. In this
case the function f is defined as

f (x,y,p) = a+bx+ cy+dx2 + exy+ f y2. (4)

where the parameter vector is p = [a,b,c,d,e, f ].
Fig. 3 shows the estimated noise using Assumption A2. It can

be seen that the noise surface again has obvious large scale raised
and lowered areas with a similar distribution as in Fig. 1, except
that the overall curvature in Fig. 1 is no longer present. Using the
same reasoning as before, we can again say that the magnitude of
the noise is due to the scanner.

We still need to answer the question of whether a quadratic sur-
face can sufficiently represent the underlying surface of the spec-
imen. To answer this question, we have also fitted higher order
surfaces, e.g. cubic surfaces, to the measurement data, and ex-
tracted the noise using Eqn. (2). Visually, the distribution pattern
of the extracted noise in each case is quite similar to that shown in
Fig. 3. Furthermore, differences in the residual errors when fitting
quadratic, and cubic or other higher order surfaces, are less than the
specified roughness heights Ra and Rz of the test specimen. Thus,
we can safely say that a quadratic surface sufficiently represents the
underlying surface of the specimen, and the estimated noise surface
in this case is very close to the real noise due to the scanner.

We have also used assumption A3 as an alternative method of
verifying the above assertion: A3 makes no assumptions about the
global shape of the underlying test surface. Under Assumption A3,
we only need to consider the parameters of roughness. Since the
parameters of roughness Ra and Rz of the specimen are 0.025µm
and 0.29µm, respectively, which are both significantly smaller than
the scanner accuracy of 50µm, we can simply consider the surface
as a plane over areas of diameter smaller than the sampling length
used to define Ra and Rz, and ignore the influence of the surface
roughness.

This sampling length is 0.8mm. So for each measured point on
the surface, we chose a circular neighbourhood of diameter 0.8mm,
and fitted a local plane to the measured data within this neighbour-
hood. The point was then projected onto the plane, and the pro-
jected point was taken as the estimated position of the real point
on the underlying test surface. Because the surface fitted to the
noisy measured points has a roughness exceeding the range desig-
nated by Ra and Rz of the specimen, unfortunately it is not a good
approximation to the real surface. Thus, we iteratively used the ap-
proximate points to fit local planes and provide new projected ap-
proximate points until the roughness of the surface formed by the
new approximate points reached the range designated by Ra and Rz
(it required 323 iterations to do so). The final approximate points
can be considered to be good approximations to the real surface
points, and the differences between the noisy points and their cor-
responding approximate points can then be considered to be our
estimate of noise. Note that because of the iteration process, the
surface may have shifted—in fact, the mean of the differences is
−2.3µm, so we subtract the mean from each difference, to get the
final estimated noise with zero mean.

Fig. 4 shows the extracted noise surface using the above method.
The noise pattern can be seen to be very similar to that estimated
using Assumption A2 shown in Fig. 3, although the actual values
differ slightly. The independent assumptions made for approaches
A2 and A3 give us confidence that the similar results obtained are
useful estimates of the actual scanner noise surface, and that this
noise really does contain the structures shown in Fig. 3.

We have computed the standard deviation of the differences be-
tween noise values estimated using A2 and A3. It is 4.9µm, which
is only 10% of the specification accuracy of the scanner. While

Figure 5: Differences between Fig. 3 and Fig. 4.
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Figure 6: Histogram of the estimated noise magnitude, the red line
shows the estimated Gaussian distribution.

these differences are not negligible, the difference surface is slowly
varying over a long distance with low amplitude (see Fig. 5). We
also computed the standard deviations of the noise based on A2 and
A3, which are 16.2µm and 16.6µm, respectively. They are very
close and both are less than the specified accuracy of the scanner.

For purposes of analysing correlations in noise in x-y, both as-
sumptions A2 and A3 provide reasonable models of the real scanner
noise; however, assumption A2 leads to a much cheaper computa-
tion, so in the rest of the paper, our analysis is based on Assumption
A2 unless otherwise stated.

We now make perhaps the most important point in the whole pa-
per, which is clear from a visual inspection of Figures 3 and 4: noise
at each measurement site is not independent. There is a clear cor-
relation between noise at adjacent measurement sites, and indeed
on longer length scales, too. This is contrary to a common assump-
tion adopted by many papers on noise removal methods for mesh
data: the model most often assumed for scanner noise is indepen-
dent Gaussian noise at each measurement point [1, 13, 27, 3, 6, 26].

3 Noise Analysis

In this section, we now analyse the properties of the estimated
noise. We carry out both a statistical analysis, and a Fourier analy-
sis, of the noise. Because the extracted noise is only an approxima-
tion to the real scanner noise, we call our analysis a quasi-statistical
analysis of the real scanner noise. We use the noise estimate based
on Assumption A2 throughout this section.

3.1 Quasi-Statistical Analysis

3.1.1 Is the Noise Gaussian?

We start our quasi-statistical analysis with a discussion of the distri-
bution of the magnitude of the estimated noise. Fig. 6 shows a his-
togram of the estimated noise taken at all points of the test surfaces,
together with a zero-mean Gaussian distribution with the same stan-
dard deviation as the estimated distribution. This histogram has 80
equally spaced bins. The noise histogram appears to agree fairly
well with the Gaussian distribution, but to decide this issue more
definitely, we perform a statistical test.



The standard deviation of the estimated noise is σ = 16.2µm.
We need to verify the null hypothesis:

H0 : f (x) =
1√

2πσ
e−

x2

2σ2

with the alternative hypothesis

H1 : f (x) 6= 1√
2πσ

e−
x2

2σ2

where f (x) is the probability density function of the estimated
noise. For this we use Pearson’s chi-square test [12]. Consider
the statistic

K =
1
N

m

∑
i=1

n2
i

pi
−N, (5)

where N is the number of observations (the number of measurement
points, in our case here, N = 9375), m is the number of bins in
the histogram (see later), ni is the number of observations in the
ith bin, and pi is the probability content of the ith bin. Under the
hypothesis H0, the distribution of K is generally accepted as being
close enough to χ2(m− 1) if the expected numbers of events per
bin, N pi, is greater than five in each case [12]. If the probability
P(χ2(m− 1) > K) < α , the null hypothesis is said to be rejected
in the significance level α . Commonly used α are 5%, 1%, and
0.1%. The smaller the α , the stranger the evidence. In the rest of
the paper, we use α = 5% as the significance level.

We generated histograms using m0 = 3, . . . ,100 equal-width
bins, except that we combined neighbouring bins having small ex-
pected numbers of events into larger bins such that each was ex-
pected to have more than five events.

We then used Eqn. (5) to compute K and computed the prob-
ability of χ2(m− 1) > K, where m was the number of bins after
merging small bins. The result shows that except for the cases
m0 = 4,5,7,8,10 (corresponding to m = 4,5,5,6,7, respectively),
the probabilities are all less then 0.05, and furthermore, except for
m = 4 (m0 = 4) and m = 6 (m0 = 8), there always exists another
division of m bins which has a probability of less than 0.05. This
means that except for two special choices of m, we should reject
H0 at the given level of significance α = 5%. In simple words,
we should reject the hypothesis that the estimated noise distri-
bution is Gaussian. Nevertheless, Fig. 6 makes it clear that the
distribution of the estimated noise is quite Gaussian-like.

We also note that, as well as the obvious interpretation that the
noise itself is not Gaussian, other explanations are available. Errors
in the estimated noise due to the estimation procedure, or the the
presence of small bumps on the surface, may also explain the small
deviation between the estimated noise and a Gaussian model.

3.1.2 Noise Correlation

We now consider noise autocorrelation in the x- and y-directions.
For convenience of description, we assume that the data points are
indexed from left to right (x), and from top to bottom (y). We use
{i, j}, i = 1, . . . ,Nx, j = 1, . . . ,Ny, to denote the point in the ith col-
umn and the jth row from top, and e(i, j) to denote the estimated
noise at this point. The actual values were Nx = 125 and Ny = 75
for our measured data.

We also performed a statistical hypothesis test to evaluate the
noise autocorrelation. If the noise distribution were Gaussian, we
could simply use linear correlation coefficient and perform t-test to
assess the autocorrelation. However, because the extracted noise is
not Gaussian as we showed in the last section, it is more appropri-
ate to use a nonparametric test. We have used the popular Spear-
man rank-order correlation coefficients, which does not require the
knowledge of the probability distribution of the noise [15].
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Figure 7: Spearman autocorrelation showing probability P(t(M−2) >
|T |) in x-direction (top) and y-direction (bottom).

Let k = 1, . . . ,Nx − 1 be the autocorrelation length to be con-
sidered in the x-direction, and Rx1k(i, j) and Rx2k(i, j) be the rank
values of e(i, j) among all the other e(m,n) in the square areas
(m = 1, . . . ,Nx − k, n = 1, . . . ,Ny) and (m = k + 1, . . . ,Nx, n =
1, . . . ,Ny), respectively. Furthermore, let Rxk be the mean of the
rank value in either square area, given by ((Nx− k)Ny + 1)/2. De-
fine R̃x1k(i, j) = Rx1k(i, j)− Rxk and R̃x2k(i, j) = Rx2k(i, j)− Rxk.
Then the rank-order autocorrelation coefficient in the x-direction is
computed by

ρSx(k) =
∑

Ny
j=1 ∑

Nx−k
i=1 R̃x1k(i, j)R̃x2k(i+ k, j)√

∑
Ny
j=1 ∑

Nx−k
i=1 R̃2

x1k(i, j)
√

∑
Ny
j=1 ∑

Nx−k
i=1 R̃2

x2k(i+ k, j)
. (6)

Similarly in the y-direction, the rank-order correlation coefficient is
computed by

ρSy(k) =
∑

Nx
i=1 ∑

Ny−k
j=1 R̃y1k(i, j)R̃y2k(i, j + k)√

∑
Nx
i=1 ∑

Ny−k
j=1 R̃2

y1k(i, j)
√

∑
Nx
i=1 ∑

Ny−k
j=1 R̃2

y2k(i, j + k)
. (7)

The notations in the above formulae have corresponding meanings
to those in Eqn. (6).

Having obtained the rank-order correlation coefficients, we can
perform the t-test to evaluation the autocorrelation of the estimated
noise. Our null hypothesis is that the noise at each measurement
location is uncorrelated, corresponding to

H0 : ρSx(k) = 0 for k = 1, . . . ,Nx−1,

and similarly for y. The alternative hypothesis is that

H1 : ρSx(k) 6= 0,

and similarly for y.
Given a correlation coefficient ρ , (here ρ could be ρSx(k) or

ρSy(k),) the statistic

T =
√

M−2
ρ√

1−ρ2
, (8)

is close to t(M−2) (t-distribution with M−2 degrees of freedom)
under hypothesis H0. (Here M is the number of sample points used
in computing ρ .) Thus, if the probability P(t(M− 2) > |T |) < α ,
the null hypothesis is said to be rejected in the significance level α .

Fig. 7 shows how the probability P(t(M−2) > |T |) varies with
k with the green line at P = 5%. From the figure it can be seen that
P(t(M− 2) > |T |) < 5% for all correlation lengths less than 11 in
the x-direction and 47 in the y-direction, respectively; there are also
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Figure 8: Power spectrum along x-direction (top) and y-direction
(bottom); the green vertical lines are at frequency 1/0.8mm.

other greater correlation lengths for which P(t(M−2) > |T |) < 5%.
Thus it is highly suggestive that the noise is autocorrelated in both
x- and y-directions, at various length scales.

We have also performed the t-test based on linear autocorrelation
coefficients, which are greatly dependent on the assumption that the
noise is Gaussian. Its result is quite close to the above even though
the Gaussian assumption is not exactly correct as we showed in the
last section. In summary, we can thus say that the estimated noise
is really autocorrelated.

3.2 Fourier Analysis

The above section provides a quasi-statistical analysis of the esti-
mated noise. Because this analysis is based on Assumption A2,
and hence an estimate of the noise, we can only state that the above
analysis provides a qualitative indication. In this section, we per-
form an alternative Fourier analysis of the measurements which is
not based on any assumption of the specimen shape.

We first performed a 1D Fourier analysis on the measurement
data (not the extracted noise). Fig. 8 shows a log-log scale plot of
the power spectrum along the x- and y-direction respectively. From
the figure it can be seen that the measurement data are correlated
since the power spectra are not constant in any band. However, the
correlation here could be from either the measurement noise or the
surface signal itself of the specimen. Considering that the speci-
men surface is quite smooth and its fluctuations are quite small, the
signal will mainly exist at low frequencies, and the high-frequency
components will mainly consist of measurement noise. The vertical
green line shown in Fig. 8 is at the frequency f = 1/0.8mm. Note
that 0.8mm is the sampling length given for calculating the surface
roughness by Rubert & Co Ltd. As we discussed before, the surface
roughness below the sampling length is negligible, and thus we can
be sure that the spectral power for frequencies f > 1/0.8mm (to the
right of the green line) is essentially due to scanner noise. Since the
power spectra are also not constant for frequencies f > 1/0.8mm,
we are sure that the measurement noise is not white noise.

To consider the noise as a 2D process, we further performed a
2D Fourier analysis on the measurement data. Fig. 9 shows its 2D
discrete Fourier transform. It can be seen that, as was shown by the
1D Fourier transforms, the magnitude of the 2D discrete Fourier
transform also decreases with the frequency, and it varies little in
the high frequency range. It can also be seen that the phase of the
2D discrete Fourier transform varies randomly with little regularity.
The 2D Fourier transform shown here also tells us that the measure-
ment data are correlated, and furthermore, the measurement noise
is not white noise.
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Figure 9: 2D discrete Fourier transform (zero-frequency at the cen-
tre). Top: logarithmic magnitude of the spectrum. Bottom: phase
of the spectrum, in degrees.

4 Noise Synthesis

From the quasi-statistical analysis in Section 3.1, we see that the
noise is not white and its distribution is not Gaussian, thus we can-
not generate synthetic noise using straightforward pseudo-random
noise sequences. However, using the Fourier analysis in Sec-
tion 3.2, we may generate synthetic noise via use of inverse Fourier
transforms as we now discuss.

When performing Fourier analysis in Section 3.2, we used the
measured data, and thus the result of the Fourier transform is not
purely due to noise—it is a mixture of both the noise and the sig-
nal (variations in shape of the specimen surface from planar). Be-
cause the signal exists mainly at low frequencies while the noise
mostly has high frequencies, we may simply set the low frequency
components of the Fourier transform to zero, and use the remain-
ing components to model the noise—although again this is not an
exact description of the real noise. Usually, a sharp cut-off filter
as used here can introduce ringing artifacts. However in practice,
these were negligible and so were not considered further.

The top of Fig. 10 shows the inverse Fourier transform with the
low frequency components (the lowest 5 components in both x- and
y-directions) set to zero. Clearly, using the inverse Fourier trans-
form in this way preserves the general structure of the original noise
shown in Figs. 1, 3, and 4, while removing the obvious curvature of
the specimen surface shown in Fig. 1.

Having obtained the Fourier transform of the measurement data,
we can use a simple model to fit the magnitudes with respect to
frequency. We tried several models, and finally chose one model
which has minimum fitting residual among these models. The
model we use is

Z(i, j)
1
4 =


a0 +b0i+ c0 j +d0i2 + e0i j + f0 j2 i 6= 0, j 6= 0,
a1 +b1i+d1i2 j = 0,
a2 +b2 j + f2 j2 i = 0,

(9)

where Z(i, j) is the magnitude at frequency fx = i/Lx, fy = j/Ly,
and Lx and Ly are the specimen side lengths in the x- and y-
directions respectively. The parameters obtained by finding a best
fit are a0 = 1.5600, b0 = −0.0185, c0 = −0.0176, d0 = 0.0001,
e0 = 0.0003, f0 = 0.0000, a1 = 1.9134, b1 = −0.0417, d1 =
0.0005, a2 = 1.8352, b2 =−0.0530, f2 = 0.0008, and the squared
sum of the residual errors is 2.21% of the squared sum of the mag-
nitudes. Fig. 10, middle, shows the result of computing an inverse



Figure 10: Generating noise by inverse Fourier transform with low fre-
quency components set to zero. Top: original magnitude and phase
except for low frequency components; Middle: synthetic noise with
fitted magnitude and original phase except for low frequency com-
ponents; Bottom: synthetic noise with fitted magnitude and random
phase except for low frequency components.

Fourier transform using the modelled magnitude together with the
original phase data. This generated noise can be seen to have a
structure quite close to the original structure, verifying the utility of
this model.

Because the phase spectrum is rather unstructured as shown in
Fig. 9, we cannot easily fit a model to the phase spectrum. Instead,
we may use random phases for generating synthetic noise. Fig. 10,
bottom, shows noise synthesised by inverse Fourier transform of the
modelled magnitudes and random phases. The synthetic noise in
this case can be seen to have a somewhat different structure from the
original one, which is to be expected as there is some structure in the
phase of the noise, as shown in Fig. 9. Nevertheless, the structure of
this synthetic noise is generally fairly similar to the original noise
at least with respect to the magnitudes, sizes, shapes and density of
the bumps. In practice, synthetic noise is not necessarily an exact
copy of any original noise, and we consider the noise generated
using inverse discrete Fourier transforms of fitted magnitudes and
random phase as reasonable. It is certainly closer to real scanner
noise than white Gaussian noise.

5 Denoising experiments

Section 3.1 has shown that real scanner noise is neither strictly
Gaussian, nor independent at each location or even white in nature,
contrary to the most common assumptions adopted by many papers

considering denoising or other processing of scanner data. In this
section, we consider how various algorithms perform on real noise
as opposed to synthetic independent Gaussian noise often used to
test such algorithms in the papers where the authors have described
them and assessed their performance. Here, we consider two typi-
cal denoising algorithms: the original Laplacian algorithm [24] and
a simple feature-preserving denoising algorithm [20]. We compare
the denoising results achieved by these two algorithm, firstly on real
scanner data, and secondly on data generated by adding Gaussian
white noise with the same standard deviation as that of scanned data
on the best quadratic surface fitted to the scanning data.

Fig. 11 shows the denoising results after 1, 5, 10, 20, and 50
iterations, as commonly used in the literature. It is quite clear that
fewer iterations of these denoising algorithms are needed to remove
Gaussian white noise than to remove real scanner noise. Further-
more, the denoising algorithms are less successful at completely
removing the bumpy structures present in real scanner noise.

Because a feature-preserving denoising algorithm like that
from [20] can preserve features better than a non-feature-preserving
algorithm, such as the original Laplacian algorithm [24], the former
has more difficulty than the latter in remove structural features in
real scanner noise.

From the denoising experiments, we can see that neither non-
feature-preserving nor feature-preserving algorithms can effec-
tively deal with structured nature of real scanner noise. We thus
conclude that many previous papers claiming good smoothing
results based on experiments with synthetic noise are over-
optimistic in their assessment of the ability of the reported
methods to remove real scanner noise.

There would seem to be plenty of scope to carefully design new
algorithms which take into account the real, rather than assumed,
nature of scanner noise.

6 Conclusions

In this paper, we have investigated the noise characteristics in mea-
surement data obtained by a Konica Minolta Vivid 910 scanner. Vi-
sual demonstrations and a quasi-statistical analysis of the estimated
noise has shown that real scanner noise is neither Gaussian, nor in-
dependently distributed. Fourier analysis has further demonstrated
that such noise is not white noise. Based on the Fourier analysis,
we have proposed a noise synthesis method using the inverse dis-
crete Fourier transform on a fitted model-generated power spectrum
and randomly generated phase spectrum. Visually, we have shown
such synthetic noise has broadly the same structural features as real
scanner noise.

We have also discussed the effectiveness of two typical mesh de-
noising algorithms on removing noise from real measurement data
and synthetic data with Gaussian white noise. Our experiments
have shown that it is more difficult to remove noise from real mea-
surement data than from synthetic data with Gaussian white noise.
New denoising algorithms are required which take into account the
real nature of scanner noise; we intend to investigate such methods.
Robust estimation algorithms such as robust moving least-squares
fitting [7] may be of use here.
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