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Molds for Meshes: Computing Smooth Parting
Lines and Undercut Removal
Weishi Li, Ralph R. Martin, Frank C. Langbein, Member, IEEE

Abstract—We consider the problem of computing a parting line
for a mold for a complex mesh model, given a parting direction,
and the related problem of removing small undercuts, either pre-
existing, or resulting from the parting line.

Existing parting line algorithms are unsuitable for use with
complex meshes: the faceted nature of such models leads to a
parting line which zig-zags or wanders across the surface unde-
sirably. Our method computes a smooth parting line which runs
through a band of triangles whose normals are approximately
perpendicular to the parting direction. We generate a skeleton
of this triangle band to find its distinct topological cycles, and to
decompose it into simple pieces. After selecting paths making a
good cycle, we generate a final smooth parting line by iteratively
improving the geometry of this cycle. Compliance in the physical
material, and / or modifications to eliminate minor undercuts
ensure that such a parting line is practically useful.

Note to Practitioners— Molding is the process of manufacturing
a part by shaping a pliable raw material, such as molten plastic
or metal, using a rigid mold. The material hardens and sets
inside the mold, adopting its shape. To remove the part from the
mold without destroying the mold, the mold must be made of
multiple pieces. In the simplest case, a two-part mold is used,
and these parts are separated in opposite directions. The curves
on the surface of the part where the pieces of the mold meet
are called ‘parting lines’. For a manufacturing perspective, a
smooth parting line is more applicable than a theoretically correct
parting line. We give a novel method to compute such a parting
line in this paper.

Index Terms—parting line, mesh, mold design, undercut.

I. INTRODUCTION

G IVEN an object to be manufactured in a mold, the
parting line is that curve on the object’s surface where

the sections (cavity halves and cores) of the mold meet as
it closes [1]. This paper considers problem of computing a
parting line for a complex mesh model. Existing parting line
methods are not suited to such models, as local variations
in the orientations of the model’s facets lead to a parting
line which zig-zags or wanders across the surface. While
such a parting line is theoretically correct, it is undesirable
for manufacturing reasons: a smooth curve which closely
approximates the theoretical parting line is more desirable
in practice [2], [3]. However, such a curve results in small
undercuts which in principle prevent removal of the object
from the mold. Nevertheless, compliance in the material used
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may still allow removal, or minor local modifications may
be made to the mesh geometry to eliminate the undercuts.
Such modifications are often acceptable for mesh models
of e.g. ornaments and children’s toys, where exact shape is
not critical. In this paper we give a method for computing
smooth parting lines, and also consider undercut removal.
For simplicity, we discuss genus-0 models only, although our
concepts could in principle be generalized to other cases by
computing multiple parting lines.

Consider a two-part mold for a simple mesh model, whose
pieces are to be removed in opposite directions, which we will
refer to as the parting direction and the opposite direction. If
a parting direction can be found which separates the mesh
triangles into two contiguous regions—those visible from
the parting direction, and those visible from the opposite
direction—the boundary is the parting line. For a more com-
plex mesh, however, it may be impossible to find any parting
direction which cleanly separates the mesh triangles into two
such regions, and generation of a suitable parting line is not
so straightforward.

We assume that we are given a closed, manifold mesh, and a
desired parting direction—choice of suitable parting directions
is addressed elsewhere in the literature [4], [5], [6]. The input
may include (small) undercuts with respect to the given parting
direction. Our approach is to first construct a triangle band
consisting of triangles with normals nearly perpendicular to
the parting direction, forming an acceptable region through
which the parting line may pass. We then generate the parting
line within that region, noting that we require a smooth, and
ideally almost planar, curve [7], [8], which introduces as few
additional undercuts as possible.

We provide simple control over parting line generation by
an angular tolerance and a distance threshold. The angular
tolerance is used when generating the triangle band. Mesh
triangles whose normals are within this tolerance of being
perpendicular to the parting direction are used to construct
the triangle band. A tighter tolerance results in a narrower
band; a looser tolerance gives more freedom for the location
of the parting line. A smaller distance threshold results in
a parting line which is closer to the theoretically correct
one; a larger threshold allows a smoother parting line, at the
possible expense of more undercut. The angular tolerance used
is not critical, while the distance threshold can be adjusted
to allow for e.g. compliance of the material being molded,
and importance of preserving the original mesh shape. An
area threshold is also provided to eliminate small gaps in the
triangle band which can arise if the input mesh model is noisy.
This generally improves the global nature of the parting line.
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Section II reviews prior work. Section III summarizes
our method. Generation of the triangle band is discussed in
Section IV. The nature of the triangle band and the parting
line are considered in Section V, and our method for topo-
logical analysis of the parting line in Section VI. Parting line
computation is presented in Section VII, and undercut removal
in Section VIII. Experimental results are shown in Section IX.

This paper is an extended version of [9], and in particular
considers further the problem of adjusting the mesh to be
compatible with the new parting line.

II. RELATED WORK

Determination of parting directions and parting lines are
well-studied problems. For a two-part mold, an optimal parting
direction can be found using Gauss map analysis of the object
to be molded [10]. More recent work [5], [6] has considered
use of graphics hardware to accelerate generation of parting
directions. Parting directions for cores are considered by [11].
Having found a suitable parting direction, a parting line can
then be generated. Prior work has generally considered objects
bounded by relatively few, simple surfaces (planes, natural
quadrics, and splines), rather than meshes: e.g. two-piece
molds for NURBS models are considered by [4].

Parting line generation methods are based on visible surface
detection. A point p on a model M is visible from a parting
direction if the ray r starting at p going in the opposite
direction does not intersect any other part of the model.
Occluded regions of the surface constitute the undercuts for
this parting direction [12]. Usually cores are added to enable
undercut features to be molded [11].

For a mesh analysis of which facets are visible from the
parting direction and the opposite direction allows construction
of the parting line [13]. Tan [14] shows how to construct
a parting line for a model with multiple visible regions.
Weinstein [15] gives an optimisation method for parting line
generation, taking into account parting line complexity, draw
depth, number of undercuts, number of side cores, and mold
complexity. Some of these depend on the choice of parting
direction, which, however, we assume to be fixed in our
algorithm. Importantly, these earlier methods all generate a
theoretically correct parting line, however.

Using a triangle band to compute a parting line was
originally proposed by [8]. However, that work only allowed
convex polyhedra, whereas ours handles real-world, non-
convex triangular meshes. In the convex case, the triangle
band corresponds topologically to a 2-connected surface (a
belt), while in the non-convex case, the triangle band can be
more complex: it may be topologically equivalent to an n-
connected surface with n > 2, or may comprise several 1-
or non-1-connected surfaces connected by edges. As a result,
both generating the triangle band, and computing a parting line
within it, are more complicated. The method in [8] cannot be
straightforwardly extended to this case.

Majhi’s approach has also been employed by [3] to design
multi-piece molds. Recently, [16] gave a method to find
a triangle band for complex mesh models using graphics
hardware. However, the method is limited by the resolution

of the hardware, and again, it does not readily to generalize
to triangle bands with complex topology.

In our method, we cut the triangle band into a set of
adjacent topological disks. Any mesh model with handles can
be opened into a topological disk along a canonical polyg-
onal schema, which can be computed by use of topological
collapsing operations [17]: see [18]. We use a similar approach
to cut the triangle band, an open surface without handles, into
topological disks.

III. PARTING LINE ALGORITHM OVERVIEW

This Section explains our notation and provides an overview
of how we find a parting line on a triangular mesh model.

We define a triangle meshM to beM = (K,P) where K =
V∪E∪T is a simplicial complex representing the connectivity
of the mesh, and P gives the vertex positions. Here V = {vi},
i = 0, . . . , nv is the set of vertices, E = {ei}, i = 0, . . . , ne
is the set of edges, and T = {ti}, i = 0, . . . , nt is the set of
triangles. P = {pi ∈ R3} gives the position of each vertex vi.
For brevity, we identify vertices and their positions, and use
the same notation for both. We use ni to denote the normal
to triangle ti.

We use a coordinate system chosen such that the given
parting direction D coincides with the z-axis. Later, when we
refer to projection, we will always mean parallel projection in
the z direction onto the x-y plane.

Given the parting direction D, and a user-chosen angular
tolerance δ, all triangles ti can be classified according to the
angle θi between D and the triangle’s normal, ni. Triangles
are divided into three types:

up: triangles for which θi < 90◦ − δ,
down: triangles for which θi > 90◦ + δ,
neither: triangles for which 90◦ − δ ≤ θi ≤ 90◦ + δ.

Up and down triangles can be further classified as visible or
occluded. Down visible and up visible triangles which are
entirely visible from D or −D respectively; other triangles
are occluded. Contiguous visible triangles form up and down
visible regions. Occluded triangles indicate undercut regions.
To aid understanding of the figures in this paper, we colour
regions as follows:up visible: green, down visible: blue, the
triangle band: dark yellow, occluded regions within the triangle
band: gray, other regions: red (see e.g. Figure 1(a)).

Figures in Sections IV–VII show triangle bands which have
been flattened from 3D onto the 2D plane of the paper to
illustrate their topology.

The triangle band is constructed from the triangle classifi-
cation. Given an angular tolerance greater than zero, neither
triangles and undercuts generally exist between the visible
regions. The region outside the outermost boundary of each
visible region, excluding any undercuts, is the triangle band:
this is the region which the parting line must pass through. The
triangle band usually has a non-zero width, although it may
degenerate locally into an edge where common boundaries
exist between up visible and down visible regions, or where
an undercut is excluded from the triangle band.

Often, there are multiple up visible or down visible regions,
or occluded triangles within the triangle band, so the triangle
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(a) (b) (c) (d) (e)

Fig. 1. Moai model: (a) model and triangle band; (b) topological structure of candidate paths; (c) candidate paths; (d) chosen cycle; (e) final parting line.

band is not just a 2-connected surface (a belt encircling the
mesh), but is n-connected, with n > 2 topologically distinct
paths connecting any two points in the band. Clearly, in such
cases, multiple topologically distinct cycles exist in the triangle
band; we must choose one as the basis for the parting line.

Thus, after finding the triangle band, the following steps are
used to generate the parting line:

1) Find the topological structure of the triangle band (see
e.g. Figure 1(b)).
We reduce the triangle band to a skeleton, giving a
connectivity graph. We then remove disallowed paths
between certain occluded regions inside the triangle
band. For technical reasons, we also add paths between
certain regions visible from the same direction. We then
seek valid candidate paths within the connectivity graph,
which are topological cycles fully separating the up
visible regions from the down visible regions.

2) Find geometric candidate paths in the triangle band
from the topological structure (see e.g. Figure 1(c)).
We next decompose the triangle band into 1-connected
(disk-like) regions and compute shortest geometric paths
joining adjacent regions. We add to these any degenerate
edges where the triangle band has locally collapsed to an
edge. The overall connectivity of these geometric paths
is topologically equivalent to the connectivity graph.

3) Choose the best cycle by considering weighted lengths
of candidate paths (see e.g. Figure 1(d)).
Weighted lengths of valid topological cycles formed
by the geometric candidate paths are computed. The
shortest gives the cycle used to determine the final
parting line. The weights take into account the needs for
the parting line to be smooth, and close to the theoretical
parting line.

4) Improve the geometry of the chosen cycle to give the
parting line (see e.g. Figure 1(e)).
The triangle band is now restricted to those parts con-
taining the chosen cycle, to avoid unwanted topological
changes during optimization. An improved path is then
computed iteratively, again using a shortest path algo-
rithm, to give the final smooth parting line.

IV. COMPUTING THE TRIANGLE BAND

We now explain in detail how to generate the triangle band,
given the mesh, the parting direction, and the angular tolerance
δ.

We first find visible triangles. Each triangle is initially clas-
sified (see earlier) as up, down, or neither. We next determine
which up and down triangles are occluded (including partially
occluded). Non-occluded up and down triangles are visible.

Any mesh edge whose adjacent triangles have different clas-
sifications is a boundary edge. If one triangle of a boundary
edge is a down visible triangle, the edge belongs to a boundary
of a down visible region, and similarly for up visible regions.
An edge may belong simultaneously to the boundary of an up
visible and a down visible region. By tracing neighbors of
boundary edges, complete boundaries of visible regions can
be found. The outermost boundaries of the up visible regions
are the upper boundaries of the triangle band, and its lower
boundaries can be found similarly.

Region growing is used to complete triangle band genera-
tion. A neither triangle adjacent to each piece of boundary
is selected as a seed, from which growing is performed to
find all neither triangles between the boundaries. The triangle
band may degenerate locally into an edge where common
boundaries exist between up visible and down visible regions,
or where an undercut is excluded from the triangle band. Such
degenerate edges are included as parts of the triangle band.

If the mesh model is noisy, small visible or occluded
regions may exist within the triangle band. For efficiency, and
to improve the quality of the results, the user may specify
that such regions whose projected area is below a threshold
are ignored—they are simply relabeled as neither triangles,
simplifying the topological structure of the triangle band.
Doing so introduces small extra undercuts; we consider later
how these might be removed.

V. THE TRIANGLE BAND AND THE PARTING LINE

As noted, the triangle band may not be a 2-connected
surface, but may have more complex topology. Two consid-
erations must be taken into account when deciding where the
parting line may go within the triangle band.

Firstly, up occluded and down occluded regions may exist,
as pairs, within the triangle band. The parting line should not
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Fig. 2. A triangle band containing occluded regions.

(a) (b)

(c) (d)

Fig. 3. Multiple up visible and down visible regions, allowing topologically
different parting lines.

separate any pair of mutually occluded regions, otherwise the
molded part will not be removable from the mold. This is true
whether such pairs of regions touch—see Figure 2, UU1 –PD1
and UU3 –PD3 , or not—see UU0 –PD0 and UU2 –PD2 . (Note again
that this and other Figures show a flattened view of the triangle
band; in this case outside the band is up visible and inside is
down visible).

Secondly, there may be multiple up visible and/or down
visible regions. Again, for removability reasons (using side
cores if needed), the parting line must separate all up visible
regions from all down visible regions. Nevertheless, multiple
alternative topological cycles may exist which separate the up
visible regions from the down visible ones. Figure 3(a) shows
an example with two up visible regions, PU0 and PU1 (PU0
is outside the triangle band in this flattened representation),
and three down visible regions, PD0 , PD1 and PD2 . Three
topologically distinct cycles separating up visible regions from
down visible regions are shown in Figures 3(b)–(d).

To perform topological analysis, we reduce the triangle band
to a skeleton, and then construct all topologically distinct
cycles which meet the above requirements.

(a) (b)

Fig. 4. A triangle band and its skeleton.

(a) (b)

Fig. 5. The skeleton generation operation.

VI. TOPOLOGICAL ANALYSIS OF THE TRIANGLE BAND

We now describe an approach to computing skeletons of
the triangle band, and how we use a particular skeleton to
determine valid topological cycles for the parting line.

A. Skeleton Generation

The triangle band is an open triangle mesh, possibly in-
cluding degenerate edges. Its skeleton is a collection of edges
representing the connectivity of those parts of the triangle band
through which the parting line may pass—see Figure 4. To
compute the skeleton, we use a method based on the canonical
polygonal schema idea of [18]. However, our method can can
directly handle an open mesh with degenerate edges; the latter
must be treated separately in [18].

Skeleton generation is performed by eroding the triangle
band. We repeatedly remove triangles from the triangle band
which are adjacent to triangles outside the band. We first
initialize labels for all triangles, and edges: blue for down
visible triangles, green for up visible triangles, gray for
occluded triangles, yellow for triangles in the triangle band;
red for edges of the triangle band (including degenerate ones),
and black for all other edges. Let triangle tj belong to the
triangle band, and ti belong to some other particular kind of
region, e.g. an up visible region. Triangle ti is thus an erosion
triangle. Suppose these triangles meet in edge ek. The label
for tj is yellow, and its edges are red; the edges of ti other
than ek are black: see Figure 5(a). An erosion step does the
following: where a red edge is adjacent to an erosion triangle
and a yellow triangle, it is relabeled as black, and the yellow
triangle is given the label of the erosion triangle. Other edges
of the yellow triangle remain red. See Figure 5(b). Erosion is
performed one ring of triangles at a time from the boundaries
of the triangle band inwards. Erosion is applied repeatedly
until no further change occurs, at which point the remaining
red edges are the desired skeleton.

Note that skeleton generation is carried out by using a
particular kind of triangle in erosion steps, e.g. up visible
triangles, or down visible triangles, etc. Different choices
result in different skeletons, but in each case, the result has
the same connectivity as the triangle band.

The above method results in a skeleton which generally has
side branches. These are removed, iteratively, to simplify the
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(a) (b)

Fig. 6. Path breaking between pairs of occluded regions.

skeleton without affecting its cycle structure.

B. Connectivity Graph Generation

The skeleton of the triangle band is a graph which encap-
sulates the topology of the triangle band. We now use it to
generate the connectivity graph of all valid topological cycles,
which separate the up visible regions from the down visible
regions. The edges of this graph correspond to polylines
on the mesh. To obtain this graph, we generate a skeleton
based on simultaneous use of up visible, down visible and
occluded triangles as erosion triangles. This particular choice
is carefully selected to give a skeleton whose projection is
a good approximation to the exterior profile of the mesh.
This means that the geometric information in the connectivity
graph can also be used later to determine a good initial cycle
which well approximates the exterior profile. This cycle is then
smoothed to give the final parting line.

While this skeleton represents the connectivity of the tri-
angle band, we must modify it before use, to meet the
requirement that the parting line must not pass between pairs
of mutually occluded regions, and to ensure that it is possible
to generate cycles which separate all up visible regions from
all down visible regions. Various paths must be added to and
removed from the skeleton to do so.

The first requirement is met by removing any segment of
the skeleton passing between a pair of mutually occluded
regions. Such segments can easily be identified, at the end of
the growing process used to construct the skeleton: triangles
adjacent to such segments are labelled gray on either side,
and on either side have been grown from occluded regions
belonging to the same pair. Consider the triangle band in
Figure 2. Its skeleton is shown in red in Figure 6(a). After
removal of the segments between PD0 –PU0 and PD2 –PU2 , the
skeleton is altered to the one shown in Figure 6(b).

The second requirement is met by duplicating segments of
the skeleton between adjacent up visible regions, and adjacent
down visible regions. This is done to provide a return path
between such regions—a path may need to go between the
regions, then around a region of the opposite type, and back
again: see the return path used between the top two blue
regions in Figure 3(b). Identifying segments of the skeleton
lying between two regions visible from the same direction
is easy: the triangles on either side of such segments have
the same label (blue or green). Such segments are removed
from the skeleton, and are replaced by two new segments, as

(a) (b)

Fig. 7. Path duplication for regions visible from the same direction.

follows. We find the neither triangles that are vertex-adjacent
to the skeleton segment between visible regions with the same
label. These are used to produce a new region between the
two visible regions. The boundary of this region includes
two segments which are not currently part of the skeleton.
These segments are added to the skeleton, providing a path
and a return path between the two visible regions. Again, see
Figure 3(a); its skeleton is in red in Figure 7(a). Note that there
is only one skeleton edge between the two upper blue regions
regions. After the process above, the skeleton is modified to
give the red structure in Figure 7(b), which now has a path
and a return path between the upper blue regions (paths are
also duplicated between other adjacent pairs of blue regions).

Using this structure, we can now construct all topologically
valid cycles separating up visible regions from down visible
regions (see Figures 3(b)–(d)). We call this structure generated
by modifying the skeleton the connectivity graph. We next
discuss how to select a particular cycle from this structure, by
also taking geometric considerations into account. This cycle
is then optimised to give the final parting line.

VII. PARTING LINE GENERATION

We now explain how to generate the parting line. As the
triangle band is in general not 2-connected, we must determine
an appropriate topology as well as its geometry.

To choose the most suitable topological cycle, we must take
geometry into consideration. We thus first determine geometric
paths whose connectivity corresponds to that of the connec-
tivity graph. We do this by decomposing the triangle band
into 1-connected regions (disk-like pieces), and computing
appropriate geometric paths in each region using a shortest
path algorithm. These paths are then analyzed to choose the
most desirable cycle. Lastly, we improve the geometry of this
cycle to give the final smooth parting line.

A. Triangle Band Decomposition

We start by decomposing the triangle band into disk-like
pieces. We can do so simply by computing two further,
different, skeletons of the triangle band. (The information
obtained is not readily available from the skeleton already
computed earlier).

We first compute a skeleton using down visible triangles
as erosion triangles. This skeleton splits a triangle band with
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(a) (b)

(c) (d)

Fig. 8. Triangle band decomposition using skeletons and end points for
geometric candidate paths.

m lower boundaries into m separate 2-connected regions.
We then do the same using up visible triangles as erosion
triangles, splitting a triangle band with n upper boundaries
into n 2-connected regions. By overlaying the two skeletons,
the triangle band is cut into a set of 1-connected regions. For
example, given the triangle band in Figure 3(a), the skeletons
generated using down visible and up visible erosion triangles
are shown in Figures 8(a) and (b), respectively. Together,
these decompose the triangle band (dark yellow) into six 1-
connected regions as shown in Figure 8(c).

Two special cases must be taken into account. Skeleton
edges may be present with the same region on either side. To
ensure 1-connectedness, these must be further decomposed so
that each edge has different regions on either side. Secondly,
the above procedure does not decompose a 2-connected tri-
angle band into two 1-connected regions, so such a cut must
be made explicitly. Procedures based on growing from seed
triangles may be used to add the extra edges needed to resolve
these issues: see [9].

B. Geometric Candidate Path Computation

We next compute geometric paths based on the connectivity
graph, using the above 1-connected regions. We refer to these
as geometric candidate paths, as we select from amongst these
paths to determine the most desirable cycle. We first choose
suitable end points for these paths, and then compute weighted
shortest paths between these end points.

End points of two kinds are chosen to encapsulate the
topological information. First, we need all points in the con-
nectivity graph where more than two edges meet. Secondly,
we add all intersections between the connectivity graph and
the boundaries of the 1-connected regions. Adding the latter

ensures that each individual geometric path is restricted to a
single 1-connected region. These end points are shown in blue
in Figure 8(d) for the triangle band in Figure 3(a).

The weighted shortest path between each appropriate pair
of end points is computed using Lanthier’s method [19]. This
path has the desirable properties that it is locally smooth and
has no unwanted geodesic curvature between the endpoints.
The weighting is used to ensure that the path is not too far
in projection from the exact parting line. These considerations
lead to geometric paths which are suitable starting points for
optimization leading to the final parting line. We define the
weighted distance between any two points pi and pj of an
edge of the path to be

D(pi,pj) = wiwj‖pipj‖, (1)

where ‖pipj‖ measures unweighted distance on the mesh, and
the weighting function is given by

wi =
{

1 if di ≤ ε,
e(di−ε)/ε otherwise,

(2)

where di is the distance in projection of pi to the exterior
profile, and ε is a (positive) user-defined threshold. The smaller
ε, the more nearly the path will follow the theoretical parting
line, while the larger the value of ε, the smoother the path: if
features in the mesh less than a certain size are unimportant,
we may set ε to be larger than this size. Note that it is not
meaningful to set ε smaller than the typical triangle size.

In addition to the paths computed above, we must also add
as geometric candidate paths any paths in the connectivity
graph consisting entirely of degenerate edges.

We now choose a cycle amongst these geometric candidate
paths, and optimise it to give the final parting line.

C. Cycle Selection

We now wish to find the best (i.e. weighted-shortest) cycle
amongst the geometric candidate paths which fully separates
the up visible regions from the down visible regions. How-
ever, finding all cycles in a graph is an NP-hard problem, so
instead, we use a simple heuristic to quickly find a good cycle
rather than the best cycle.

We start by subdividing the problem into smaller subprob-
lems, if possible. For many meshes (indeed, all we have
encountered in practice), there are certain paths that the
cycle must include. We project the geometric candidate paths
into the x-y plane, which allows us to place each path in
correspondence with an arc of a circle (see Figure 9, for
example). The exact way in which correspondence is made
is unimportant; the key point is that any path whose arc does
not overlap other arcs must be included whichever cycle we
construct. We call such paths must-include paths; see paths
a and g in Figure 9. As a result, the remaining paths can
be divided into several groups. The overall optimal cycle is
formed from any must-include paths, and the optimal path for
each group between the must-include paths.

By first finding the must-include paths, and by requiring that
a path and the corresponding return path if any must appear
together in a cycle, all cycles we compute must fully separate
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(a) (b)

Fig. 9. Paths and their parameterisation.

up visible regions from down visible regions, guaranteeing
that our algorithm does not just find a local loop.

The problem of finding the shortest path connecting two
adjacent must-include paths can be solved by using triply-
linked trees [20]. Tracing from the leaf nodes to the root node
gives all paths between the ends. To speed up the search, we
use the simple heuristic that the path should always proceed in
the same sense around the circle mentioned above and should
not take an arc which goes backwards—the shortest path is
unlikely to double back on itself. (In practice, we permit a
succeeding path to proceed in a reverse direction for a small
distance, but not a large distance). For example, in Figure 9(a),
proceeding from a, after considering c, we choose f , and
ignore d. If all succeeding paths proceed in a reverse direction,
we select the shortest one. This heuristic rapidly chooses a
near-optimal cycle.

D. Cycle Optimisation
Having chosen a cycle within the triangle band, we now

optimize its geometry to give the final parting line, again using
Lanthier’s algorithm. While still using weighted distances
for most paths, we use unweighted distances in computing
the shortest path for degenerate paths, because they do not
approximate the exterior profile in projection.

The approach used is to iteratively recompute the shortest
path between the mid-points of each pair of adjacent geometric
paths to locally find new optimal paths. This optimisation is
done within the triangle strip adjacent to each geometric path.

For most paths, the triangle strip consists of the neither
triangles in the triangle band next to the path. For degenerate
paths, the triangle strip is formed by taking the union of
neighbourhoods of triangles with edges on the path, such that
each neighbourhood is a topological disk. However, we must
exclude from these any triangles which belong to or touch
the triangle band except for triangles incident to junctions
of the paths. This is necessary to prevent the possibility of
optimization changing the topology of the parting line.

This local optimisation process is iterated until the maxi-
mum distance between the current cycle and the previous cycle
falls below a threshold. During shortest path computation, each
triangle edge is subdivided into several segments [19]; this
threshold is simply set to half the average length of all such
edge segments. This optimization procedure quickly produces
a tight cycle: the path between any two points of the cycle is
the shortest path on the surface.

E. Parting Line Compatibility

Many applications require that the final parting line is
compatible with the mesh, in the sense that all vertices and
edges of the parting line are also vertices and edges of the
mesh. To do this, all triangles that the parting line touches or
crosses are identified. If more than one edge of the parting
line lies inside or on the boundary of any triangle, a section
of the parting line is locally replaced by an edge connecting
the two endpoints of the section, and any triangle containing
an edge of the parting line is subdivided.

VIII. UNDERCUT REMOVAL

Undercuts are normally considered to be regions of the
mesh that are neither visible from D nor −D. However, here,
another kind of undercut arises: regions that are outside the
parting line in projection, arising due to the difference between
the computed parting line and the theoretical parting line.
Manufacturability is improved by removing some or all of the
undercuts, particularly any new ones of the latter kind. Side
cores may still be needed for larger undercut regions, but the
fewer that remain, the better. We thus now consider how to
remove undercuts.

Related work has considered how to impose a draft angle
on a geometric model for mold design [21], [22]. However,
we are not aware of any method which can remove undercuts.

Our approach works in three steps. We first identify un-
dercut regions to be modified. We next adjust the normal for
each triangle inside the undercut region, giving it a new z-
component value; these normals are chosen to be consistent
with a surface with no undercut. Finally, we update the
positions of the vertices inside the undercut region to give
these triangles the desired normals, using a method originally
designed for mesh filtering [23]. We now detail these steps.

A. Region Identification

For simplicity, we assume that if the projected area of an un-
dercut region is smaller than a threshold, it should be removed.
Such regions are then extended several triangles outwards
to give some freedom when modified and to allow smooth
connections to neighboring parts of the surface. Henceforth,
we will mean these extended undercut regions when we refer
to undercut regions.

Note that the parting line may pass through a given undercut
region. If it does, we divide it into two separate regions
along the parting line. We can now classify every region to
be modified as lying above, or below, the parting line. We
will later process regions which touch the parting line slightly
differently from those which do not.

B. Normal Assignment

Suppose a parting line separates a simple genus-0 model
into two contiguous regions—those visible from the parting
direction D, and those visible from the opposite direction—
the model is undercut-free. The normal of a triangle inside
a region visible from D must have a negative z-component,
and vice versa for the opposite direction. We thus adjust the
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normals of all triangles inside an undercut region adjacent to a
region visible from D to have a negative z-component, causing
the region to become visible from D (after vertex adjustment),
thus removing the undercut, and vice versa.

To adjust the normal of a triangle ti which is inside such
a region above or below the parting line, we rotate its normal
ni around ni × D so that the angle between ni and D or
−D respectively has a prescribed value θ. We require that
θ ≤ δ, the angular tolerance used to classify the triangles.
Using a large value for θ will change the model too much,
as well as taking a long time to compute. The new normals
are then smoothed, following [24], to reduce the impact of
noise present in the original mesh, and to help blend the region
blend smoothly with the rest of the original mesh. We must
ensure that the sign of the z-component of the normal is not
changed by filtering, which we do as follows: let T ∗(ti) be
those neighbors of ti having the same sign of z-component.
The filtered normal of ti is computed as

n′i = n/|n| (3)

where
n =

∑
tj∈T ∗(ti)

nje(ni·nj)
2/2σ2

(4)

and 0 < σ < 1 controls the strength of filtering. The smaller
σ, the smoother the new normals. For a smooth mesh without
sharp features, σ = 0.4 is a good choice, whereas for a mesh
with sharp features, σ = 0.2 works better.

C. Ordered Vertex Updating

Having allocated new normals for triangles inside the under-
cut region, we now update the corresponding vertex positions
to be as compatible as possible with the new normals, by
optimizing an error measuring lack of perpendicularity of the
edges of each triangle to its normal.

In mesh filtering, triangles are usually updated in an ar-
bitrary order [23], but such this does not work well for our
problem. Instead, we sort the vertices to be updated in each
region. If the region touches the parting line, we find all
region triangles which are 1-ring neighbors of the the parting
line. The vertices of such triangles, except for vertices on the
parting line, are numbered sequentially first. We then proceed
to number vertices of their neighboring triangles inside the
region, again sequentially, and so on. If the region does not
meet the parting line, we simply number the vertices of all
triangles adjacent to the region boundary consecutively, and
then iteratively pass to their neighbors, and so on.

The vertex coordinates pi are updated using:

p′i = pi +
1

|T (vi)|
ni(ni ·

∑
tk∈T (vi)

n′k(n
′
k · (ck − pi))) (5)

which is slightly different from the version in [23]. Here ck
is the center of triangle tk, T (vi) is a half-ring of triangles
neighboring vi, and |T (vi)| is the number of the triangles. The
vertex is displaced along its normal to prevent vertex drift in
its tangent plane.

We update the vertices using the ordering in a forward and
backward direction on alternate iterations, as this provides

(a) (b)

(c) (d)

Fig. 10. Moai model: (a) the final parting line, in projection; (b) the exterior
profile, (c) all undercuts; (d) the modified model.

faster convergence. In the forward direction, the visited half-
ring triangles neighboring vi are used, and in the backward
direction, the unvisited half-ring triangles neighboring vi are
used. Updating is iterative until no undercut remains, or a
maximum number of iterations is reached.

D. Restarting

Although extending the undercut regions gives extra free-
dom to this mesh modification process, such freedom may
still not be enough—after several iterations, the vertices may
still not produce the desired normals, and hence may not
fully remove the undercut. In such cases, we restart, and
once again identify undercut regions to be modified, which
are usually much smaller than before. Generally this process
quickly removes undercut, although at times a few very small
areas of undercut may remain.

IX. EXPERIMENTAL RESULTS AND DISCUSSION

We have tested our algorithms with several models, and
give three typical examples to show the results obtained by,
and performance of, our approach.

The Moai model in Figure 1 contains only very short
degenerate paths, so the optimised parting line lies close to
the theoretically correct one. Note the smoothness of the
final parting line in Figure 1(e) compared to the candidate
paths shown in Figure 1(c). We have attempted to remove all
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TABLE I
PARAMETERS USED FOR EXPERIMENTS, AND ERRORS.

Model Size δ Area ε MaxErr AveErr θ
Moai 10 5◦ 0.15 0.2 0.141 0.017 3◦

Fish 130 8◦ 10 0.5 1.521 0.352 3◦

Alligator 100 5◦ 4 2 6.365 0.664 —

undercuts: both those caused by the parting line, i.e. the red
regions in Figure 10(c), and any original undercuts determined
by the parting direction, i.e. the gray regions in Figure 10(c).
Some of these undercuts overlap. The modified model is
shown in Figure 10(d); the red curve is the parting line. The
computation took about 8 minutes. A few very minor undercut
regions still remain at the bottom of the model (too small to be
seen in the Figure), which are parts of the original undercuts.

The Fish model in Figure 11 is symmetric about a plane
through the dorsal fin and tail. The parting direction is al-
most perpendicular to this plane, but tipped slightly towards
the viewer. Its triangle band has a very simple topological
structure, shown in Figure 11(b). However, it has an order of
magnitude more triangles than the Moai and Alligator models:
as can be seen in Table II, the times spent computing paths and
optimizing the chosen cycle are longer than for the two other
models. Path computation takes time O(nlogn), where n is
the number of triangles in the region containing the path [19].
For this model, we only removed the undercuts caused by the
parting line, i.e. the red regions in Figure 11(c). The original
undercuts, i.e. the gray regions between the two ventral fins,
can not be removed, and a side core is needed. The modified
model is shown in Figure 11(d); the red curve is the parting
line. Undercut removal took about 2 hours; there is scope
to significantly improve this time by use of more efficient
methods for undercut identification than used for our proof-
of-concept implementation.

The Alligator shown in Figure 12(a) has a very complex
triangle band, in part because it contains several occluded
regions. These occluded regions cause noticeable differences
between the exterior profile and the projection of the optimised
cycle. The computed parting line for this model is significantly
different from the theoretical one, causing large undercuts
which overlap with undercuts determined by the parting di-
rection. Our undercut removal method is not appropriate for
the modification of the such big undercuts.

The approximate size of the largest dimension of each
model, in arbitrary units, the parameters used, and the max-
imum and average deviation of the smoothed cycle from the
exterior profile are summarised in Table I. The maximum
error between the theoretical and computed parting line for
the alligator model exceeds ε because of the presence of
degenerate paths, where side cores are required. The maximum
error between the theoretical and computed parting lines for
the fish model also exceeds ε because some small visible
regions have been removed in computing the triangle band
(see Section IV).

Our experiments used a 2.61GHz AMD Athlon-64 FX-55
PC with 2GB RAM. Numbers of triangles in each model, as

TABLE II
TRIANGLE COUNTS AND COMPUTATION TIMES OF DIFFERENT PHASES.

Model Triangles Band Paths Cycle Optimize Undercut
Moai 20000 7s 29s 1s 81s 8 mins
Fish 436794 280s 390s 1s 305s 2 hours

Alligator 48758 37s 159s 1s 88s —

well as times taken to generate the triangle band, compute
the geometric candidate paths, choose the best cycle, and
optimise the parting line are given in Table II. The total
times taken for parting line generation are a few minutes, and
although undercut removal can take rather longer, we believe
the algorithm’s speed is acceptable for industrial use.
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