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1 Introduction

Sampling is a process that serves an important role in many fields of computer
science and mathematics. Many applications use sampling to facilitate the dis-
cretisation of a continuous function, so that it can be represented and processed
digitally. Alternatively, we often want to re-sample an existing discrete func-
tion, so that it may be stored in less memory, or is computationally cheaper to
process. The most important requisite of sampling is that it allows us to recon-
struct, or approximate, the original function as accurately as possible, given a
fixed number of samples, or, uses the fewest samples to achieve a desired accu-
racy. Many functions have a non-uniform rate of change, in which case we may
want to place more samples in regions where the function is rapidly changing,
and fewer samples in regions where the function is flatter. Thus, in general, we
may wish to prescribe a density on the function, and sample it according to
the desired density. Often, this density may be a differentiable property of the
function itself, such as curvature.

For a given number of samples, the relative amount of information present in
a discretised function is dependent on the quality of the sampling. This leads us
to the need to determine some measure of sampling quality. One way to do so is
to compare the value of an integral to the numerical approximation of the same
integral based on the samples, computed using a (quasi-)Monte Carlo method.
Discrepancy [1] considers this error in terms of the supremum of the difference
between the integral and the integral approximation, for finite subsets of the
unit interval in 1D, or the unit square in 2D. A sampling with a high degree of
equidistribution, with few holes, has a low discrepancy.



2 Fast Low-discrepancy Sampling of Parametric Surfaces and Surfaces

Another method to assess the quality of a sample distribution, popular for
example in the computer graphics literature, is spectral analysis. Spectral anal-
ysis allows us to assess, on average in a distribution, the regularity of positions
of samples in the local neighbourhood of a selected sample; it also allows us to
assess anisotropy in the distribution. A Fourier transform is applied to the sam-
pling, and its properties analysed in the frequency domain. Cook et al [2] argue
that a blue noise distribution is desirable: a noisy spectrum with a deficiency
of low-frequency energy, without any concentrated spikes. A blue noise sample
distribution does not add its own structure to the function that it samples, yet
the spacing between samples must be regular enough that for a given number of
samples, the function is not undersampled in places. If samples were arranged on
a grid, the distance between neighbours would clearly be highly regular, but this
may lead to aliasing problems [3], and grid sampling requires that the number
of samples be a perfect square. Samples not lying on a grid avoid the aliasing
problem to varying degrees. Spectral analysis does not consider the equidistri-
bution of the sampling, but is a good measure of how the spacing of the samples
impacts the visual quality of the distribution, which is important in computer
graphics.

In this paper, we look at the problem of sampling a 2-dimensional manifold
embedded in 3-dimensional space, and applications. The problem of sampling
such a manifold is that inevitably, it either must be performed within the em-
bedding space, or in some parameterisation domain [4], a subset of R2. Sampling
in the parameterisation domain is typically much more computationally efficient,
but has the complication of typically requiring cutting or segmentation of any
manifold with topology more complex than a disk. Additionally, care must be
taken to avoid sampling artifacts at the boundaries between segments when re-
assembling the manifold. Sampling in the embedding space is computationally
more expensive, but requires no cutting, parameterisation, or reassembly of the
manifold, regardless of topology.

2D manifold sampling, especially the sampling of polygonal meshes, is an
active area of research for both geometric processing and computer graphics.
In the former, sampling is commonly used when performing decimation, such as
the downsampling of large meshes captured using 3D scanning equipment. In the
latter, sampling is often used to improve the output of anti-aliasing, physically-
based rendering, and filtering algorithms. Four main approaches to sampling can
be found in the literature, with a variety of construction methods for each; we
now briefly describe them.

Random sampling is the random, or pseudo-random, distribution of samples.
The distribution is one which, in the limit, results in a uniform probability
distribution; i.e. there is an equal likelihood for a single sample point being placed
at any position. However, uniformity only refers to the probability of each point
individually, and hence, the points in a uniform, random, point distribution are
uncorrelated. As a result, there is nothing to prevent random distributions from
containing gaps without samples, and clumps of samples.
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Quasi-random sequences provide a deterministic sampling approach with a
high degree of equidistribution. The point locations in such sequences are cor-
related; the probability of a point being at some position is dependent on its
position in the sequence. Correlation means that the quality of the whole point
set is considered, rather than at each individual point, resulting in more even
coverage of a domain, with fewer gaps and clumps. Quasi-random samples are
highly structured, and are usually generated according to a lattice [1], or using
variations of the van der Corput sequence [5, 6]. Often used as a replacement for
the classic Monte Carlo method, they have been shown to reduce the number
of samples needed to compute an integral to within a prescribed error bound,
and maintain a consistently higher level of confidence in computations based
upon them [7], i.e. errors are smaller and estimates of error are more likely to
be accurate. The majority of quasi-random sequences provide optimal scaling of
discrepancy with respect to the number of samples generated [1], and are thus
often referred to as low-discrepancy sequences.

Poisson disk sample distributions are constructed based on a fixed mini-
mum distance between neighbouring points. This structure can be achieved via
a process of sampling and rejection [8, 9], or through optimisation methods that
iteratively adjust sample positions [10, 11]. Optimisation methods approximate a
centroidal Voronoi tessellation (CVT) [12], converging to a hexagonal grid away
from boundaries. Optimisation is thus typically terminated before convergence,
in order to avoid the presence of too much regularity. Rejection methods have
limited regularity through the use of random sampling. However, both methods
can result in a very regular local spacing of samples, and overall higher discrep-
ancy than that produced by competing methods. Spectral analysis can show
clear mid-frequency peaks, corresponding to a very strong regularity of local
neighbourhood distances. A further drawback to Poisson disk methods is that if
the sampling density function varies greatly, with adjacent very dense and very
sparse regions, the computation of distances between neighbouring points, either
for rejection of points, or for the computation of forces in optimisation, becomes
very expensive.

Stratified sampling involves the subdivision of a domain into homogeneous
subsets, or strata, within each of which a sample is placed. The position of the
sample within a stratum may be random, or may be weighted toward the cen-
tre of the stratum. The approach was first introduced as a method of variance
reduction for random sampling [1]. This degree of randomness, limited to the
local stratum of a sample, avoids regularities in the point distribution prevalent
in Poisson disk methods. [13] shows that for distributed ray-tracing, sampling
patterns with very low discrepancy defined with respect to rectangular subsets
(see [1]) may still cause artifacts. Stratified sampling, however, does not exhibit
this problem, the output being rotationally invariant under discrepancy mea-
sures. Stratified sampling has the further benefit of demonstrating a discrepancy
much lower than Poisson disk sampling.

We will later overview a series of related algorithms for stratified sampling of
2-manifolds embedded in 3D Euclidean space. The methods build upon the ideas
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described in [14], and involve the sampling of space-filling curves, mapped to, or
generated from, 2-manifolds. The space-filling curves act as a 1D stratification
of the manifold, and allow us to replace two dimensional sampling by a one-
dimensional sampling process in which we step along the curve, sampling a
point when an integral on the curve reaches a certain threshold. This process is
referred to as generalised stratified surface sampling.

We also later illustrate uses of generalised stratified surface sampling, with
two applications: shape retrieval (see Section 5.2) and stroke-based rendering
(see Section 5.1).

2 Discrepancy

In this section, we consider the discrepancy of a sample distribution, and how
it may be computed in practice. We start by noting that, as the discrepancy
D(x) of a set P of point samples decreases, so does the approximation error
for a Monte Carlo approximation M(f, P ) of a multivariate integral I(f) of a
function f [7]. Thus, the study of discrepancy of P is important, as it provides
a quantitative measure for the quality of a set of samples P . Clearly is it is
desirable to be able to generate sample sets with low discrepancy, and these
have been employed in many different fields, such as computer graphics [15] and
surface representation [16].

We can think of the discrepancy of a set as indicating the difference between
the actual value of some integrand, and its approximation. More exactly [17]:

|I(f)−M(f, P )| ≤ D(P )var(f)

where var(f) is the variance of the integrand, defined as:

var(f) =

∫
[0,1)s

f(x) (I(f)−M(f, P ))2dλ

and λ is the Lebesgue measure of a set. By lowering the discrepancy D(P ) of P ,
the approximation error, |I(f)−M(f, P )|, is reduced. The lower the discrepancy,
the lower the difference between the continuous and approximated integrals.

In fact, various alternative definitions of discrepancy are used to measure
the discrepancy of a sample set; the star discrepancy, D∗, is probably the most
common [1]. Let B(w) with w ∈ [0, 1)s be an axis-aligned s-dimensional box
with one corner at the origin, and P be the sample distribution in [0, 1]s. The
star discrepancy is the supremum of the magnitude of the difference between the
cumulative distribution function and the volume:

D∗(P ) = sup
w∈[0,1]s

∣∣∣∣ |P ∩ B(w)|
|P |

− vol(B(w))

∣∣∣∣ .
Thus, D∗(P ) is the supremum of the difference between the exact volume of an
arbitrary subset and an approximation to it estimated by the number of samples
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Fig. 1. Discrepancy subset test shapes: rectangle, triangle and quarter circle, with a
corner at the origin.

inside it relative to the total number of samples, taken over all subsets which are
axis aligned boxes in [0, 1)s with one corner at the origin. A low-discrepancy point
set has a low discrepancy for a fixed |P |. So we can define D∗N as the optimally
achievable D∗(P ) for all P with |P | = N , i.e. D∗N = infP⊂[0,1)s;|P |=N D∗(P ).
To assess a point distribution method, we are interested in the behaviour of the
functionD∗(P ) with respect to increasing |P |, as this determines the convergence
properties of integral approximation.

For a uniform random sequence, as N increases, the discrepancy has scal-
ing behaviour O(N−1/2) [1], independently of the dimension s. Any sampling
with better asymptotic behaviour will improve the convergence behaviour of the
approximation. Achieving low discrepancy is difficult, but improving on a ran-
dom distribution is desirable, and possible. The term low discrepancy is used to
indicate an improved, rather than optimal, behaviour.

As noted earlier, one approach to reducing the variance of a sampling is to
use stratified sampling. If an axis-aligned box B(w) is used to compute discrep-
ancy, as indicated above, some quasi-random sequences asymptotically perform
better than stratified sampling, both in theory and experimentally [18]. How-
ever, Dobkin et al [13] show that the asymptotic discrepancy behaviour of these
methods is far worse when discrepancy is measured using other test shapes, such
as non-axis-aligned rectangles; this observation is also confirmed in practice by
Quinn et al [18] (see Fig 1). For applications such as supersampling in computer
graphics, or mesh sampling in geometric processing, non-axis aligned, arbitrar-
ily shaped regions are the norm, and in such cases quasi-random sequences are
therefore less useful. Quinn et al show that stratified sampling produces better
asymptotic behaviour when discrepancy is measured using test shapes defined
by arbitrary edges in [0, 1]2. Stratified sampling also exhibits considerably better
behaviour than Poisson disk sampling methods [19].

Later, we will use the concept of discrepancy as an experimental tool to
analyse and compare various sampling methods. Whilst the testing domain may
vary, including planar regions, parametric surfaces, and triangle meshes, we use
a consistent general approach to numerical computation of discrepancy. For a
specified domain and sampling shape, the generalised star discrepancy of a sam-
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pling method is approximated by computing the maximum error for a finite
number of test shapes, for sample sets of size N = 2l and N = 2l + 2l−1 for
l = 1, . . . , 20. This approach results in 40 sets with between 2 and 1572864 sam-
ples. Test shapes are generated until the estimated discrepancy for that value of
N becomes stable. Results are averaged over three runs, and graphs are plotted
as log(discrepancy) against log(N). A least squares line is fitted to the data for
gradient computation, which lets us understand how discrepancy scales with size
of sample point set. A steeper negative gradient implies accuracy improves more
quickly with increasing number of samples, and hence the sampling approach
has higher quality.

3 Spectral Analysis

In this section, we consider spectral analysis of sample distributions. Whilst dis-
crepancy gives us a good measure of the uniformity of coverage of a distribution,
it does not quantify the possible problems caused by any uniform structuring of
a distribution, leading to visible quasi-regular patterns. It is generally accepted
that for applications such as surface sampling for visualisation [20] and dither-
ing [21], it is undesirable for a sample distribution to have a structure of its
own, interfering with the existing structure or pattern of the object being ren-
dered [21]. Distributions can be constructed, however, that are neither random
(which could have large clumps or holes between points), nor quasi-structured,
such as a jittering, or Poisson disc sampling.

Types of noise can be classified by their power spectrum, which gives the
response at each frequency present. White noise for instance has a uniform power
spectrum distribution, while blue noise, defined in the field of visual computing,
avoids spikes, and has small low-frequency components. Constancy of medium
to high frequencies means that there is little global density variation, and the
absence of low-frequencies implies a regular local spacing between samples. Thus,
a sample distribution with blue noise characteristics has a high visual quality.
Regular grid sampling presents large, regular peaks due to aliasing. Random
sampling results in white noise, which generally is undesirable if an image is
being filtered or dithered [21].

An algorithm described in [21] can be used to compute the radially aver-
aged power spectrum density (RAPSD) of a sample distribution. It builds upon
Bartlett’s approach [22] of computing the Fourier transform of a distribution,
and averaging periodograms, which represent the spectral density of a signal.
Averaging is done to reduce the variance of the plot, and is performed by com-
puting the Fourier transform of subsets of the sample distribution, squaring their
magnitudes, and dividing the total by the sample size. Ulichney [21] builds upon
this in order to highlight the degree of radial symmetry in a distribution, by
segmenting the distribution into concentric uniform-width rings, which are then
averaged in a similar manner to Bartlett’s original approach. An assumption is
made that the distribution has a constant density, to justify the averaging.
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Recent work on differential domain analysis [23], building upon [24, 8], al-
lows for the detailed analysis of samplings with varying density and anisotropy,
including those on mesh surfaces. Fourier spectral analysis relies on sample loca-
tions, and the authors demonstrate that this transform can be reformulated into
an equivalent form that depends only on differentials of samples. This allows the
method to work in different domains and with varying densities of samples. As
the method is no longer reliant on distances, results are consistent between all
surfaces, densities and anisotropy.

4 Surface Sampling

In this section, we first describe the core sampling approach utilised in this pa-
per. We then summarise three previous algorithms that have been published that
employ this approach; additional detail can be found in the respective papers.
We start with a core description which covers the basic steps of the approach,
which are common to the three algorithms.

Input. A 2-manifold M is provided as input, represented either as a parametric
surface, or as a triangle mesh. Additionally, the user may supply a density func-
tion, φ which controls the local density of the sampling. For isotropic sampling,
this may be expressed analytically, or given as a discrete, per-element density.
For anisotropic sampling, the density is described as a tensor field defined on
M , which again may be supplied in analytic form, or per element.

Output. The output of the sampling process is a set of sample points p =
{p0, · · · , pN−1} that evenly covers the manifold M with a local density controlled
by φ. In the anisotropic case, the typical spacing between points p depends on
the direction across M , and is determined by the local tensor field.

Curve Generation. An approximation to a space-filling curve C is generated
on the manifold. Space-filling curves are a continuous, surjective, self-intersecting
mapping between [0, 1] and [0, 1]d. Geometric interpretations of these curves ap-
proximate the limit curves, and are usually self-avoiding; they pass no further
than a certain maximum distance from every point of [0, 1]d. Using space-filling
curves here has the benefit of reducing a complex 2-manifold sampling problem
to the more simple problem of sampling a 1D interval. An important property
of the curve is that it should be spatially coherent, that is, points close on the
curve should be close on the manifold (the reverse does not have to hold). Co-
herence avoids large changes in density at nearby points on the curve, assuming
the density function varies smoothly; this avoids artifacts when sampling. If the
manifold is parameterised in the unit square, a curve may be generated in the
parameterisation domain and mapped onto the manifold. This is an efficient way
to generate a curve on the manifold, but can lead to problems if the manifold
has a high genus or uneven parametrisation, which we discuss further later. The
output of curve generation is a piecewise linear curve C = {v0, · · · , vL−1} ∈ R3
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lying (approximately) on the manifold M .

Computing Surface Properties. Having generated a curve C on the mani-
fold M , differential properties in the tangent plane of each curve vertex vi are
then computed. A local area γi, representing the area around the vertex, and
a local density ϕi are then computed at vi, the latter sampling the global den-
sity function φ. As noted, the local curvature at vi is a common choice for the
density function, but any other function over the manifold may also be used. ϕ
is constant if a uniform distribution of samples is required. In the anisotropic
case, the density is derived from the tensor field, which, in the anisotropic case,
is aligned to the input tensor field.

Sampling. The per-vertex properties computed for the curve C lying on M
are used to control sampling of C. Using a generated 1D sequence, samples are
placed along C using a monotone non-decreasing cumulative density function
ωC which approximates the local area and surface density integral:

ωC(vi) =
l−1∑
i=0

γiϕi ≈
∫
M

γφCdA

where l is the number of vertices of C. A set of N 1D samples is generated:
q = {q0, · · · , qN − 1} ∈ [0, 1]; they may be stratified, or generated determin-
istically within the interval [0, 1]. For each qj , the algorithm then steps along
the curve, and when ωC(vi) becomes larger than qjωC(vl−1) (accounting for the
total accumulated density), we place a sample point pj at vi. The output of this
process is a set of points p = {p0, · · · , pN−1} lying on M .

We now examine in more detail how the above scheme can be made to work
in three particular cases: isotropic sampling of parametric surfaces, isotropic
sampling of triangle meshes, and anisotropic sampling of triangle meshes.

4.1 Parametric surfaces

In this section, we summarise the algorithm introduced in [18] for isotropic sam-
pling of parametric surfaces, based on the general approach described above. The
user supplies (i) a parametric surface f : [0, 1]2 → R3 in a manifold Mp, with the
unit square as a normalised parameter domain, (ii) a non-negative bounded den-
sity function φ : S → R+

0 , and (iii) a desired number of points N . The algorithm
generates a set of points P equidistributed on Mp with respect to φ.

Mapping the parameter domain to a 2-manifold in 3D causes a non-uniform
stretching of the domain. To counteract this, we generate an adaptive approx-
imation to the space-filling curve, that places more vertices in areas of higher
stretch, ensuring that the curve lies within a maximum distance of any point
on the surface (see Fig. 2). An adaptive space-filling curve is generated using a
tree-structure defined according to the type of space-filling curve, which facili-
tates further partitioning of the parameter domain [0, 1]2. Adaption takes into



Fast Low-discrepancy Sampling of Parametric Surfaces and Meshes 9

Fig. 2. Space-filling curve approximation on a surface with extreme parametric stretch.
Left: uniform curve. Middle: adaptive curve. Right: re-parameterised curve.

account both areal stretch caused by parameterisation, and the desired sampling
density, and is controlled by computing γiϕi for the surface patch covered by a
subset of the curve, determining whether partitioning should continue.

Surface area and curvature are computed using the first and second funda-
mental forms, which are straightforward to derive from f . The first fundamental
form defines metric properties on a surface such as angles and distances, whilst
the second fundamental form combined with the first fundamental form allows
us to compute curvature properties. If a parametric function f causes an extreme
stretching of the domain, rather than adaptively generating the curve to a very
deep level, a better alternative may be to reparameterise the surface with less
parametric stretching (see Fig 2).

Various space-filling curves have been investigated for use in this algorithm,
including the Hilbert, Peano and alternative-construction Peano curves [25, 3]
(see Fig 3). The Hilbert cure was found to give best results for stratified sampling,
in terms of spatial coherence and discrepancy [3].

We have also experimentally investigated the discrepancy of the resulting
point sets. Computing the discrepancy on arbitrary surfaces is non-trivial, and
we show results of sampling in the plane, and on the surface of a sphere. For the
planar case, triangular, circular and rectangular sampling subset shapes were
used (Fig 1), while on the sphere, spherical triangles were used. Results show
that this method produces much lower discrepancy than random sampling, for
samples produced on the plane, for all subset shapes. For the circular subset
shape, the method performed as well as the best low-discrepancy sequences. For
the triangular subset shape, the method outperformed other low-discrepancy
methods. On the surface of a sphere, our method performed as well as known
low-discrepancy methods specific to sampling the sphere. Fig 4 demonstrates
these results, showing how discrepancy scales with the number of samples. Fur-
ther, results are demonstrated for the discrepancy of this method where samples
are generated with respect to a density function on the plane (Fig 5). For this
approach, rather than simply computing the volume of the sample subset, we in-
tegrate over the function defined in the domain. The described method performed
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Fig. 3. Left to right: the first two iterations of the Hilbert curve, the Peano curve, and
the variant Peano curve.
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Fig. 4. Discrepancy. Left: on a plane, measured using quarter-circles, middle: on a
parametric sphere, measured using spherical triangles, right: on various meshes.

consistently with other measures. Fig 6 shows visual results of this method for
the eight surface.

4.2 Triangle meshes

In this section, we summarise the algorithm in [26] for isotropic sampling of
triangle meshes. The user supplies a triangle mesh Mt. This algorithm computes
topological cuts on the mesh, to ensure that the cut mesh Mc is homeomorphic
to a disk, and can be simply parameterised in the plane. The algorithm then
finds a conformal parameterisation f : Mc ∈ [0, 1]2 →Muv ∈ R3 for the mesh. A
space-filling curve is then generated in [0, 1]2, and mapped to the original mesh
Mt. It is then sampled, to produce a set of equidistributed points P on the mesh
with respect to the density function φ (see Fig 7).
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Fig. 5. Discrepancy in the plane, assessed using rectangular subsets, for various density
functions: x2y2, cos 3x sin 3y cosxy + 1, and cos 10xy + 1.

Fig. 6. Eight surface. Left to right: parametrisation, adaptive Hilbert curve, uniform
sampling density, sampling density proportional to mean curvature.

(a) (c) (d) (e)

(b)

(f) (g)

Fig. 7. Sampling a squirrel mesh: (a) original mesh, (b) parameterisation; (c) adaptive
Hilbert curve in 2D, (d) adaptive Hilbert curve mapped to 3D, (e) uniform sampling,
(f), (g) surfel primitive rendering with differing numbers of samples.

The input mesh may be of arbitrary topology, and thus the algorithm first
cuts the mesh to a topological disk by seeking local, rather than global, extrem-
ities [27]. Methods have been described [28] that compute globally optimal cuts
allowing a mesh to be parameterised with minimal areal and angular stretch.
However, as our method can correct (at least to some degree) for area stretch
caused by the parameterisation (see Fig 8), a less optimal, but less computa-
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Fig. 8. Left: uniform, and right: adaptive Hilbert Curve.

tionally expensive, approach to cutting can be used. A fast, conformal, parame-
terisation f is applied to the cut mesh Mc in order to reduce angular stretch in
the parameterised mesh.

A Hilbert curve in [0, 1]2 is then generated, which is mapped onto Mt. A
GPU-based rasterisation method is used to compute the containing triangle for
each vertex of the curve, and its barycentric coordinates are computed within
that triangle. Using the associated triangle in Mt, the point is then converted
back to Euclidean coordinates on the mesh surface. Local area and curvature for
each curve vertex on Mt are computed using the methods described by Meyer
et al [29].

To examine sampling quality, the discrepancy of samples on the mesh, and the
Hausdorff distance between remeshed surfaces, are considered [30]. The Haus-
dorff distance is used to measure the approximation error between a surface and
a resampling of the same surface. When computing discrepancy, test shapes are
chosen to be random contiguous subsets of the mesh Mt. A seed vertex is cho-
sen, and the test shape grown in rings to a random size. Results show similar
discrepancy scaling benefits for the above approach over random sampling as
were achieved in planar cases as described in Section 4.1 (again see Fig 4).

To assess sample quality using the Hausdorff distance, a mesh is computed
from the sample points, and the accuracy of this remeshing, with respect to the
original mesh, is computed; this is done for various degrees of decimation of the
input meshes (see Fig 10). The Metro tool [30] is used to compute the Haus-
dorff distance between two meshes MI and MII , using points on the respective
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Fig. 9. Chinese lion mesh. Left to right: splatted uniformly, splatted with respect to
mean curvature, and rendered.

surfaces, pI and pII :

Davg(MI ,MII) =

∫
MI

inf
pII∈MII

d(pI , pII) dA

area(MI)
(1)

Computing the distance in both directions, and taking the maximum, gives us
the symmetric Hausdorff distance. Results show that using our samples to pro-
duce a new mesh with 25% of the original triangles, yields a 0.02% normalised
distance between the original mesh and the remeshed surface. Such accurate
reproduction is competitive with leading remeshing methods [31], yet the mesh
vertices produced by this approach also have a low discrepancy. Visual results
are shown for splatting (see Fig 9) and remeshing (see Fig 10).

An application of the method is also described in [26], taking advantage of the
very high speed with which resampling can be performed, to provide real-time
fine-grain level of detail and view dependent rendering. In this case, rendering
emphasises silhouette edges by controlling the number of samples, as verified by
the views shown in Fig 11; the picture the viewer would see is on the left.

4.3 Anisotropic sampling of triangle meshes

In this section, we summarise the algorithm in [19] for anisotropic mesh sampling.
The user supplies a triangle mesh MA with an approximation of a smooth two
dimensional tensor field, defined as a positive-definite, symmetric, rank 2 tensor
Ti defined at each mesh vertex. The tensor is used to create an anisotropic
space-filling curve, which is aligned with the field (rather than oriented to follow
the arbitrary direction of the parametrisation as in previous approaches; see
Fig 12). When sampled, this oriented curve produces an anisotropic sampling of
MA, where the spacing between neighbouring samples varies with direction.



14 Fast Low-discrepancy Sampling of Parametric Surfaces and Surfaces

Fig. 10. Igea mesh. Left to right: remeshed uniformly, remeshed with respect to mean
curvature, and rendered.

Fig. 11. Silhouette enhancement on a sphere, visualised from different angles.

Fig. 12. Surface Hilbert curve. Left: aligned to parameterisation of geometry, which
has an arbitrary relationship to the specified tensor field. Right: aligned to tensor field.

Control of the anisotropy can be useful to improve the accuracy of the ap-
proximation to the function by further increasing the efficiency of placement of a
fixed number of samples. Anisotropic control allows samples to be placed closely
in one direction, and farther apart in the orthogonal direction. This can be use-
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Fig. 13. Left to right: planar Hilbert curve segments, Hilbert curve segments mapped
to the surface, Hilbert curve chains shown as different line styles, sampling.

ful, for example, when the principal curvatures of a manifold differ greatly, when
sampling according to curvature, or for the placement of elongated elements, such
as brush strokes.

Using a modified random walk method [32], MA is segmented according to
the tensor field. The aim of segmentation is to provide regions of the mesh
which can locally be parameterised with a parametrisation whose orientation
is in agreement with the local tensor field. Seed triangles are chosen on the
mesh, and triangles are assigned to a seed based on the probability of a random
walk from that seed arriving at that triangle. Probabilities of walking from one
triangle to a neighbour are computed based on the similarity between the local
tensor and the direction of walking; walking parallel to the primary eigenvector
of the tensor is cheaper than walking orthogonally to it. Within each segment,
singularities in the tensor field are then found per-triangle using a linear solver;
the singularities are then connected by paths following the field. The mesh is
then further segmented along these paths, as the tensor field cannot be aligned
as desired in a segment containing a parametric singularity. Each segment is
then parameterised anisotropically by minimisation of an energy function [33].
The solution is found using a sparse linear system, aligning and stretching the
segment according to the local tensor field T . Each parameterised segment is
then checked for alignment of parametrisation and tensor field with respect to
an accuracy threshold, and to ensure that it does not self-intersect. If it fails to
meet these requirements, it is further subdivided into smaller segments.

An individual isotropic Hilbert curve C is generated and clipped to each
parameterised segment (see Fig 13). As the segment is already stretched with
respect to the anisotropy, when this curve is mapped to the original mesh MA,
the anisotropy of T is induced onto C, resulting in an anisotropic set of curves
on the mesh MA. These curves are then sampled individually (see Fig 14).

The quality of the resulting sampling has been demonstrated in three ways.
Firstly, several quantitative experiments were performed to ensure that neither
the parameterisation nor the segmentation introduce artefacts into the output.
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b.a. c.

e.d. f.

Fig. 14. Steps in our anisotropic sampling algorithm: (a) input tensor control field,
(b) mesh segmentation, (c) parameterisation of one segment, (d) Hilbert curve on that
segment (visualised at reduced depth), (e) point samples for that segment, (f) point
samples as splats.

Secondly, anisotropic discrepancy experiments and a spectral analysis were per-
formed (see Fig 15) using anisotropic sampling of a planar surface. They confirm
that the sampling quality is consistent with that obtained in the isotropic case,
and that the sampling has the expected anisotropy. When computing anisotropic
discrepancy, the area of the sample rectangles is computed with respect to the
metric defined by a constant tensor T in [0, 1]2. Thirdly, various tests were per-
formed using differential domain analysis [23]. This method allows for spectral
analysis of arbitrary mesh sample distributions, according to both a density
function and anisotropy. Results show that our method correctly represents the
input density functions and anisotropy, whilst maintaining the frequency re-
sponse of stratified sampling methods. Fig 16 shows a differential domain analy-
sis for isotropic mesh sampling; further results concerning anisotropic sampling
are given in [19]. Fig 17 shows a splatting of the Dragon model, with and without
anisotropy. Less white space is visible when it is anisotropically sampled as the
elements better tessellate.
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Fig. 15. Discrepancy of sample distributions generated with respect to an isotropic
and anisotropic uniform tensor field.

5 Applications

In this section, we describe two applications of low discrepancy sampling, a stroke
based rendering algorithm, and a demonstration of the potential use of sampling
methods in shape retrieval.

5.1 Stroke Based Rendering

As one application of our methodology, we demonstrate a non-photorealistic
rendering method that uses anisotropic samples generated by the algorithm de-
scribed in Section 4.3. Various types of brush have been recorded by an artist, and
manually scanned as graphics RGBA textures. Brushes include watercolours,
crayons, pencils, inks, acrylics, pastels, and oils. For each brush type, 10 differ-
ent stroke lengths are recorded, with 5 variations of each length. Samples are
rendered as brush strokes in a fragment shader, the length of the stroke chosen
according to the eigenvalue of the primary eigenvector in the tensor defined at
the sample point. The stroke is then aligned to the primary eigenvector.

Fig. 18 shows a knot mesh, sampled with 30,000 points, rendered using water-
colour paints, crayons, and pencils. Fig. 19 shows an Eight mesh, sampled with
20,000 points, rendered using inks, acrylic paints, and pastels. Fig. 20 shows
a Venus mesh, sampled with 35,000 points, rendered using multiple ink tones,
multiple pencil tones, and oil paints. Strokes are intentionally not clipped to the
silhouette, in order to give a hand-created feel. The sampling method results
in an equidistributed sampling, with local non-determinism, resulting in a well
distributed set of strokes that look naturally placed.
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Fig. 16. Differential domain analysis. Isotropic, density-controlled sampling of 2D
Gaussian blob (2,500 samples in [0, 2]2), Balzer function (10,000 samples in [0, 4]2),
and uniform and mean curvature-controlled surface sampling of the Stanford Bunny
(3,000 samples). Samples, spectrum, radial mean power, and anisotropy measure (con-
stant value indicates an isotropic result). Results averaged over multiple runs.
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Fig. 17. Dragon model. Left: splatted isotropically, right: splatted anisotropically.

Fig. 18. Knot mesh, 30k samples, rendered in left: watercolour, middle: crayon, right:
pencil.

Fig. 19. Eight mesh, 20k samples, rendered in left: ink, middle: acrylic, right: pastel.

5.2 Shape Retrieval

Sampling methods are also of use in the problem of shape retrieval. Whilst any
of the sampling algorithms could be used, we use the algorithm in Section 4.3
as it handles complex shape topologies better. A popular approach to shape
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Fig. 20. Venus mesh, 35k samples, rendered in left: multi-toned ink, middle: multi-
toned pencil, right: oil.

retrieval is to compute a set of feature descriptors for the shape, and then match
these features to find similar shapes [34]. One particular approach is to compute
distances between every pair of vertices in a mesh representing the shape, or some
other set of sample points on the shape’s surface, and to then make a histogram
of those distances, which provides a summary of the shape [35]. Shapes can then
be compared by computing a distance between their histograms.

Here, we do not attempt to provide a competitive algorithm for matching
histograms, but, simply demonstrate the application of our sampling method to
improve results over random sampling. We do this not directly in a shape re-
trieval application, but instead, simply match a model to a down-sampled version
of itself, and investigate the error in terms of the distance between histograms.
Obviously, shape matching can be performed more quickly if the same shape can
be represented to within a given tolerance with fewer samples, or for the same
number of samples, more robust matching can be performed.

For an input mesh, we compute the histogram of all pairwise distances be-
tween vertices; distances may be Euclidean or geodesic. We use a fixed number
of 32 bins for all examples. The histogram of vertex distances is used as the
ground truth for the mesh. We also sample the same mesh using our algorithm,
and with a random sampling algorithm which takes into account variation in
triangle areas. Samples generated for both methods are then snapped to the
nearest vertex on the mesh. Otherwise, the corner-cutting nature of a linear ap-
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Fig. 21. Test meshes. Left to right: Stanford Bunny, Max Plank, Fandisk, Hand.

Table 1. Accuracy of histogram matching, for four test objects, comparing low-
discrepancy sampling to random sampling. Relative errors as percentages, and maxi-
mum errors.

Histogram

Bunny Max Plank Fandisk Hand

% max % max % max % max

100 LD 1.997 0.0086 4.481 0.0159 1.463 0.0080 1.974 0.0073
points random 2.250 0.0090 5.485 0.0177 2.260 0.0117 2.543 0.0087

500 LD 1.068 0.0053 4.024 0.0133 0.629 0.0033 1.316 0.0042
points random 1.492 0.0063 4.390 0.0142 1.121 0.0036 1.436 0.0057

proximation to a surface as represented by a mesh would lead to a systematic
error when comparing ground-truth distances measured between vertices. Also,
distances between points which could lie in triangle interiors (distances would
be underestimated in convex regions, and overestimated in concave regions).

A histogram is then constructed from the distances between samples, using
the same bin widths as those used for the ground truth histogram. The ground
truth and query histograms are then normalised to allow for differing numbers
of points, and compared. We first compute the relative error between the his-
tograms:

∑
|Bi|/

∑
Gi, where |Bi| denotes the difference in heights of the ith

bins from the ground truth and sampled histograms, and Gi is the height of the
ith ground truth histogram bin. We also compute the maximum error, simply
the maximum value of |Bi| for any bin.

Fig. 21 shows the test models used: the Stanford bunny, Max Plank, Fandisk
and Hand meshes. The Euclidean distance was used for most tests; geodesic
distances gave broadly similar results. Figs 22–25 show how percentage and
maximum error vary for the test models, for an increasing number of samples.
For each sample size, 5 tests were run, and the average taken. Our sampling
method converges to a baseline relative error faster and with less variability than
random sampling, in all cases. The reduced variability means we can have more
confidence that matches produced with low discrepancy samples are correct.
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Fig. 22. Euclidean distance histogram matching for the Stanford Bunny mesh. Left:
percentage error, right: maximum error.
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Fig. 23. Euclidean distance histogram matching for the Max Plank mesh. Left: per-
centage error, right: maximum error.

Both methods converge to a similar baseline relative error: the main advantage
for low discrepancy sampling comes at lower numbers of samples. For maximum
error, the behaviour is similar, with our method converging to the baseline error
faster, and again with less variance than the random sampling method. Table 1
shows actual histograms for the four models, along with the percentage error and
maximum errors for 100 and 500 point samples. In each case, the low discrepancy
samples provide results closer to the ground truth.

Fig 26 shows relative and maximum errors for the Hand model, this time
using geodesic distances, for an increasing number of samples. The geodesic
metric is more useful for comparing models with many extremities, or complex
topology. In this case, low discrepancy sampling again improves the results for
relative and maximum errors, and indeed for the relative error, our method
converges to a lower baseline error, although this does not occur for the maximum
error.
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Fig. 24. Euclidean distance histogram matching for the Fandisk mesh. Left: percentage
error, right: maximum error.
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Fig. 25. Euclidean distance histogram matching for the Hand mesh. Left: percentage
error, right: maximum error.

We believe the cause for convergence to a baseline non-zero error in the ex-
amples shown is due to the approach used to snap samples to the nearest vertex,
which does not consider whether some other sample has already been snapped
to the same vertex. In fact, if many more samples are used, both approaches do
converge to zero error; for low discrepancy samples, this happens as the number
of samples approaches the number of mesh vertices, whilst for random samples
significantly more samples than mesh vertices are needed. Further work is needed
to systematically analyse and eliminate this baseline error. One approach would
be to leave sample points in triangle interiors rather than snapping them to a
mesh point, but projecting them inwards or outwards by an amount depending
on local surface curvature, to account for the mesh being a linear approxima-
tion to an underlying curved surface. While mesh vertices are assumed to lie on
that surface, points inside mesh triangles generally do not, and constructing a
histogram from them is certain to be biased if they are not corrected, as noted
earlier
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Fig. 26. Geodesic distance histogram matching for the hand mesh. Left: percentage
error, right: maximum error.

It is also worth noting that the whilst the averaging of 5 test runs makes the
random sampling results easier to interpret, it does hide the huge degree of vari-
ability in the results it produces—the low discrepancy sampling produces much
more repeatable results with little variability. These results further confirm the
property already noted that generalised stratified sampling provides a method
of variance reduction (see Section 1), and demonstrate a practical improvement
over random sampling.

6 Conclusions

This paper has summarised our earlier work on sampling parametric surfaces
and meshes, the latter both isotropically and anisotropically, showing how low
discrepancy samples can be generated by means of space-filling curves. These
reduce the sampling problem from a difficult 2D problem to a much simpler 1D
problem. We have also discussed two sample applications, rendering, and shape
matching, showing how such low discrepancy sampling can potentially be useful
in such problems.

References

1. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.
SIAM (1992)

2. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graphics 5(1)
(1986) 51–72

3. Quinn, J.: Low-discrepancy Point Sampling of 2D Manifolds for Visual Computing.
PhD thesis, Cardiff University (2009)

4. Floater, M.S.: Parametrization and smooth approximation of surface triangula-
tions. Computer Aided Geometric Design 14(4) (1997) 231–250

5. Hammersley, J.M.: Monte Carlo methods for solving multivariable problems. Ann.
New York Acad. Sci. 86 (1960) 844–874



Fast Low-discrepancy Sampling of Parametric Surfaces and Meshes 25

6. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numerical Math. 2(2) (1960) 84–90

7. Cipra, B.: What’s Happening in the Mathematical Sciences (1995–1996). Volume 3.
Amer. Math. Soc., Providence, RI (1996)

8. Bowers, J., Wang, R., Wei, L.Y., Maletz, D.: Parallel poisson disk sampling with
spectrum analysis on surfaces. ACM Trans. Graph. 29 (December 2010) 166:1–
166:10

9. Cline, D., Jeschke, S., White, K., Razdan, A., Wonka, P.: Dart throwing on sur-
faces. Comp. Graph. Forum 28(4) (2009) 1217–1226

10. Du, Q., Emelianenko, M.: Acceleration schemes for computing centroidal Voronoi
tessellations. Numerical Linear Algebra with Applications 13(2–3) (2006) 173–192
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