
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 1

Generalized Anisotropic Stratified Surface Sampling
J. A. Quinn, F. C. Langbein, Y.-K. Lai and R. R. Martin

Abstract—We introduce a novel stratified sampling technique for mesh surfaces that gives the user control over sampling
density and anisotropy via a tensor field. Our approach is based on sampling space-filling curves mapped onto mesh segments
via parametrizations aligned with the tensor field. After a short pre-processing step, samples can be generated in real-time.
Along with visual examples, we provide rigorous spectral analysis and differential domain analysis of our sampling. The sample
distributions are of high quality: they fulfil the blue noise criterion, so have minimal artifacts due to regularity of sampling patterns,
and they accurately represent isotropic and anisotropic densities on the plane and on mesh surfaces. They also have low
discrepancy, ensuring that the surface is evenly covered.

Index Terms—sampling, stratified, anisotropy, low-discrepancy, blue noise, spectrum analysis, non-photorealistic rendering.

F

1 INTRODUCTION

Sampling is used widely in computer graphics and geometry
processing, for purposes such as rendering, remeshing and mass
property evaluation. Many sampling approaches are available
and the requirements vary considerably between applications.
Generally, a manifold sampling should represent the manifold to
a given accuracy with as few points as possible, but must also
meet application specific requirements. For most visual computing
applications, sampling should avoid artifacts: a regular sampling
structure can interact with the sampled shape in an undesirable
way. One measure to quantify this effect is the blue noise crite-
rion: the radially-averaged power spectrum density of a sampling
should have small low-frequency components and no high-energy
spikes [1]. A blue noise distribution aims to avoid degradation
caused by too unstructured a discrete sample distribution, and
yet avoids too much global structure. Another effective measure
of sampling quality is discrepancy [2]: unlike random samples,
sample distributions with low-discrepancy optimally bound the
maximal size of holes between samples. While a regular grid is
undesirable, so is being too far from one.

Non-photorealistic rendering (NPR) research [3], [4] notes that
patterns and regularities are quickly detected by humans, and
unless the application specifically benefits from it (e.g. by pro-
viding improved clarity in medical imaging), they should be
avoided. Slightly random placement of points typically has greater
aesthetic appeal: in a review of NPR, Hertzmann [5] noted that
sampling for NPR requires even surface coverage with some
randomness to introduce an artistic non-determinism. Whilst the
highly popular Poisson disk methods avoid a very regular grid
structure [6], such methods approximate a centroidal Voronoi
tesselation (CVT) [7], which converges to a hexagonal grid. Such
algorithms are normally terminated before convergence, and dart
throwing algorithms limit this structure by using random sam-
ple initialisation. However, remnants of the hexagonal structure
are still present in the output, resulting in large mid-frequency
peaks when considering the radially averaged power spectrum, or
concentric rings in the mean periodogram [8]. Furthermore, the
discrepancy from such methods is known to be worse than for
other semi-structured methods, such as stratified sampling [9]. To

• All are with the School of Computer Science & Informatics, Cardiff
University, UK.
E-mail: {j.a.quinn, f.c.langbein, yukun.lai, ralph}@cs.cf.ac.uk

overcome the limitations of Poisson disk methods such as [10],
we propose a manifold sampling method that has less visible local
structure and a more uniform global coverage of the domain.
These properties are better suited for sampling in both NPR
and Monte Carlo applications. Figure 1 compares (approximately)
uniform stippling produced by (a)–(c) artists, (d) our method, and
(e) Poisson disk sampling. The outputs of our method and Poisson
disk sampling are quite different. The majority of stipplings
produced by active artists, and the founding neo-impressionists,
use patterns much more like those produced by our method (of
course other artists may prefer patterns like those produced by
Poisson disk sampling). Hence, the output from our method has
artistic utility.

Control of both density and anisotropy are important when sam-
pling. Local control of density enables efficient use of a given
budget of samples: e.g. more points may be placed in areas with
greater detail or higher curvature, and fewer in flatter regions.
Figure 2 demonstrates that the regular structure of the Poisson
disk method is still apparent in density-controlled sampling.
Anisotropic, directional control of the spacing between samples
can further benefit this sampling budget. It allows samples to be
placed closely in one direction, and at a greater distance in the
orthogonal direction, which may be useful, e.g., when the principal
curvatures of a shape differ widely. Anisotropic sampling also
allows for the use of anisotropic sampling primitives; e.g. long
brush strokes as used in NPR may be efficiently placed so that
overlap is minimized. Figure 3 shows two brush-stroked samplings
generated using our method. An arbitrary, uniform tensor field
was defined with an 8:1 aspect ratio; uniform isotropic sampling
and anisotropic sampling with respect to the tensor field were
generated, each with 500 points, and both point sets rendered
with a randomized set of brush strokes. Brush strokes vary in
size, but maintain the same aspect ratio of 8:1. Considerable
stroke overlap and many large holes are visible in the rendering
of the isotropic sampling. The anisotropic sampling demonstrates
a better coverage with the same number of points due to a better
stroke arrangement, whilst still not appearing overly structured. Li
et al [10] also note that, to achieve an accurate isotropic sampling
that is not subtly warped due to parameterization of the manifold,
anisotropic control of samples is required.

Our novel approach is based on the space-filling curve sampling
method of Quinn et al [11], generalized to produce anisotropic,
density controlled, low-discrepancy blue noise samples on meshes.
The basis of our method is to segment the mesh according to a
user defined two-tensor field, and sample each segment according

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 2

(a) (b) (c) (d) (e)

Fig. 1: Examples of (approximately) uniform stippling produced by: (a)–(c) artists (Q. Rumbley, J. Visscher, C. Fulkerson, respectively),
(d) our method, and (e) Poisson disk sampling, using about 2500 points.

Fig. 2: 1, 500 samples with density δ = cos(x) + 1 for: (left)
Poisson disk sampling, (right) our method.

Fig. 3: 500 acrylic brush-stroked samples: (left) isotropic place-
ment, (right) anisotropic placement.

to the local anisotropy. The solution to this problem requires
significant additional steps compared to previous work:

• an extension to a random-walk-based method to segment a
mesh according to variation of the prescribed tensor field;

• a robust method for detecting singularities on a mesh, and
using them to control the segmentation;

• an extension of a well-known parameterization method to
consider local stretch according to the tensor field;

• generation of space-filling curves accurately aligned to a
user-defined tensor field on a mesh, which are locally adapted
to handle boundaries between curves;

• an extended, anisotropic, definition of star discrepancy.

We refer to the output of our method as generalized anisotropic
stratified surface sampling, following the terminology of gen-
eralized stratified sampling, introduced by Steigleder and Mc-
Cool [12]. We believe this to be the first work addressing the
generation of anisotropic stratified samples on meshes. With little
preprocessing, millions of points can be sampled on large meshes
in real-time, with density and anisotropy prescribed by a tensor
field. The resulting sampling has a lower discrepancy than Poisson
disk sampling (independent of the test shape used to measure

b.a.

c.

e.

d.

f.

Fig. 4: Steps in our anisotropic sampling algorithm: (a) input
tensor control field, (b) mesh segmentation, (c) parameterization
of one segment, (d) Hilbert curve on that segment (shown at re-
duced depth for visualization), (e) point samples for that segment,
(f) point samples as splats.

the discrepancy), and fulfils the blue noise criterion, using both
conventional spectral analysis, and methods described in [8].
We provide comprehensive experimental evidence suggesting that
although our process is approximate, problems do not arise due
to imprecise alignment of curves, segmentation, or quantization.

2 RELATED WORK

For many point-based rendering techniques, samples should be
roughly equidistant (taking into account local sampling density),
with spacing depending on the direction across the manifold, using
a locally defined metric. Such equidistance from neighbors results
in a uniform degree of overlap of sampling primitives. If points

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 3

are not regularly spaced, a higher density is required to ensure
complete coverage. However, as distances become more regular,
the distribution becomes more and more grid-like, causing sam-
pling artifacts. Low-discrepancy distributions have been employed
to avoid such artifacts, but the sampling pattern also matters:
Dobkin et al [9] demonstrate that in distributed ray-tracing,
sampling patterns with very low discrepancy defined in terms of
rectangular holes (see Niederreiter [2]) may still produce artifacts.
Stratified sampling, however, does not exhibit this problem. Whilst
demonstrating a higher discrepancy when measured with axis-
aligned rectangles, it has a more consistent and lower discrepancy
when measured using alternative shapes [13].

Poisson disk sampling is widespread in computer graphics. Many
methods can be used to produce Poisson disk distributions [6],
[10], [14], [15], often employing a relaxation approach to dis-
tribute sample points. The results converge to a CVT, which
fulfils the blue noise criterion [6], but are expensive to compute,
and result in a rather too regular structure. Cline et al [16]
give another method for Poisson disk sampling, converting a
surface into fragments and sampling points over each fragment
using a dart throwing approach. Inexact intersection tests for
ellipsoids limit sample placement precision on triangle meshes.
Unfortunately, computation times for ellipsoid placement, with
or without a geodesic surface measurement, are not stated, nor
is any analysis given of the quality of the ellipsoid distribution
produced. Balzer et al [17] describe a variation of Lloyd’s method
that stops before a CVT is reached, such that each sample has the
same area with respect to a density function. While this method
demonstrates a superior termination criterion for Lloyd’s method
in the plane, contrary to its description, it still produces regular
artifacts, especially when small regions are visualized. Bowers et
al [18] describe a parallelized method for generating Poisson disk
samples on surfaces using dart throwing. However, Lagae et al [6]
note that dart throwing methods may require further expensive
relaxation steps for large radii.

Other sampling methods, such as [19], use error metrics to pro-
duce simplified point distributions from high-resolution scanned
point sets, avoiding the need to triangulate the surface. Errors
introduced by simplification processes can easily be avoided.
However, this sampling method is linked to the geometry of the
surface, and using an arbitrary density function with this method is
difficult. It is also unclear how to extend this method to anisotropic
sampling. [20] describes a method to perform stratified surface
sampling which relies on voxelization of the model, and places
samples on the surface within each voxel. Sampling with a grid
that is not regularly spaced with respect to the surface geometry
may result in an unevenly sampled model. The method also does
not allow for anisotropic control of the sample distribution.

Considerable work exists on point set rendering using artistic
methods such as dithering, stippling and strokes. Methods such
as [21] use a texture-based approach for rendering artistic pat-
terns like hatching, employing mip-mapping to handle changes
in viewing distance. While this approach is fast, it lacks the
ability to control the density of the rendered elements. Other
methods, such as [22], [23], [24], [25], use high quality point
sampling methods and rendering ‘brushes’ to achieve artistic
styles, but these methods cannot operate at interactive rates. Work
by Umenhoffer et al [26] considers real-time hatching using low-
discrepancy samples. However, as the method uses Halton points,
the sampling is highly-structured and does not fulfil the blue
noise criterion [27]; furthermore, their method does not support

anisotropic point spacing.

Work such as [6], [28], [24] has started to use easily repeat-
able methods for assessing the quality of sample distributions.
Frequency analysis and Voronoi cell traversals are useful to
assess the anisotropy of uniform functions in the plane. More
recently, the assessment of these properties for arbitrary density
functions, anisotropy, and on surfaces has become a focus. Li et
al [10] suggest warping a sampled function to a uniform, isotropic
representation to assess quality. Bowers et al [18] describe a
spectral analysis method to assess sampling quality on meshes
using spectral mesh basis functions; it is limited to assessing
a relatively small number of samples. More recently, Wei and
Wang [8] describe a method that builds upon the assessment
techniques of [10] and [18] to analyze the quality of samples
in non-uniform, anisotropic and non-Euclidean domains. Their
approach reformulates standard Fourier analysis methods to rely
on differentials of positions rather than positions directly. This
method provides a significant tool for analysis of complex sam-
plings, and is straightforward to apply to most sampling methods.

Unlike Poisson disk sampling, our approach leads to a stratified
sampling. This makes it easier to ensure sufficient randomness
in the distribution, which is important in applications such as
artistic rendering [5]. Further advantages are that our approach is
much faster, as intersection tests and relaxation are not required,
while the discrepancy of stratified samples is also lower. After a
short precomputation, our method can generate high-quality, low-
discrepancy, anisotropic samples in real-time.

3 ALGORITHM OVERVIEW

Our approach produces an anisotropic sampling of a manifold in
which the spacing between neighboring samples varies depending
on the direction. The results of each main step are illustrated in
Fig. 4. The input is a triangle mesh with a smooth two dimensional
tensor field defined on it: a positive-definite, symmetric, rank 2
tensor is given at each mesh vertex. This controls the distances
between samples in two orthogonal directions, determining where
samples should be placed. The tensor’s eigenvalues give sample
density in the direction of the corresponding eigenvector; the
overall local sampling density is given by the square-root of the
product of the eigenvalues. This tensor can thus be understood as
an alternative metric on the surface.

In practice, supplying a tensor field is not easy for users. Ap-
proaches like those in [29], [30], [31], [32], [33] may be used
to generate a smooth tensor field from simpler inputs. Often,
anisotropic sampling is used to produce samples according to
curvature. In this case, the principal curvatures and directions of
the mesh themselves provide the tensor, and may be computed
using, e.g., the method in [34] (principal curvatures computed
from a mesh may be quite noisy, so it may be desirable to
smooth them before use). Singularity control is widely available
in the field design literature, and whilst careful positioning can
lead to a reduced complexity in the application of our method,
we leave this, along with definition of the field, to the user.
Whilst smoothing the field before use can reduce the number of
singularities in the mesh [35], it may have little effect.

The degree of quantization of the underlying continuous tensor
field depends entirely on the quality of the input mesh. Much of
the behavior of a complex tensor field may be lost if the mesh is
too coarse. Whilst no specific quality of mesh or field is required

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 4

Fig. 5: Surface Hilbert curve, left: aligned to (arbitrary) param-
eterization of geometry, right: aligned to tensor field.

for our method to function, the user should consider the accuracy
of both the tensor field and input triangle mesh in order to achieve
the desired results from the anisotropic sampling.

Previous space-filling curve based surface sampling algo-
rithms [13] have generated a space-filling curve in the parameter
domain and mapped it onto the surface. The standard basis of
the parameter domain is mapped onto an arbitrary orientation on
the surface, as determined by the parameterization. In general,
this is not aligned with the eigenvectors of the tensor, so the
anisotropy cannot be readily controlled. Quinn et al [27] also
show that the structure of the space-filling curve has an effect
on the placement of points, and therefore on the structure of the
sampling. Here, in order to produce a set of point samples with a
desired anisotropy, we carefully generate a curve in the parameter
domain that, when mapped onto the manifold, is aligned and
stretched locally according to the tensor field (see Fig. 5).

An anisotropic space-filling curve could be generated that fills a
space defined by an anisotropic metric in the parameter domain,
ensuring that it is aligned to the eigenvectors of the tensor field
after anisotropic stretching maps it to the surface. This would
require a complicated curve construction to compensate for the
distortion of the parametrization and to align it to the tensor field.
Instead, we adopt an alternative approach. We parameterize the
surface according to a tensor field, such that we can treat the
parameter domain as having an isotropic metric and therefore can
generate a straightforward space-filling curve. The anisotropy of
the tensor field is then induced onto the space-filling curve by
the parameterization. However, it is not feasible to do this for the
whole manifold in one piece. Thus, we first segment the mesh
into pieces each having locally similar anisotropy (see Section 4),
ensuring that each segment can be parameterized appropriately.
Segmentation also simplifies topological issues, as most segments
naturally have a disc topology. Whilst this is not guaranteed, very
few segments must be cut to give discs at a later stage.

Singularities in the tensor field must be handled with care (see
Section 4.1); in general they cannot be avoided (except for genus 1
closed surfaces). At a singularity the eigenvalues coincide and the
eigenvectors are no longer uniquely defined. Thus, if a singularity
lies within a segment, we cannot cover it with a parameterization
which is well aligned with the tensor field everywhere in that
segment. We avoid this problem by forcing singularities to lie
on segment boundaries. We first detect all singularities, then
connect them using a minimal set of mesh cuts that follow the
field lines of the tensor field. Segments containing singularities
are then further divided using these cuts as boundaries. Triangles
containing singularities are temporarily removed from the mesh,
to be dealt with individually later.

Segments are further cut, if needed, to have the topology of a disc;
cuts follow tensor field lines on the mesh (see Section 4.2) so that

segments can be easily parameterized in the plane. Each segment
is then parameterized such that the eigenvectors of the tensors in
the segment lie along the parametric directions (see Section 5).
During this process, each mesh segment is also stretched locally
according to the eigenvalues of the tensors. The field lines in the
parameterized segment are therefore quite close to parallel. If we
cannot align the tensor eigenvectors sufficiently accurately, or a
parameterized segment intersects itself, the segment is subdivided
into smaller segments, and the process repeated, until a valid
parameterization is produced. This process converges quickly,
generally resulting in large segments, as long as the field is
relatively smooth with respect to the resolution of the mesh.

We next generate a space-filling curve in the parameter domain
(see Section 6.1), adaptively proceeding to different depths of
recursion to take into account local variation in segment sizes on
the mesh. The space-filling curve is then mapped onto the mesh
in R3 using a barycentric mapping and fast point-within-triangle
lookups. To provide a mapping between points in the parameter
domain and the mesh triangles, raster images of the parameterized
segments are created, in which each triangle is colored uniquely,
to enable fast lookups.

During mapping, densities are computed as the square-root of the
determinant of the tensor. (If the tensor describes the curvature,
this is the usual surface area element). These densities are then
integrated along the curve, reducing the problem to 1D sampling
of the curve. The algorithm steps along each vertex of the curve
and whenever the accumulated density reaches a certain value,
derived from the tensor field, a point is sampled. The output of
this process is an anisotropic, low-discrepancy point sampling on
the input mesh. (If an isotropic tensor is input, the eigenvectors are
not uniquely defined anywhere, and this process fails. However,
previous methods can be used to handle this simpler case [11],
for a whole mesh, or for any segment with isotropic tensors).

4 MESH SEGMENTATION

We now describe the tensor field controlled mesh segmentation.
We aim to produce a set of disc topology segments, each of
which can be parameterized over a subset of [0, 1]2. We wish
to parameterize each segment such that it aligns to the tensor
field; the direction of the tensors mapped to the parameter plane
should not vary too greatly over the segment (otherwise, the
parameterization will fail: producing a parameterization poorly
aligned to the tensor field, or a parameterization containing an
invalid self-intersecting parameter mesh). Thus, we first segment
the input mesh into topologically simple pieces, each of which
has tensors with similar eigenvectors. Note that a segment smaller
than the accuracy achievable by the prescribed number of sample
points need not be subdivided further.

Work by Delmarcelle and Hesselink [36] has a similar goal, for
use in the plane. They first find singularities, and segment the
surrounding area into hyperbolic and parabolic tensor regions.
Whilst this method is simple, changes of direction of the field
in hyperbolic regions requires further segmentation. It is also
unclear how well it would generalize to manifold segmentation.
An alternative approach would be to treat single triangles as
segments, and construct charts of such segments that do not
contain singularities [37]. However, this will often result in too
few samples per segment, increasing sampling complexity.

Instead, to segment the input triangle mesh, we modify Lai et
al’s [38] random walk method. This fast method works well for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 5

a wide range of objects with limited need for parameter tuning.
Our modification lies in the distance measure used, and results in
a mesh segmented according to the anisotropy of the tensor field.
Initially, a set of seed triangles is automatically chosen, starting
with a random first seed triangle. The algorithm then steps out
in rings around this triangle. At each step, the average of the
first eigenvectors (with largest eigenvalue) of the tensors at the
triangle vertices is computed. If the angle between this vector
and the vector in the previous triangle is larger than a parameter
β, a seed is placed in that triangle. When a new seed is placed,
the process is repeated, and the algorithm then steps out in rings
around this new seed; expansion may not cross existing paths.
We set β to π/4, although this may be adjusted by the user.
Decreasing the value of β results in a more dense set of seeds.

For each non-seed triangle fi, probabilities pi,1, pi,2 and pi,3 are
associated with each of its three edges ei,1, ei,2 and ei,3, summing
to 1 for the triangle. This probability corresponds to the likelihood
that a random walk will cross the edge into a neighboring triangle.
A function d(fi, fk) must be defined, measuring the difference
between two neighboring triangles fi and fk. Lai et al [38] use
the dihedral angle to define this measure. However, here, we
describe the difference in terms of the tensor field rather than mesh
geometry. For each triangle fi we compute the barycentric linear
interpolant t′i, which corresponds to the tensor at the barycenter
of fi. The difference between two triangles fi, fk is then given
by the angle between the eigenvectors with the largest eigenvalue
mi, mk for this pair of interpolated tensors:

d(fi, fk) = cos−1

(
mi ·mk

‖mi‖‖mk‖

)
.

When comparing eigenvectors, we use an approximate notion
of parallelism from the surrounding Euclidean space, to reduce
computational complexity. If error is introduced, it will simply
result in further segmentation during parameterization. To handle
variations in the tensor field, we normalize d by its average d̄ over
all mesh edges,

d∗(fi, fk) = d(fi, fk)/d̄.

This measures how fast the tensor field is turning: the greater
the turn, the less likely both triangles should be included in the
same segment. For each non-seed triangle fi, the un-normalized
probability of a random walk, originating at fi, reaching each seed
triangle sl, is then computed, based on the probability of going
from a triangle fi to one of its neighbors fk:

pi,k = |ei,k| exp (−d∗(fi, fk)/σ) ,

where |ei,k| is the length of the edge shared by fi and fk and
σ a parameter used to control how the difference between two
triangles maps to variations in probability. Setting σ = 1, as
in [38], also works well for tensor differences. Each non-seed
triangle is assigned to the seed for which it has the highest
probability of being reached first; this can be formulated efficiently
as a sparse linear system. The result splits the original mesh into
a set of contiguous segments. Fig. 4 shows segmentation results
for the Stanford Bunny, using a user-defined tensor field.

4.1 Singularities

The topology of a tensor field is partially defined by its singu-
larities. On a discrete mesh, we may locally treat the field at
singularities as isotropic. As we linearly interpolate the tensor field
inside each triangle from vertex values, a triangle may contain at

most one singularity. If a singularity exists in a mesh segment,
the parameterization method will fail, as alignment of the tensors
is not possible. Therefore, we find the singularities in the tensor
field, and further segment the mesh to ensure that singularities lie
on segment boundaries rather than in segment interiors.

4.1.1 Singularity Detection

To locate singularities, we follow [39]. Rather than performing
the computation in the parameter domain, we instead compute
it directly on the mesh for each triangle fi individually. For
each tensor ti,k at each vertex vk of fi, we take the eigenvector
with the largest eigenvalue, mi,k and project it into the plane of
the triangle: m

′
i,k = mi,k − (Ni · (mi,kNi)). The eigenvector

is sufficient to represent the tensor so long as we have the
normal Ni of the triangle fi, and can therefore orient the surface.
Following [36], [35], these projected vectors are then represented
in barycentric coordinates. We set the linear combination of
the eigenvectors to zero in barycentric coordinates (a, b, c) [39].
If a solution to this linear system exists with a, b, c ≥ 0, a
singularity lies within triangle fi. An acceptable discontinuity
error is introduced by projection of the eigenvectors into the
tangent plane of the triangle. A possible resulting false singularity
would simply cause slight over-segmentation, whereas a missed
singularity would cause a problem in the parameterization, simply
resulting in further segmentation later in the algorithm. Auer and
Hotz [40] investigate virtual singularities over smooth transitions
between discrete tensors. However, in this work, we simply require
the singularities to find an appropriate segmentation, and thus it
is actually beneficial to ignore any that do not pose a problem.

4.1.2 Further Segmentation

Connecting the singularities to each other and to existing seg-
mentation boundaries appropriately allows us to produce a new
segmentation in which all singularities lie on a segment boundary.
We connect singularities on a per-segment basis, rather than
considering all pairs of singularities, which greatly simplifies the
problem while still providing results that meet our needs. When
connecting singularities from a mesh segment, we use paths lying
along the tensor field lines, which helps to ensure that the new
segments have minimal directional variation.

To be able to find paths that are aligned as closely as possible
with the field lines, for an edge ei,j connecting vertices vi and
vj , we compute a distance Di,j with respect to the field: Di,j is
the angle between the eigenvectors with the largest eigenvalues
of the tensors ti and tj at vertices vi, vj , mi, mj , scaled by the
edge length |ei,j | (in the Euclidean metric). We then compute the
shortest path between each pair of singularities within a segment
using Dijkstra’s algorithm, with these distances. It is possible that
two singularities within a segment are not connected by tensor
lines, but without their evaluation, this is non-trivial to compute. If
only one singularity lies within a segment, we instead compute the
shortest path from the singularity to the boundary of the segment,
and return this path. For two or more singularities, we construct
a graph from the set of all pairwise shortest paths, in which the
shortest paths between singularities are the edges of the graph.
We then compute and return the minimum spanning tree for this
graph (Fig. 6). The use of Di,j causes the resulting paths to follow
the field lines between singularities as closely as possible, and the
tensors to vary without undue rotation along the path.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 6

Fig. 6: Cuts between tensor field singularities (shown in red)
in a segment. Left: one singularity, middle: two singularities,
right: three or more singularities. Grey triangles indicate new
seed points for further segmentation.

The path connecting the singularities within the mesh segment is
then traversed, and only singularities lying at leaf nodes in the
path are added to a set G of new seeds for this segment (see
Fig. 6). We subdivide the mesh segment by performing a new
segmentation. During this segmentation only triangles adjacent to
singularities in G are used as seeds (shown in grey in the figure),
with the restriction that random walks may not cross any edge in
the path (also see Fig. 4). This strategy ensures that the region
surrounding a singularity triangle is always segmented further, as
the tensor field changes quickly around such triangles.

Due to the discrete nature of the tensor field, triangles containing
a singularity can be treated as if they have an isotropic density,
and thus do not have to be parameterized in alignment with the
tensor field. Instead, they are flagged in the mesh. As explained
in Section 6, triangles containing singularities are parameterized
uniformly in the plane and are sampled isotropically according to
the local density when generating output point samples.

4.2 Topological Consistency

In order to ensure that each segment can be correctly parame-
terized in the unit square, we compute its topology via its Euler
characteristic, and cut it to give it a disc topology if it does not
already have one. To preserve alignment, the cut should follow
the tensor field lines. Thus, we again use edge lengths according
to the metric as above: setting edge distances along boundaries to
0, we compute the shortest path between each pair of segment
boundaries using Dijkstra’s algorithm. We again compute the
minimum spanning tree of the graph constructed from these paths,
and cut the segment along this minimum spanning tree; this may
result in multiple segments.

5 MESH SEGMENT PARAMETERIZATION

For each segment, we compute a parameterization aligned with
and locally stretched according to the tensor field. This allows us
to sample the parameter domain of each segment with a standard
space-filling curve, which, when mapped to the surface S, inherits
the anisotropy of the field. We perform parameterization and
segmentation using an iterative process, carrying out further seg-
mentation as needed to ensure the validity of each parameterized
segment, whilst avoiding over-segmentation. A valid mesh seg-
ment (i) does not intersect itself when parameterized, and (ii) has
parameterized angular variance of the field below a user-defined
threshold. Keeping the total number of segments low limits the
number of boundaries between segments, in turn reducing the
computation required to ensure consistent sampling.

5.1 Parameterization

We perform discrete parameterization of each segment, adapting
Ray et al’s [37] method, similar to the solution described by
Auer et al. [41], to enforce a parameter spacing based upon the
tensor field. The result is a low-distortion, field-aligned mesh
parameterization, obtained by formulating the problem in terms
of minimizing an energy function. This can be quickly solved via
a sparse linear system. As we perform the parameterization, we
introduce as scaling factors the square-root of the eigenvalues,√
λi,1 and

√
λi,2, of the tensor t′i averaged over the three

vertices of each triangle fi. Thus, with the parameters ∇u and
∇v (see [42]) and the orthonormal eigenvectors mi,1 and mi,2

of t′i, the discrete energy functional to be minimized is

F ∗ =
∑

i∈T

(∥∥∥∇u−√λi,1mi,1

∥∥∥2 +
∥∥∥∇v −√λi,2mi,2

∥∥∥2)Ai,

where i ∈ T indexes triangles of the segment, and Ai denotes the
area of triangle i.

5.2 Segment Validity

The output of the above step is a segment parameterized in the
2D plane, approximately aligned and locally stretched according
to the tensor field. However, it may not be valid. We first
test if it contains self-intersections using fast triangle overlap
detection [43]. If none are found, we check the alignment of the
field. We first map the tensor field into the parameter domain.
The eigenvector of the tensor with the largest eigenvalue, mi,1,
is projected into the tangent space of the underlying triangle
(or closest triangle, if on the boundary of a segment). It is
parameterized with respect to the edge vectors of the triangle.
At each vertex, we compute the angle between the projected mi,1

and the basis vector in the parameter domain with which it should
be aligned. In order to measure how well the field in the segment
is aligned, we compute the average of the angle distribution. If
the average is less than a threshold γ, we declare the segment to
be valid. If the angular deviation is too high, the surface sampling
will be poorly aligned with the tensor field. In practice, a value
of γ = π/16 is used, ensuring adequate accuracy, whilst avoiding
too many segments.

If a segment is invalid, two new seeds are generated in order
to split the segment into two using random-walk segmentation
(see Section 4). The seed positions are determined heuristically
using a simple method. One tensor is chosen arbitrarily, and the
angle between its eigenvector mi,1 and the eigenvector mj,1 of
every other tensor in the segment is computed. The tensor ta
with the largest angular difference is kept. The angle between
the eigenvector of ta and every other tensor is then computed
pairwise, and the tensor tb with the largest angular difference is
kept. The locations of ta and tb are used as seeds.

6 MESH SAMPLING

Having obtained suitable parameterized mesh segments, we gener-
ate a space-filling curve for each segment S with its parameterized
equivalent Sp. Sp is then uniformly scaled to fit within the
unit square. A rasterization of Sp is generated to accelerate
containment checks for space-filling curve generation; any curve
outside Sp is discarded. The rasterized mesh is also used for fast
point-within-triangle lookups when mapping the curve within Sp

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 7

to S. The pixel size of the rasterization is set smaller than the
minimum triangle size in Sp, to avoid discretization errors.

Space-filling curves provide a continuous mapping from the unit
interval onto a higher dimensional domain, in this case the unit
square. We use a space-filling curve to reduce a complex sampling
problem on a 2D surface in 3D to the simpler problem of sampling
a 1D interval. The Hilbert curve is simple to construct and pro-
vides good spatial coherence; it produces better samples than other
space-filling curves [27]. A first order approximation of the Hilbert
curve can be constructed by dividing [0, 1]2 into four congruent
squares, with the curve following a self-avoiding path through
the center of each square. Each higher order approximation is
constructed by splitting each existing square into four, repeating
the same process, and permuting the path through the new squares
to maintain a contiguous curve, resulting in 22r subsets, where r
is the approximation order.

6.1 Space-Filling Curve Generation

The Hilbert curve should densely fill the area of the rasterization
that contains the mesh segment, but have lower density in the
remaining area of the rasterization, which is later discarded. To
avoid gaps between points near segment boundaries, the curve
should also be denser near the boundary of the mesh segment. We
thus create an adaptive Hilbert curve, using a quad tree algorithm
following Quinn et al. [13], [11]. When generating the curve, we
determine if each quad’s area contains part of the mesh, and if
this part of the mesh is near the boundary. To do so efficiently,
and to prevent gaps appearing near the boundary, we first generate
a Hilbert curve to an initial approximation order r ∈ Z. As the
actual size of a segment S may vary considerably, r is computed
per-segment using a step function of the area of S. Using a fast
OpenGL fragment shader, the rasterized mesh in [0, 1]2 is dilated
by d1/2rMe pixels, where M represents the number of pixels
along one axis of the square rasterization. This dilation is large
enough to ensure that at least one vertex from any quad in the
initial Hilbert curve that intersects the boundary of the mesh must
lie within the dilated area.

We adaptively generate a discrete Hilbert curve in [0, 1]2, resulting
in a set of vertices hl. Locally, for a density δ =

√
λi,1λi,2

where λi,1 and λi,2 are the eigenvalues of the tensor ti, the
number of curve vertices required is a constant ω times the ratio∫
U
dA/

∫
S
dA, where dA is the area element according to the

tensor field (dA = δ du∧dv), for every subset U of S. In practice,
ω ≥ 10 provides a sufficient density of curve vertices with
respect to the density δ. In order to calculate how many Hilbert
curve vertices hl are required locally, using the bijective mapping
between triangles in Sp and S, we cannot simply increase the
depth of the Hilbert curve in proportion to the area of each
triangle in S (a small triangle may map to a large triangle).
Hence, first we define the number of point samples needed in
a given surface triangle fi in S as Nfi =

∫
fi
dA/

∫
S
dA. We

require ωNfi Hilbert vertices inside a surface triangle. Given the
initially constructed Hilbert curve to approximation order r, we
approximate the required number of point samples NQ that should
be contained within a quad Q of the Hilbert curve at a given level:
NQ = Nfi/(area(pi)/ area(Q)), where pi is the pre-image of the
triangle fi in the parameter mesh Sp and the area is computed
with respect to the tensor field metric. We therefore require at
least ωNQ Hilbert curve vertices within a quad Q. Quads with
vertices lying within the dilated boundary are further iteratively

refined twice to increase the density near the boundary and avoid
gaps between neighboring segments. Hilbert curve vertices that lie
outside the rasterized mesh are then discarded (see Fig. 7, left).

Fig. 7: Left, planar Hilbert curve segments, middle left, surface
Hilbert curve segments, middle right, Hilbert curve chains, shown
as different line styles, right, sampling.

Having generated the Hilbert curve, we must map it to the surface.
Let Sp = {pi : i = 1, . . . , n} be the parameterized mesh for
surface mesh segment S = {fi : i = 1, . . . , n}, where pi is
a triangle in R2 and fi a triangle in R3. The bijective mapping
g : Sp ↔ S is used to map the curve from R2 to R3. Therefore,
g : pi ↔ fi. Thus, the function to map a Hilbert vertex from
Sp to S simply becomes g(hl) = Hl for hl ∈ pi, Hl ∈ fi. In
order to compute this mapping between the parameterized mesh
Sp and the surface mesh S, we convert (u, v) coordinates of the
vertex hl in Sp to local barycentric coordinates within a triangle
pi. Now, pi maps directly to a single surface triangle fi due to
the bijective mapping between the sets of triangles, so we can
use the same barycentric coordinates in fi for Hl. These are
then converted into (x, y, z) coordinates on S, giving the final
vertex position. The triangle pi containing a Hilbert vertex hl is
found by performing a lookup in the rasterization of the mesh
segment, which returns a uniquely colored triangle from which
the triangle can be determined using a hash table. The output
from this algorithm is a set of independent Hilbert curves in R3,
densely covering the input mesh (see Fig. 7, middle left).

6.2 Sampling

We next sample points along each independent Hilbert curve.
In order to produce a consistent sampling on the surface, we
must maintain a smooth change in density along the curve.
Therefore, the distance between neighboring Hilbert curve vertices
on the surface should be small compared to the rate of density
change. Trying to combine the set of Hilbert curves into a single
contiguous curve may result in a complex routing problem in order
to maintain a smooth density change, and in general may not be
solvable. If t/N < 1/3, where t is the number of segments,
each curve is sampled individually. If not, then segments are
linked together into chains, reducing possible quantization error
(see Section 7.3). A seed segment is chosen at random (weighted
toward the boundary) and, using a greedy algorithm, the smallest-
area neighboring segment is appended to the current segment.
This occurs until no further neighboring segments exist, resulting
in a chain of pairwise-adjacent segments. A new seed segment is
then selected and similarly grown, until the process cannot link
any more segments. Only adjacent curves may be connected, as
otherwise large changes in density may occur, resulting in poten-
tially erroneous sample placement. The output of this algorithm
is several chains of pairwise-adjacent segments (and possibly
some individual segments). The curves within these segments are
connected, forming fewer, longer curves (see Fig. 7, middle right).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 8

We then compute the number of samples that must be placed along
each chain of Hilbert curves. If the global number of required
samples is N for the input mesh G, the number of points NS

required for a segment S is:

NS =

⌊
N

(∫
S

dA/

∫
G

dA

)
+ ε

⌋
;

ε is the accumulated remainder for each calculation of NS .

Surface samples are generated by placing points along the Hilbert
curve chains using 1D point distributions to produce a low-
discrepancy sampling. To do so, we approximate the surface
integral

∫
S
dA with a discrete (at each Hl) cumulative surface

sampling density Wl, and sample points according to this density.
The discrete density ϕk at a Hilbert vertex Hk is bilinearly inter-
polated from the densities δ at the vertices, where δ comes from
the tensor field (see Section 6.1). A cumulative density function
is then computed for each Hilbert curve vertex: Wl =

∑l
k=1 ϕk.

A set of 1D stratified samples {qk : k = 1, . . . , N} in [0, 1]
is then generated: the elements of an evenly spaced sample set
are moved a uniform random amount up to half the distance
towards the next or previous sample. We then step along the curve,
and whenever the cumulative density Wl becomes larger than the
threshold described by the 1D sequence qk (multiplied by WL to
account for the total density), we sample a point pk at a vertex of
the surface Hilbert curve chain. As the Hilbert curves are locally
stretched according to the anisotropy of the tensor field, the output
of this process is a density controlled, anisotropic, distribution of
stratified points lying on the input mesh (see Fig. 7, right).

7 EXPERIMENTS

In this section, we first provide examples of meshes sampled
using our method, to allow for visual analysis. We further visu-
ally demonstrate our sampling method using a non-photorealistic
stroke-based rendering technique. We then compute the discrep-
ancy of sample distributions produced using our method in order
to assess the global quality of the sampling, and compare these
results to those from alternative sampling approaches. We then
perform a series of experiments in order to validate the output
of our algorithm, assessing the deviation of the curve from the
input tensor field, the effect of boundaries on sampling quality,
and quantization effects caused by a reduction in the number of
samples per segment. We also perform a spectral analysis, telling
us about the local neighborhoods of the samples and the local
anisotropy. Finally, we perform a differential domain analysis,
which gives similar information to the spectral analysis, but for
isotropic and anisotropic density functions and on mesh surfaces.

7.1 Visual Examples

To allow visual analysis, we show our sampling results on various
mesh surfaces and demonstrate the method applied to stroke-based
rendering. However, to help the reader visually interpret the results
in this section, we first give examples of anisotropic sampling.
Fig. 8 shows three point distributions in [0, 1]2, each with 750
samples. The image on the left shows the output from our method,
isotropically sampled with a uniform density. The middle image
shows the same uniform density, but with an anisotropic spacing
of the points. It was generated by sampling a rectangular domain
(with a height of 0.25, and a width of 1) using our method with a
isotropic density, then stretching it to [0, 1]2. This result serves as
a control. The image on the right shows a square, sampled using

Fig. 8: Sampling with 750 points. Left: isotropic sampling using
our method. Middle: anisotropic curve sampling by manually
stretching the parameter domain. Right: anisotropic curve sam-
pling using our method.

TABLE 1: Timing.

Mesh 2-Torus Wing Bunny Dragon
No. of faces 5K 10K 18K 206K
No. of vertices 2.5K 5K 7K 103K
No. of samples 5K 4K 8K 10K
Segm. + param. 1.8s 2.6s 3.2s 20.8s
Curve gen. 3.2s 3.6s 4.0s 14.8s
Sampling 0.001s 0.001s 0.001s 0.01s

Total 5s 6.2s 7.2s 35.6s

our anisotropic method, with a uniform density, and the same
4:1 ratio of anisotropy as the middle image. Both the middle
and right images display the same level of visual anisotropy.
However, note that whilst the anisotropy present in these figures
is indeed measurable (see Figs. 19, 22), to the human visual
system the anisotropy is certainly less obvious than it would be
in an equivalent anisotropic grid or Poisson disk sampling, where
the regularity of samples greatly enhances the visibility of their
directionally-dependent spacing.

Fig. 9 shows a 2-torus sampled using our algorithm. The first
image shows the user-defined tensor field, containing two singu-
larities and a constant anisotropy of 2:1. The field is rendered as
a subset of the original mesh vertices (chosen to clearly show the
field), rendering the largest eigenvector of the tensor field with unit
length. The segmentation and parameterization steps created 25
segments, shown in the second image. The third and fourth images
show 5, 000 samples, as points and as splats. Using previous
methods such as [11], this model would be difficult to cut and
parameterize with minimal stretch. Fig. 10 shows similar results
for 4, 000 samples on an aircraft wing model; in this example, the
tensor field comes from the principal curvatures of the mesh, so
the anisotropy is consistent with the surface curvature. Curvatures
were computed using the integral invariants method [44], and
samples were placed according to mean curvature. Appropriately,
few samples are present in the flatter regions of the wing. In
contrast, the density increases, along with the anisotropy due to the
almost-cylindrical shape, close to the leading and trailing edges
of the wing. An additional denser sampling occurs in a ridge that
runs the length of the wing close to the trailing edge. Fig. 11
shows a close up of part of the wing. The field contained 12
singularities, while segmentation and parameterization resulted in
42 segments. Using previous stratified surface sampling methods,
a more complex cut would be required to unwrap the mesh, and
considerable stretch would be introduced by the parameterization.

Fig. 4 shows the Stanford Bunny model sampled with respect to
a user-defined tensor field with 4 singularities, with a uniform
anisotropy of 3:1. Segmentation and parameterization resulted in
32 segments. Image (a) shows the tensor field on the model, (b)
the segmentation, with a single segmented highlighted, (c) the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 9

Fig. 9: A 2-torus segmented and sampled with respect to a user
defined anisotropic tensor field.

Fig. 10: An aircraft wing sampled with respect to its principal
curvatures.

Fig. 11: A close up of the aircraft wing sampled with respect to
its principal curvatures.

segment parameterised with respect to the field, (d) a reduced-
level Hilbert curve generated on the segment, with respect to
the field, (e) the segment, sampled anisotropically, and (f) 8, 000
splats on the model. Fig. 12 shows the Stanford Dragon model,
sampled from a user-defined field with 4 singularities and a
constant anisotropy of 4:1. For this complex model, segmentation
and parameterization resulted in 1, 622 segments. The top image
shows the tensor field, the remaining images show the model sam-
pled with 10, 000 points and elliptical splats aligned to the field;
left, isotropically sampled, right, anisotropically sampled. Note
the large reduction in white space in the anisotropic sampling.
Whilst this example demonstrates that the method works well with
two orders of magnitude more segments than the other examples,
it also highlights potential improvements that could be made to
the algorithm. For example, cuts could be made to unwrap high
curvature areas of the model, such as spines on the left hind leg
and head, which would reduce the number of segments required.

In order to demonstrate use of our method for non-photorealistic
rendering, we show examples of our sampling rendered using a
stroke-based renderer. Fig. 13 shows the Stanford Bunny, sampled
with 15, 000 points, rendered using acrylic paint, crayons and
watercolor styles. Fig. 14 shows the Venus mesh, sampled with
15, 000 points, rendered using acrylic paint, pencils and inks. Our

Fig. 12: Anisotropic low-discrepancy sampling of Stanford
Dragon. Top: input tensor field prescribing sampling density and
spacing. Remaining images: 10, 000 samples as points and ellip-
tical splats; left: isotropic sampling, right: anisotropic sampling.

Fig. 13: Bunny, 15, 000 points, rendered with crayons, inks, and
watercolors.

Fig. 14: Venus, 40, 000 points, rendered with acrylics, pencils and
inks.

sampling method results in a globally-correlated sampling, but
with local non-determinism, resulting in a well distributed set of
strokes that look naturally placed.

Table 1 gives timings for a Intel Core i7 920 CPU with an NVIDIA
GTX580 GPU for the four meshes discussed, broken into segmen-
tation and parameterization, curve generation, and sampling. Most

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 10

TABLE 2: The discrepancy gradient for increasing sample set
sizes for Poisson disk sampling and our method.

Method Rectangle Circle Triangle
Poisson Disk −0.56 −0.56 −0.54
Our method −0.73 −0.72 −0.70

-6

-5

-4

-3

-2

-1

0
0 1 2 3 4 5 6

Lo
g.

 D
is

cr
ep

an
cy

Log. number of points

Isotropic Tensor

Anisotropic Tensor

Fig. 15: Discrepancy of sample distributions generated with
respect to an isotropic and anisotropic uniform tensor field.

of the time in curve generation is taken in computing dilated raster
images of the parameterized mesh segments. Curve generation
and sampling stages are parallelized, and thus the longest thread
execution time is reported. Accurate timing of the sampling phase
is difficult due to the very short execution time, but after prior
steps have been performed, is done in real-time.

7.2 Discrepancy

We next evaluate the sampling quality of our method, first
measuring the star discrepancy [2]. We limit this to planar cases
due to the difficulty of computing meaningful quality measures
on general surfaces with arbitrary tensor fields. Fig. 15 shows the
discrepancy for both a constant isotropic and constant anisotropic
point sampling with a ratio of 4:1 in [0, 1]2 using our sampling
approach. Tests were performed for sample sets of size N = 2l

and N = 2l + 2l−1 for l = 1, . . . , 20, using rectangular sampling
shapes (as in [13]), and averaged over three runs. A graph was
plotted of log of the discrepancy against log(N). The area of
the sample rectangles was computed with respect to the metric
defined by the constant tensor in [0, 1]2 to account for the desired
anisotropy. Gradients of least squares lines fitted to the isotropic
and anisotropic cases were 0.74 and 0.72, respectively, agreeing
with previous results for stratified sampling in the literature,
and consistent with the conclusion that our anisotropic sampling
method produces low-discrepancy distributions.

We also compare the discrepancy of uniform Poisson disk sam-
ples to our method. Tests were executed as above, except that
sample shapes were varied—in addition to standard axis-aligned
rectangles, triangles with one point fixed at the origin and quarter-
circles with the center at the origin were used. Table 2 shows the
gradients for a least squares line for both distributions, for each
sample shape. Our method, producing stratified samples, shows a
gradient considerably steeper than that for Poisson disk sampling.
Stratified sampling has previously been shown to have a lower
discrepancy than Poisson disk sampling [9].

7.3 Algorithm Verification

This section demonstrates the robustness of our approach with
respect to (i) angular error between the Hilbert curve and the

4

3

2

1

0

Fig. 16: Left: tensor field (largest eigenvector shown) in a planar
region. Middle: Hilbert curve segmentation according to tensor
field. Angular variance threshold γ = 5◦. Right: angular error
between input field and Hilbert curve.

tensor field, (ii) errors that may occur at boundaries between seg-
ments, and (iii) quantization errors that may occur as the number
of segments increases while keeping sampling rate constant.

7.3.1 Angular Error

Our sampling method relies on the local alignment of the Hilbert
curve with the tensor field (see Fig. 5). After a mesh segment
has been parameterized such that the directional variation of the
field within that segment is kept small (see Section 5), it is
checked for validity. This requires that no angle between the
projection of the largest eigenvector m1 and the basis vector of
the parameter domain should be greater than a parameter γ. In
order to experimentally investigate this, we define a tensor field
on a planar mesh that increases in speed of variation from left to
right. The mesh is segmented automatically according to the field
and parameterized with γ = 5◦. The angular error between the
Hilbert curve and the tensor field is then measured and plotted as
an image (see Fig. 16). The maximum error in this example is less
than 4.5◦, with the higher errors occurring in the more complex
region of the field. If γ were reduced, segmentation would increase
to allow for this required increase in accuracy.

7.3.2 Boundary Error

To investigate the presence of sampling discontinuities along the
segment boundaries, we generated a single complex boundary on a
planar mesh, defining two distinct segments. For this experiment,
a constant, isotropic tensor field was used. We computed the
discrepancy, as defined in Section 7.2, for the mesh segmented
in this way, and for the same mesh and field with no boundary
(i.e. as a single segment). Fig. 17 shows the segmentation and
discrepancy results. The graph indicates that the discrepancy of
the sample distribution is not made worse by the introduction of
the boundary (also see further discrepancy testing below).

-6

-5

-4

-3

-2

-1

0
0 1 2 3 4 5 6

Lo
g.

 D
is

cr
ep

an
cy

Log. number of points

Without Boundary

With Boundary

Fig. 17: Left: complex boundary defining two segments. Right:
discrepancy of sample distributions generated according to bound-
ary, and generated without boundary.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 11

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

25 50 75 100 250 500 750 1000

Lo
g.

 D
is

cr
ep

an
cy

Number of Segments

Indepdent Segments

Linked Segments

Random Sampling

Fig. 18: Discrepancy of 1, 000 sample points with an increasing
degree of segmentation. Segments were left independent, or linked
into several pairwise-adjacent sequences. Random sampling is
shown for comparison.

7.3.3 Quantization Error

To investigate how the number of segments for a mesh affects
the quality of the sampling, we increased the number of segments
while the number of point samples was held fixed. We utilized
the same planar mesh and tensor field as in Fig. 16. As a uni-
form segmentation, or stratification, may positively influence the
sampling, potentially masking an error, a relatively complex field
was used in order to generate a more complex segmentation. By
varying the parameter γ, the mesh was automatically segmented
into between about 25 and 1, 000 segments, and sampled with
1, 000 points. The discrepancy was then computed as defined
in Section 7.2 (see Fig. 18). Without our post-processing step
that links segments together (see Section 6.2), as the number
of independent segments grows over about 300, or one third of
the number of points, the discrepancy can be seen to increase.
When compared to a random sampling of the domain, this is a
significant change. Such a scenario, where such a large number
of segments is sampled so sparsely is unlikely to occur unless
the mesh density is insufficient to represent a complex tensor
field. However, if segments are linked using our post-processing
method, the resulting regions are far larger, essentially removing
the error (see Fig. 18, linked segments).

7.4 Spectral Analysis

We now investigate further properties of the sampling using
spectral analysis methods [45]. Fig. 19 shows a spectral analysis
of uniform isotropic and anisotropic tensor cases in the plane. In
the anisotropic case, a constant anisotropy of 4:1 is used. For
both cases, we show the single sample distribution (left), the
mean periodogram (middle), radially averaged power spectrum
density (RAPSD) (top right), and anisotropy (bottom right) of the
point sampling. The anisotropy measures the radial symmetry. All
results are averaged over 8 runs. Due to the random element of
our sampling, there are no sharp concentric rings in the mean
periodogram, unlike for Poisson disk sampling (see [6]), and the
RAPSD also does not peak multiple times in the mid frequencies.
The distribution also has an absence of low-frequency components
and very consistent mid and high frequencies, demonstrating the
good blue noise characteristics of our sample distributions.

7.5 Differential Domain Analysis

We apply recent work on differential domain analysis [8], building
upon [10], [18], to allow detailed analysis of samplings with

Fig. 19: Spectral analysis, 1, 500 points. Samples, mean pe-
riodogram, radially averaged power spectrum density and
anisotropy. Isotropic (top), anisotropic (bottom), planar.

 0

 0.5

 1

 1.5

 2

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

po
w

er

|d|

-30
-25
-20
-15
-10

-5
 0

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

an
is

ot
ro

py

|d|

Fig. 20: Differential domain analysis of our sampling. 720
samples; uniform, isotropic sampling. Sampling, spectrum image,
radial mean and anisotropy, averaged over 10 runs.

varying density and anisotropy, including on mesh surfaces. All
tests were run with identical parameters to those in [8], making
the results directly comparable. Tests on Poisson disk sampling
and certain other methods, as well as a thorough description of
these parameters and the density functions used, are given there.
Results should appear consistent with the isotropic case, as the
sampling is analyzed in the differential domain. Fig. 20 shows 720
samples uniformly generated using our sampling method, and the
resulting spectrum image, radial mean and anisotropy averaged
over 10 runs. We set ε = 10 and used a Gaussian kernel. Fig. 21
shows density-controlled samples generated using our sampling
method and a 2D Gaussian function (2, 500 samples in [0, 2]2),
and the Balzer function [17] (10, 000 samples in [0, 4]2), and
the resulting spectrum, radial mean and anisotropy averaged over
10 and 4 runs respectively with ε = 12 and a Gaussian kernel.
Fig. 22 shows anisotropic samples generated using our sampling
method using a shear function (2, 500 samples in [0, 2]2) and
a perspective function [10] (10, 000 samples in [0, 4]2), and the
resulting spectrum, radial mean and anisotropy averaged over 10
and 4 runs respectively with ε = 12 and a Gaussian kernel. Fig. 23
shows the Bunny and 2-torus meshes with uniform and density-
controlled samples (according to curvature) generated using our
method, and the resulting spectrum, radial mean and anisotropy.
Both meshes were normalized to have a surface area of 1, and
for each example 3, 000 samples were generated, with the results
averaged over 8 runs. We set ε = 10 and used a Gaussian kernel.

The results of the differential domain analysis show that our
method produces consistent samplings, for uniform, density-
controlled and anisotropic functions. Anaylsis results are compa-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 12

 0

 0.5

 1

 1.5

 2

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

po
w

er

|d|

 0

 0.5

 1

 1.5

 2

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

po
w

er

|d|

-30
-25
-20
-15
-10

-5
 0

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

an
is

ot
ro

py

|d|

-30
-25
-20
-15
-10

-5
 0

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
an

is
ot

ro
py

|d|

Fig. 21: Differential domain analysis of our sampling method,
isotropic, density-controlled sampling. 2D Gaussian blob (2, 500
samples in [0, 2]2) and Balzer function (10, 000 samples in
[0, 4]2). Sampling, spectrum image, radial mean and anisotropy
averaged over 10 and 4 runs respectively.

rable to those for uniform jittered/stratified sampling [8]. Both the
mean and anisotropy plots are very stable throughout, indicating
that our sampling method can accurately represent the functions.

Consistently with stratified sampling, our method introduces a
limited degree of randomness in each sample, avoiding regularities
in the point distribution, and the very sharp local neighborhood
spacing prevalent in Poisson disk methods. This randomness is
limited to the local stratum of the sample, which is mapped from
the parameter domain onto the surface in a manner aligned with
the tensor field and with spacing stretched according to the local
anisotropy. This ensures that the randomness does not destroy the
anisotropy. However, even in a case of global randomness, if we
were, for example, to produce a random, isotropic, sampling in
the plane, and stretch it along one axis, we would introduce an
anisotropic spacing. The anisotropy of the sample distributions
produced is, however, less visually clear than in a regularly
sampled domain, as the distance between samples is not constant
and the samples are not arranged on a grid (see Fig. 8). Results
in this section demonstrate that whilst the anisotropy in our
samplings may not be visually obvious, it is consistently present
when a formal analysis is performed.

8 LIMITATIONS AND FUTURE WORK

We have presented an algorithm for generating anisotropic, low-
discrepancy, stratified point samples on triangle meshes. Our
method allows the user to control the sampling density and
anisotropy via a tensor field. After preprocessing, it can sample
and re-sample meshes in real-time.

Experiments designed to validate our algorithm show that despite
potential for problems due to (i) boundaries between segments
on the mesh, (ii) quantization errors when assigning samples
to segments, and (iii) angular errors in correctly following the
prescribed tensor field, our method performs as intended, and
these potential issues have no negative effects on the sampling
output. Anisotropic discrepancy measures show that our sampling
is consistent with results for stratified sampling on the plane and
on meshes. Frequency and differential domain analysis confirm
that samples in both the plane and on surface meshes correctly

 0

 0.5

 1

 1.5

 2

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

po
w

er

|d|

 0

 0.5

 1

 1.5

 2

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

po
w

er

|d|

-30
-25
-20
-15
-10
-5
 0

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

an
is

ot
ro

py

|d|

-30
-25
-20
-15
-10
-5
 0

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

an
is

ot
ro

py

|d|

Fig. 22: Differential domain analysis of our sampling method,
anisotropic sampling. Shear (2, 500 samples in [0, 2]2) and per-
spective functions (10, 000 samples in [0, 4]2). Sampling, spectrum
image, radial mean and anisotropy averaged over 10 and 4 runs
respectively.

represent the input tensor. Spectral analysis shows that the local
neighbourhood of Poisson disk samples is more regular than that
of samples produced by our approach. Discrepancy measures show
that the global coverage of the meshes using our method is better.

The lack of local regularity in our anisotropic stratified sampling
appears highly usefull for artistic rendering. However, whilst
strucutred Poisson disk methods and quasi-random sequences such
as [26] are less suitable for artistic approaches, more recent
Poisson disk methods introducing less regularity may be inter-
esting to consider. Our method seems less generally applicable
to remeshing, as it would be much harder to guarantee triangle
equilaterality. However, a less regular tessellation may result in
fewer illumination and shadowing artifacts during rendering.

A requirement for methods like ours is that of a moderate quality
tensor field as an input. If the field is poorly defined, e.g.,
in isotropic areas, our approach may result in a considerable
over-segmentation. If the field is user-defined, this is generally
avoidable, but may be more problematic if the field is derived
from intrinsic data such as principal curvatures; the field may even
inherit properties from the field generation algorithm. Gaussian
smoothing lessens the problem, but is unlikely to eliminate it. A
possible solution may be to merge these isotropic segments.

Many field singularities may result in a complex segmentation,
and thus considerably increased computation. Whilst we have
no specific requirements on the regularity of the triangulation,
or the resolution or topological complexity of the input mesh,
increased topological complexity will rapidly increase the number
of segments that are generated, and thus the computational re-
quirements. Their effects on the tractability of the problem should
be noted. One possible approach to reduce the computational cost
of handling singularities would be to locate the presence of a
singularity in a triangle by computing its winding number [29].

An obvious limitation of our method is its reliance on mesh
parameterization. The optimization process aligns segments of
the mesh as closely to the field as possible. The validity of this
alignment is governed by a parameter limiting the maximum
allowed error. However, whilst this is both controllable and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 13

 0
 0.5

 1
 1.5

 2
 2.5

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

po
w

er

|d|

-30
-25
-20
-15
-10

-5
 0

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

an
is

ot
ro

py

|d|

 0
 0.5

 1
 1.5

 2
 2.5

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

po
w

er

|d|

-30
-25
-20
-15
-10

-5
 0

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

an
is

ot
ro

py
|d|

 0
 0.5

 1
 1.5

 2
 2.5

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

po
w

er

|d|

-30
-25
-20
-15
-10

-5
 0

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

an
is

ot
ro

py

|d|

 0
 0.5

 1
 1.5

 2
 2.5

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

po
w

er

|d|

-30
-25
-20
-15
-10

-5
 0

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

an
is

ot
ro

py

|d|

Fig. 23: Differential domain analysis of our sampling method with
uniform and density-controlled surface sampling for the Stanford
Bunny and 2-torus model (3, 000 samples). Point sampling, spec-
trum image, radial mean and anisotropy averaged over 8 runs.

demonstrated to have little impact, an error will exist, especially
near field singularities. The presence of this error is inherently
linked to the discretization of the tensor field and the mesh, but
a method that avoids the parameterization may provide a solution
which is closer to the ideal result.

With the control the user has over the sampling, our method has
many potential applications in such areas as interactive artistic
rendering, fur and hair rendering, point-based rendering, surface
measurement, and global illumination. Here we have shown splat-
based rendering to visualize the sample distributions, and stroke-
based rendering to illustrate the visual quality of our sampling
method in non-photorealistic applications. Many other areas with
application-dependent quality measures remain to be investigated.

Our method’s real-time re-sampling capability is well-suited to
fine-grain view-dependent and level of detail rendering. A more
difficult problem to is a lack of temporal coherence between
successive samplings, leading to undesirable rendering artifacts.
A solution may be to locally add samples instead of resampling
the entire curve, in such a way that spatial properties of the
existing sampling are not destroyed. In addition, changes to the
field or mesh will necessitate further preprocessing due to local
re-adaptiation of the Hilbert curve. Model deformations may be
handled by segment subdivision, and local re-computation of
surface properties, but a global change in the field may require
complete re-segmentation and parameterization. Future work will

look at solving these problems, and the extension of [36] and [30]
for generalized tensor field segmentation on triangle meshes.

ACKNOWLEDGMENTS

We thank L.-Y. Wei and R. Wang for help with their differential
domain analysis software, A. Agraz for help with the stroke-based
rendering pipeline, S. Shellard for help creating stylized brush
strokes, and the three artists for their stippling examples. The
authors acknowledge funding from the Welsh Government via the
One Wales Research Institute for Visual Computing (RIVIC).

REFERENCES

[1] R. A. Ulichney, “Dithering with blue noise,” Proc. of IEEE, vol. 76,
no. 1, pp. 56–79, 1988.

[2] H. Niederreiter, Random Number Generation and Quasi-Monte
Carlo Methods. SIAM, 1992.

[3] T. Isenberg, P. Neumann, S. Carpendale, M. C. Sousa, and J. A.
Jorge, “Non-photorealistic rendering in context: an observational
study,” in Proc. Int. Symp on Non-photorealistic Animation and
Rendering, 2006, pp. 115–126.

[4] R. Maciejewski, T. Isenberg, W. Andrews, D. Ebert, M. Sousa, and
W. Chen, “Measuring stipple aesthetics in hand-drawn and computer-
generated images,” Comp. Graph. and App., IEEE, vol. 28, no. 2,
pp. 62–74, 2008.

[5] A. Hertzmann, “A survey of stroke-based rendering,” IEEE Comp.
Graph. and App., vol. 23, no. 4, pp. 70–81, 2003.

[6] A. Lagae and P. Dutré, “A comparison of methods for generating
poisson disk distributions,” Comp. Graph. Forum, vol. 27, no. 1, pp.
114–129, 2008.

[7] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessella-
tions: applications and algorithms,” SIAM Review, vol. 41, no. 4, pp.
637–676, 1999.

[8] L.-Y. Wei and R. Wang, “Differential domain analysis for non-
uniform sampling,” in Proc. ACM SIGGRAPH, 2011, pp. 50:1–50:10.

[9] D. P. Dobkin, D. Eppstein, and D. P. Mitchell, “Computing the dis-
crepancy with applications to supersampling patterns,” ACM Trans.
Graph., vol. 15, no. 4, pp. 354–376, 1996.

[10] H. Li, L.-Y. Wei, P. V. Sander, and C.-W. Fu, “Anisotropic blue noise
sampling,” ACM Trans. Graph., vol. 29, pp. 167:1–167:12, 2010.

[11] J. A. Quinn, F. C. Langbein, and R. R. Martin, “Low-discrepancy
point sampling of meshes for rendering,” in Symp. on Point Based
Graph., 2007, pp. 19–28.

[12] M. Steigleder and M. McCool, “Generalized stratified sampling using
the Hilbert curve,” Journal Graph. Tools, vol. 8, no. 3, pp. 41–47,
2003.

[13] J. A. Quinn, F. C. Langbein, R. R. Martin, and G. Elber, “Density-
controlled sampling of parametric surfaces using adaptive space-
filling curves,” in Proc. Geometric Modeling and Processing, 2006,
pp. 658–678.

[14] B. Lévy and Y. Liu, “Lp centroidal voronoi tessellation and its
applications,” ACM Trans. Graph., vol. 29, pp. 119:1–119:11, 2010.

[15] R. Fattal, “Blue-noise point sampling using kernel density model,”
ACM Trans. Graph., vol. 30, no. 4, pp. 48:1–48:12, 2011.

[16] D. Cline, S. Jeschke, K. White, A. Razdan, and P. Wonka, “Dart
throwing on surfaces,” Comp. Graph. Forum, vol. 28, no. 4, pp.
1217–1226, 2009.

[17] M. Balzer, T. Schlömer, and O. Deussen, “Capacity-constrained point
distributions: a variant of lloyd’s method,” ACM Trans. Graph.,
vol. 28, pp. 86:1–86:8, 2009.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 2012 14

[18] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz, “Parallel poisson disk
sampling with spectrum analysis on surfaces,” ACM Trans. Graph.,
vol. 29, pp. 166:1–166:10, 2010.

[19] Y. Miao, R. Pajarola, and J. Feng, “Curvature-aware adaptive re-
sampling for point-sampled geometry,” Comp. Aided Design, vol. 41,
no. 6, pp. 395–403, 2009.

[20] D. Nehab and P. Shilane, “Stratified point sampling of 3D models,”
in Symp. on Point-Based Graph., 2004, pp. 49–56.

[21] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-time
hatching,” in Proc. ACM SIGGRAPH, 2001, pp. 579–584.

[22] S. Y. Kim, R. Maciejewski, T. Isenberg, W. M. Andrews, W. Chen,
M. C. Sousa, and D. S. Ebert, “Stippling by example,” in Proc. Int.
Symp. on Non-Photorealistic Animation and Rendering, 2009, pp.
41–50.

[23] D. Martı́n, G. Arroyo, M. V. Luzón, and T. Isenberg, “Example-
based stippling using a scale-dependent grayscale process,” in Proc.
Int. Symp. on Non-Photorealistic Animation and Rendering, 2010,
pp. 51–61.

[24] L.-Y. Wei, “Multi-class blue noise sampling,” ACM Trans. Graph.,
vol. 29, pp. 79:1–79:8, 2010.

[25] C.-H. Huang, K.-C. Chang, and C. Wen, “Non-iterative stippling of
greyscale three-dimensional polygon meshed models,” Comp. Vision,
IET, vol. 4, no. 2, pp. 138–148, 2010.

[26] T. Umenhoffer, L. Szécsi, and L. Szirmay-Kalos, “Hatching for
motion picture production,” Comp. Graph. Forum, vol. 30, no. 2,
pp. 533–542, 2011.

[27] J. Quinn, “Low-discrepancy point sampling of 2D manifolds for
visual computing,” Ph.D. dissertation, Cardiff University, 2009.

[28] L. Feng, I. Hotz, B. Hamann, and K. Joy, “Anisotropic noise
samples,” IEEE Trans. Vis. and Comp. Graph., vol. 14, no. 2, pp.
342–354, 2008.

[29] E. Zhang, K. Mischaikow, and G. Turk, “Vector field design on
surfaces,” ACM Trans. Graph., vol. 25, no. 4, pp. 1294–1326, 2006.

[30] E. Zhang, J. Hays, and G. Turk, “Interactive tensor field design
and visualization on surfaces,” IEEE Trans. Vis. and Comp. Graph.,
vol. 13, no. 1, pp. 94–107, 2007.

[31] J. Palacios and E. Zhang, “Rotational symmetry field design on
surfaces,” ACM Trans. Graph., vol. 26, no. 3, 2007.

[32] Y.-K. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.-M. Hu,
and X. Gu, “Metric-driven rosy field design and remeshing,” IEEE
Trans. Vis. and Comp. Graph., vol. 16, no. 1, pp. 95–108, 2010.

[33] C.-Y. Yao, M.-T. Chi, T.-Y. Lee, and T. Ju, “Region-based line field
design using harmonic functions,” IEEE Trans. on Vis. and Comp.
Graph., vol. 18, pp. 902–913, 2012.

[34] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete
differential geometry operators for triangulated 2-manifolds,” in
VisMath III, 2002, pp. 35–57.

[35] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,
“Anisotropic polygonal remeshing,” in Proc. ACM SIGGRAPH,
2003, pp. 485–493.

[36] T. Delmarcelle and L. Hesselink, “The topology of symmetric,
second-order tensor fields,” in Proc. of the Conf. on Vis., 1994, pp.
140–147.

[37] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic
global parameterization,” ACM Trans. Graph., vol. 25, no. 4, pp.
1460–1485, 2006.

[38] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin, “Rapid and
effective segmentation of 3D models using random walks,” Comp.
Aided Geom. Design, vol. 26, no. 6, pp. 665–679, 2009.

[39] X. Tricoche, “Vector and tensor topology simplification, tracking,
and visualization,” Ph.D. dissertation, Schriftenreihe / Fachbereich
Informatik, Universität Kaiserslautern, 2002.

[40] C. Auer and I. Hotz, “Complete tensor field topology on 2d trian-
gulated manifolds embedded in 3d,” Comp. Graph. Forum, vol. 30,
no. 3, pp. 831–840, 2011.

[41] C. Auer, C. Stripf, A. Kratz, and I. Hotz, “Glyph- and texture-based
visualization of segmented tensor fields,” in Int. Conf. on Inf. Vis.
Theory and App., 2012, pp. 670–677.

[42] Y.-K. Lai, S.-M. Hu, and R. R. Martin, “Surface mosaics,” The Visual
Comp., vol. 22, no. 9-11, pp. 604–611, 2006.

[43] P. Guigue and O. Devillers, “Fast and robust triangle-triangle overlap
test using orientation predicates,” Journal of Graph., GPU, and Game
Tools, vol. 8, no. 1, pp. 25–42, 2003.

[44] Y.-K. Lai, S.-M. Hu, and T. Fang, “Robust principal curvatures using
feature adapted integral invariants,” in SIAM/ACM Joint Conference
on Geometric and Physical Modeling, 2009, pp. 325–330.

[45] T. Schlömer and O. Deussen, “Toward a standardized spectral
analysis of point sets with applications in graphics,” University of
Konstanz, Germany, Tech. Rep., 2010.

Jonathan Quinn received his PhD from
Cardiff University in 2010. He is currently
a Research Officer for the One Wales Re-
search Institute of Visual Computing at the
School of Computer Science & Informatics,
Cardiff University. His research interests in-
clude computer graphics, geometry process-
ing and sampling, and image-based mod-
elling.

Frank Langbein received a PhD in 2003
from Cardiff University on “Beautification of
Reverse Engineered Geometric Models” and
a Diploma in Mathematics from Stuttgart Uni-
versity in 1998. He is currently a lecturer
at the School of Computer Science & Infor-
matics, Cardiff University, working on mod-
elling, simulation, control and machine learn-
ing applied to geometry, quantum technol-
ogy, chemical synthesis and perception. He
is a member of the AMS and the IEEE.

Yu-Kun Lai received his bachelors degree
and PhD degree in computer science from
Tsinghua University in 2003 and 2008, re-
spectively. He is currently a lecturer of visual
computing in the School of Computer Sci-
ence & Informatics, Cardiff University. His re-
search interests include computer graphics,
geometry processing, image processing and
computer vision.

Ralph Martin leads the Visual Computing
research group at Cardiff University, and is
Director of Scientific Programmes of the One
Wales Research Institute of Visual Comput-
ing. His output includes over 200 papers
and 12 books covering such topics as solid
modelling, surface modelling, reverse engi-
neering, intelligent sketch input, mesh pro-
cessing, video processing, computer graph-
ics, vision based geometric inspection, and
geometric reasoning. He is on the editorial

boards of “Computer Aided Design”, “Computer Aided Geometric
Design”, “Geometric Models”, and several other journals.

