Recognizing Geometric Regularities for Beautification of Reconstructed Solid Models

Frank C．Langbein
〈F．C．Langbein＠cs．cf．ac．uk〉

David Marshall
〈A．D．Marshall＠cs．cf．ac．uk〉

Bruce I．Mills
〈B．I．Mills＠cs．cf．ac．uk〉

Ralph R．Martin
〈R．R．Martin＠cs．cf．ac．uk〉

June 2001

Reverse Engineering

Engineering converts a concept into an artifact

- Reverse engineering converts an artifact into a concept The desired result is a representation of the design intent, not a simple copy

Goal: Reconstruct an ideal model of a physical object with intended geometric regularities

Reverse Engineering Solid Models

Data Acquisition

- Obtain 3D point clouds from a laser scanner
- Register multiple views

Model Creation

- Create a solid model by \leftarrow stitching surfaces

Segmentation

- Split the point cloud into subsets representing natural surfaces

Surface Fitting

- Find the surface type (plane, sphere, cylinder, cone, torus) of each subset
- Fit a surface of this type to the point set

Inaccurate Initial Model

The initial model suffers from inaccuracies caused by
\star sensing errors
^ approximation and numerical errors

* possible wear
* manufacturing method
- Geometric regularities have to be enforced at some stage of the reconstruction process to guarantee their presence

Beautification

- Previous approaches:
^ Augment the surface fitting step by constraint solving methods [Fisher,Benkő]
^ Feature based approach [Thompson]:
* manually identify features like slots and pockets
* use them to drive the segmentation and surface fitting
- Our approach:

Improve the model in a post-processing step called beautification

Beautification Strategy

Analyser

Detect potential regularities which are approximately present in the initial model

Reconstruction

Reconstruct an improved model, fix topological problems, align the model with the coordinate axes

Hypothesizer

Select a maximal, consistent subset of likely constraints

Constraint Solver

Solve a weighted constraint system using an optimization technique (quasi-Newton methods on least squares error)

Geometric Regularities

Use similarity to recognize geometric regularities approximately present
Global similarities: approximate symmetries
Local similarities:
^ Extract properties of B-rep model elements (faces, loops, edges, vertices) as typed feature objects
^ Find similar feature objects of the same type by creating a hierarchical clustering structure
\star Represent each cluster by an average feature object
^ Find special feature objects similar to the average feature objects

Local Geometric Regularities

Parameter

- Equal lengths
- Equal angles
- Special values:
- integers
- simple fractions

Loops

- Equal shaped polygons, independent of scaling

Directions

- Parallel directions
- Directions with same angle relative to a special direction
- Symmetrical arrangements of directions

Axes

- Axis intersections
- Aligned axes

Positions

- Equal positions
- Positions equal under projection

Angle and Length Parameters

- Cluster angles and lengths separately with angular and length tolerances, to find parameters with similar values

Element	Parameter	Type
sphere	radius	length
cylinder	radius	length
cone	semi-angle	angle
torus	major radius	length
	minor radius	length
straight edge	distance between end points	length
circular edge	radius	length
	angle of circle segment	angle

Special Parameter Values

Find a special value close to the average parameter value for a cluster:

* Lengths: $x=\frac{m}{n} K_{l}$ for length base units K_{l} like $1.0,0.1,2.54, \ldots$
^ Angles: $\quad x=\frac{m}{n} K_{a}$ for angle base units K_{a} like $\pi, \frac{\pi}{180}, \ldots$
$x=\arctan \left(\frac{m}{n}\right)$
where $m, n \in \mathbb{N}$
- Basic algorithm:

Find simple fractions $\frac{m}{n}$ approximating x with a tolerance t and $n<M$

Finding Simple Fractions

I. Find the closest integer a_{0} to x
II. Find fractions for the remainder $x_{0}=\left|a_{0}-x\right|$ recursively; on recursion level l :
\star Let m / n be the fraction found so far with error x_{l}
\star For $b=1,2, \ldots$ approximate x_{l} by fractions b / a with $a=\operatorname{round}\left(b / x_{l}\right)$ and $a \leq M$
\star Add each b / a to m / n and if it has not been found before:

* If the new fraction is close enough to x, report it
* If the new error is still too large, call the algorithm recursively on the new remainder with new limit $M=$ $M_{0} M$

Simple Fractions Example

Example: $\quad x=0.63$ with $t=0.05, M_{0}=5$ and $t_{\text {min }}=0.01$

$$
\begin{aligned}
& 0.63=1 / 2+0.13 \\
& =1 / 8 \quad+0.005 \\
& {[\rightarrow 5 / 8]} \\
& =2 / 15 \quad-0.003333 \\
& {[\rightarrow 19 / 30]} \\
& =3 / 23 \quad-0.000435 \\
& \text { [} \rightarrow 29 / 46] \\
& =2 / 3 \quad-0.036667 \\
& {[\rightarrow 2 / 3]} \\
& =3 / 5+0.03 \\
& {[\rightarrow 3 / 5]}
\end{aligned}
$$

Polygon Representation

- Find similar polygons independent of scaling
- Represent the polygon as a function on the unit circle \mathbb{T} :

$$
f=\sum_{k=0}^{m-1} \alpha_{k} \delta_{k}
$$

m : number of vertices
α_{k} : angle at k-th vertex
l_{k} : length of the line segments from vertex 0 to k
δ_{k} : Dirac distribution at

$$
2 \pi \frac{l_{k}}{l_{m}} \text { on } \mathbb{T}
$$

Similar Polygons

Compute some (~ 10) Fourier coefficients of f :

$$
u_{j}=\frac{1}{2 \pi}\langle f, \exp (-i j \cdot)\rangle
$$

Cluster the Fourier coefficient vectors using the similarity measure

$$
\delta(u, v)=\sum_{j=1}^{d}| | u_{j}\left|-\left|v_{j}\right|\right|
$$

Parallel Directions

- Direction: a point on the unit sphere with antipodal points identified (projective plane)

plane	normal	straight edge	direction
cylinder	axis direction	circular edge	normal of circle plane
cone	axis direction	elliptical edge	normal of ellipse plane
torus	axis direction		

- Find parallel directions by clustering the projective points with

$$
\angle\left(d_{1}, d_{2}\right)=\arccos \left(\left|d_{1}^{t} d_{2}\right|\right)
$$

Directions in a Plane

- Find directions in a plane: directions on a great circle of the unit sphere
^ For each pair of parallel direction clusters generate a plane normal
^ Cluster the plane normals in the same way as the parallel directions
^ The resulting clusters represent directions in a plane

Angle-Regular Directions

- Directions in a plane might be arranged symmetrically

planar angle-regular

- For directions $\left\{d_{j}\right\}$ in a plane:

$$
\angle\left(d_{j}, d_{k}\right) \approx m \frac{\pi}{n}, \quad m, n \in \mathbb{N}
$$

with $n<\frac{\pi}{2 t_{\text {angular }}}$

Angle-Regular Algorithm

Try all arrangements suggested by the angles:

I. Compute all angles between the directions and for each angle find base angle candidates $\frac{\pi}{n}$ within $t_{\text {angle }}$
II. For each direction and its associated base angles β :

1. Try to find a planar angle-regular direction subset by checking if the angles are approximate multiples of β
2. If the direction subset is regular, accept the subset and remove base angles generating the same set Regular subset: - all angle multiples

- at least every second multiple
- at least three consecutive directions

Conical Direction Arrangements

- Similar to the planar case handle directions on a small circle of the unit sphere (directions on a cone)

- Combine each triple of linearly independent parallel direction clusters to a direction cone; cluster them
- Detect conical angle-regular directions:
* Project directions in plane defined by the cone axis \star Search for planar angle-regular arrangements with base angles $\frac{2 \pi}{n}$
- An orthogonal system is a special conical angle regularity

Axes

- Find aligned surface axes:
^ Project positions of approximately parallel axes onto the plane through the origin
\star Cluster them
- Find axis intersections:
^ Compute the approximate intersection points of nonparallel axes (the centre of the shortest line between each corresponding pair)
* Cluster them

Positions

- Positions corresponding to vertices and surface root points:
\star Cluster the positions to find equal positions
\star Project the positions onto special planes and lines through the origin (obtained from orthogonal systems or main axes)
^ Cluster the projections to find partially equal positions

Finite Symmetry Groups

- Finite symmetry groups of the model are determined by finitely many isometries mapping the model onto itself
Our approach:
^ Find symmetries of the model as point set symmetries
^ Detect isometries as permutations which preserve the distances; the geometric realization becomes secondary
^ Automatically choose natural tolerances reducing local ambiguity instead of finding symmetry for a given tolerance

Point Set Symmetries

- A symmetry of the model is a symmetry of a point set derived from the model (vertices, centres of spheres, tori, apices of cones)
There is typically a point set with the same symmetries as the model
- The point set could have more, but not less symmetries
- Add a post-processing step to check if the point set symmetries also preserve geometry types and combinatorial information

Permutations

An approximate isometry of a point set is a permutation preserving the distances between the points approximately
The permutations are the leaves of a tree of partial injections:
^ A partial injection is a list of point pairs where each point appears at most once as first and at most once as second element of the pairs
\star The root of the tree is the empty list

* The children of a partial injection are obtained by adding one more point pair to the list

Symmetry Detection Algorithm

Approximate symmetry detection for point sets:

I. Create consistent clusterings of the points at different tolerance levels:

* Each point belongs to exactly one cluster
\star All distances between the points in a cluster are smaller than the tolerance
* Distances between points from different clusters are larger than the tolerance
II. For each consistent clustering, search the tree of partial injections to find valid isometries

Example for Consistent Clusterings

Stage II: Symmetry Analysis 1

Detect distance-preserving permutations of the clustered point set

1. Find a large, non-degenerate tetrahedron whose vertices are
\star the centroid of the clustered point set

* three points on the convex hull of the clustered point set chosen to be as far apart as possible from each other
The three points are found by maximizing the distance, the area and finally the volume

Stage II: Symmetry Analysis 2

2. Do a limited depth-first search over the tree of partial injections mapping the points of the tetrahedron:
\star The centroid always has to be mapped onto itself

* Backtrack to the parent whenever the newly added point pair induces an isometry which does not approximately preserve the distances between the points
* Once three points are mapped, the fourth point can only be mapped to two possible locations
\star All subsequent points are mapped to one location, thus check the remaining distances directly

Symmetry Analysis Example

- Select tetrahedron: $0,1,2,3$
- Map the centroid: $0 \rightarrow 0$
- Map $1 \rightarrow 2$
\star Distance check: $d(0,1) \approx d(0,2)$
- Map $2 \rightarrow 4$
\star Distance check: $d(0,2) \approx d(0,4)$ \star Distance check: $d(1,2) \not \approx d(2,4)$
- Backtrack and map $2 \rightarrow 3$
\star Distance check: $d(0,2) \approx d(0,3)$
\star Distance check: $d(1,2) \approx d(2,3)$

Experiments

- Preliminary experiments with objects reverse engineered from simulated 3D point clouds (perturbed by 3 degrees, 0.3 length units; tolerances for 5 degrees, 0.5 length units)
- Desired regularities found (41) \star conical angle regularities \star axis intersection points * special edge lengths
- Unwanted regularities (11) * parallel planes * more conical angle regularities
- Missed regularities: none

More Examples

Results

Choosing small tolerance values results in a few, very likely regularities, but many desired regularities are missed

- Increasing the tolerance values adds the missing regularities, but also increases the likelihood of finding unwanted regularities
- For simple models there is a tolerance level which distinguishes exactly between wanted and unwanted regularities
- For more complicated models unwanted regularities can be minimized, but not avoided

Conclusions

The presented methods find geometric regularities suitable for beautification

- Subsequent beautification steps must select an appropriate subset of regularities to generate consistent constraints
The number of tolerance values used in the algorithms can be reduced:
^ Automatically detect large tolerance jumps in the hierarchical clustering structure
\star Add consistency checks, e.g. the intersection of n axes should be a cluster of $n(n-1) / 2$ intersections of axis pairs

