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Constraint Satisfaction Problems (CSPs)

• A CSP is a high level description of a problem.

• The model for the problem is represented by a set of variables and their

domain.

• The problem is stated as constraints specifying the relations between

the variables.

• The constraints only specify the relationships without specifying a

computational procedure to enforce that relationship.

• The computer has to find a solution to the specified problem.
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Applications

• Interpreting objects in 3D scenes.

Scene labelling.

• Solid Modelling.

Constrained–based design, Beautification.

• Advanced Planning and Scheduling.

Well–activity scheduling, production scheduling.

• Assignment problems.

Stand allocation for airports, balancing work among different persons.

• Network management and Configuration.

Planning of cabling of telecommunication networks, network reconfigu-

ration without service interruptions.

• Database systems.

Ensure and/or restore data consistency.

• Molecular biology.

DNA sequencing, chemical hypothesis reasoning, protein docking.

• Electrical engineering.

Fault location, circuit layout computation.

Constraint Satisfaction Problems 2 13th February 2001



A Geometric CSP
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• Planes: nl
tx = pl,

l = 1, . . . , 6

• Orthogonal planes:

nt
1n3 = 0, nt

1n4 = 0, . . .

• Parallel planes:

nt
1n2 = 1, . . .

Elements of the CSP:

• Variables: nl ∈ S2 (unit sphere), pl ∈ R

• Domains: S2, R

• Constraints:

– Plane l and k orthogonal:

Variables: (nl, nk)

Valid set: S2 × S2 \ {(nl, nk) ∈ S2 × S2 : nt
lnk 6= 0}

– Plane l and k parallel:

Variables: (nl, nk)

Valid set: S2 × S2 \ {(nl, nk) ∈ S2 × S2 : nt
lnk 6= 1}
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Constraint Satisfaction Problem

Definition:

An instance of a CSP is a triple (X, D, C), where

• X is a (finite) set of variables,

• D is the domain for the variables,

• C is a set of constraints {C1, C2, . . . , Cn}.

Each constraint Cl is a pair (sl, Rl), where

– sl = (xl1
, . . . , xlm) is an m–tuple of variables (scope),

– Rl is an m–ary relation over D, i.e.

Rl is a subset of all possible variable values representing the allowed

combinations of simultaneous values for the variables in sl.

A solution of an instance of a CSP is a function f : X → D, such that

∀(sl, Rl) with sl = (xl1
, . . . , xlm) (f(xl1

), . . . , f(xlm)) ∈ Rl.

Sometimes f(X) is called the solution.

Note: In general each variable can have its own domain.
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Generalised Constraint Satisfaction Problem

Relational Structure: Σ = 〈X, E1, . . . , Eq〉

– X is a non–empty set (universe)

– El is a relation over X

Example: A graph is a relational structure where the universe is the

vertex set and a single relation specifying which vertices are

adjacent.

Homomorphism: h ∈ Hom(Σ, Σ′) :⇔ h : X → X ′

such that for all l = 1, . . . , q

(x1, . . . , xm) ∈ El ⇒ (h(x1), . . . , h(xm)) ∈ E′
l

The solutions of a CSP (X, D, C) with C = {(s1, R1), . . . , (sn, Rn)}

are equal to the homomorphisms between

Σ = 〈X, {s1}, . . . , {sn}〉, Σ
′
= 〈D, R1, . . . , Rn〉.

Generalized CSP: Find homomorphisms between two relational structures

〈X, E1, . . . , En〉, 〈D, R1, . . . , Rn〉, where El and Rl have the same

arity (for all l).

Example: Graph Colourability
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Σ Σ′

h ∈ Hom(Σ, Σ′)
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Properties of a CSP

• Solving CSPs is in general NP–complete.

Identification of restrictions that make the problem tractable is very

important.

• Each CSP can be converted into a binary CSP.

• Overconstrained CSP.

The CSP contains more constraints than required which may be

inconsistent and/or redundant.

• Underconstrained CSP.

The CSP cannot be solved uniquely.

• Expressive power of a set of constraint types.
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Solving CSPs

Solving a CSP could mean to find

• one solution, without preference as to which one,

• all solutions,

• an optimal, or at least a good solution.

General methods for solving a CSP:

• Combinatorial methods for finite D.

Solutions can be found by systematic search in D:

– Traverse the space of partial solutions.

– Explore the space of complete value assignments.

• Analytical methods for infinite D.

Solutions can be found by analysing the constraints as some (generalised)

equation system:

– Solve the constraints simultaneously.

– Consider the constraints sequentially.
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Systematic Search

Generate and Test: Assign a value to each variable.

If it is a solution, stop.

Otherwise modify the assignment.

Searches all of D.

Improvements:

• Use an informed/smart generator such that the conflicts

found by the tester are minimised.

→ stochastic algorithms

• Merge the generator with the tester.

→ backtracking
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Backtracking

Backtracking: Instantiate the variables sequentially.

Test the validity of a constraint as soon as its respective

variables are instantiated.

If a constraint is violated, backtrack to the most recently

instantiated variable for which there are still values left.

Whenever a constraint is violated a complete subspace of D is eliminated.

Problems:

• Trashing: repeated failure due to the same reason

generated by older variable assignments.

• Redundancy: rediscovering of the same inconsistencies.

→ Heuristics for variable ordering:

– Assign the variable with the fewest possible remaining

alternatives first.

– Instantiate the variables first that participate in the

highest number of constraints.

→ Dependency directed backtracking:

– Inconsistencies are noted whenever they are detected.

– Avoids trashing and redundancy.

– Even if the search space is minimal, detecting inconsis-

tencies and choosing new values is quite complex.
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Consistency Techniques

Principle: Remove inconsistent values from the variable domains until a

solution is found.

The CSP is represented as a graph using binary constraints only.

K–consistency: For every system of values for K−1 variables satisfying

all the constraints between them, there exists a value

for an arbitrary K–th variable such that all constraints

between the K variables are satisfied.

A constraint graph is strongly K–consistent if it is

J–consistent for all J ≤ K.

→ For a strongly N–consistent graph with N nodes a solution can be

found without searching.

→ Obtaining N–consistency in a graph with N nodes is exponential.

→ A strongly K–consistent graph with N > K nodes still requires

searching (backtracking).

Example: strong 2–consistency (arc–consistency)
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Constraint Propagation

Principle: Combine backtracking with consistency techniques.

• Look Back:

Consistency checks among already instantiated variables.

– Analyse the situation in order to find the source of the inconsistency

and backtrack to the most recent conflicting variable (backjumping).

– Remember incompatible assignments of variables (backcheck-

ing/backmarking).

• Look Ahead:

Prevent future conflicts by limiting the domains of uninstantiated

variables.

– When a value is assigned (temporarily) remove any value of a future

variable which conflicts with this assignment (forward checking).

– In addition remove values of variables indirectly depending on the

instantiated variable (partial look ahead).

– After each assignment a full consistency check on the graph is

performed (full look ahead).

future variablesinstantiated variables

Backjumping

Backtracking Forward Checking

Partial Look Ahead
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Stochastic and Heuristic Methods

• Instantiate all variables randomly.

• Use a repair or hill–climbing metaphor to move towards more and more

complete solutions.

• Stop if a complete solution is found.

Update strategies:

Hill–climbing: – Modify the value of one variable such that

more constraints are satisfied.

– Restart with a random assignment if no more

constraints can be satisfied (local minimum).

Min–conflicts: – Randomly choose a variable that is involved

with an unsatisfied constraint.

– Pick a value that reduces the number of

unsatisfied constraints.

– If no such value exists pick a random value

which does not increase the number of

unsatisfied constraints.

Random walk: – Select a variable with a probability p and apply

min–conflicts or hill–climbing with probability

1 − p.

Tabu search: – Keep a list of recent configurations which are

(temporarily) tabu.

– Tabu restrictions may be overridden under

certain conditions (aspiration criteria).
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CSPs with infinite Domains as Equation Systems

For D = R, the CSP can be represented as an equation system:

f1(x) = 0

...

fn(x) = 0

with fl : R
n → R.

Symbolic Solver

• Reliable methods available (Gröbner basis techniques).

• Identifies inconsistencies.

• Expensive, only suitable for small CSPs.

Numerical solver

• Equation system solver (Homotopy methods, Newton–Raphson).

• Optimization methods.

– Minimize an error function, like least squares error.

– Naturally handles inconsistencies, but generates average solution.

– Suitable for larger CSPs.

– Problems caused by bad objective functions: slow/no convergence,

local minima.

– Methods:

∗ Quasi–Newton methods (BFGS).

∗ Gauss–Newton / Trust region methods (Levenberg–Marquardt).

∗ Hybrids between Quasi–Newton and trust region.

∗ Evolutionary methods.
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Other methods for Infinite Domains

Local Propagation

• Repeatedly select uniquely satisfiable constraints.

• A single constraint determines the value for a variable.

• Once a variable value is known, another constraint might be solvable.

• An initial planning phase to choose the order of the constraints is

required.

• Restrictions:

– Most algorithms solve equality constraints only.

– Cyclic constraints cannot be solved.

Decomposition

• Partition the constraint graph into (vertex–induced dense) subgraphs.

• A subgraph corresponds to a subproblem which can be solved separately.

• General strategy:

– Find a suitable subgraph.

– Solve the subgraph problem.

– Reduce the graph by replacing the subgraph by a single node.

– Find the next subgraph.
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Constraint Optimization

Find a solution to a CSP which also minimizes an objective function

mapping every solution to a numerical value.

Branch and Bound (for finite D):

• Backtracking algorithm.

• For each partial solution the objective function is approximated

(underestimated).

• If the estimation for a partial solution exceeds some bound, the complete

subspace is removed.

• Initially the bound is +∞ and it is set to the value of the objective

function for the best solution found so far.

Constrained Numerical Optimization (for infinite D):

• Methods for linear constraints and special objective functions (Simplex

method, Goldfarb Idnani method, . . . ).

• Gradient projection and reduction methods.

• Penalty and multiplicator methods.

• Sequential Quadratic Approximation (SQP).

• Statistical methods.
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Inconsistent Constraints

Not all constraints in the constraint set can be satisfied simultaneously.

→ A solution should satisfy a subset containing the important constraints.

Partial Constraint Satisfaction (finite D):

• Find values of a subset of variables that satisfy a subset of constraints.

• Some constraints are weakened to permit additional value combinations.

• The goal is to find a solution with the best value of some function

evaluating the solution.

Constraint Hierarchies (infinite D):

• Constraints are weakened explicitly by specifying a strength or preference.

• Weaker constraints are not allowed to break a stronger constraint.

• Refining methods: Start with satisfying constraints on the strongest

level and continue with weaker levels.

• Local propagation.

Intelligent Constraint Hierarchies:

• Identify as many inconsistent constraints as possible and start with a

good set of consistent constraints.

• Solve the constraint system using

– a numerical optimization method with weighted constraints,

– a local propagation method.

• Use some reasoning to detect further inconsistencies between the

constraints from the results of the solver and note those using a belief

network or similar.

• Depending on the change in the belief network modify the constraint

system.
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