
Approximate Congruence
Detection of Model Features

for Reverse Engineering
C. H. Gao, F. C. Langbein, A. D. Marshall and R. R. Martin

ralph@cs.cf.ac.uk

Department of Computer Science,
Cardiff University,

Wales, UK

Congruence Detection – p.1/28



Contents
• Problem Statement
• Previous Work
• Approximate Congruence Detection Algorithm
• Analysis
• Experimental Results
• Conclusions

Congruence Detection – p.2/28



Problem Statement–1
Reverse engineered models suffer from inaccuracies
caused by:

• Data acquisition errors—sensors are not perfect
• Approximation and numerical errors during

reconstruction
• Original model errors, such as wear of the model,

manufacturing method of the model
Faces are recovered individually.

• Models built from these faces do not show
expected and desired regularities.

Congruence Detection – p.3/28



Problem Statement–2
Our Goal

• Reconstruct an ideal model of a physical object
with intended geometric regularities

Our approach:
• Beautification: improve the model in a

post-processing step,
• first detect intended regularities
• then impose them on the model

This talk considers detecting congruent features
(sub-parts of the model).

• Other work has considered simple regularities,
symmetry, constraint enforcement, d-o-f analysis.

Congruence Detection – p.4/28



Previous Work
Exact congruence detection: Alt, Akutsu

• their algorithms calculate the transformation
between two point sets

• these algorithms can be hard to implement
Approximate congruence detection: Alt, Schirra

• their algorithms are based on distance checking
between
• two point sets
• with a given tolerance

• these algorithms have a high cost

Congruence Detection – p.5/28



Algorithm Overview
• Find congruent pairs of seed faces
• Expand seed pairs to neighbouring faces which

keep congruence (giving congruent features)
• Avoid re-using any given congruent pair of faces
• Avoid rechecking congruence of face pairs for

efficiency
• Congruence checking is done using

hypothesise-and-test for efficiency
• Find candidate isometry for 4 points from

each set
• Verify by mapping remaining points

Congruence Detection – p.6/28



Congruence of Two Faces
Our models have planar, cylindrical, spherical, conical
and toroidal faces (and blends).
A face of given type is determined by

• a sufficient set of points to determine face
parameters

• the patch boundary curves
Matching these for two patches ensures congruence.
A boundary curve of given type is determined by

• a sufficient set of points to determine curve
parameters

• and end points

Congruence Detection – p.7/28



Face Parameters
A surface is uniquely defined by the following
numbers of points (in general position):

• Planar face: 3
• Spherical face: 4
• Cylindrical face 5
• Conical face: 6
• Toroidal face: 7

These points may be on the patch boundary for open
surfaces but must include at least one interior point for
closed surfaces.

Congruence Detection – p.8/28



Congruence of Two Edges–1
Straight line segments:

• take both end points as the characteristic points
Circular arcs:

• take end points and the mid-point of the arc

Congruence Detection – p.9/28



Congruence of Two Edges–2
Elliptical arcs:

• take points 1

4
, 1

2
, 3

4
of the way around the arc.

NURBS edges:
• use suitable control points (see algorithms due to

Cohen, Hu and Ma et al.)
• may need degree elevation, reparametrisation etc.

Congruence Detection – p.10/28



Main Algorithm
The main algorithm

• looks for seed congruences and grows them
In detail, it

• calls compatible to quickly eliminate face
pairs which can not be congruent

• calls congruence to check for approximate
congruence between every compatible face pair
in the model

• calls expand to extend each congruent face pair
found, not already used, to include adjacent faces,
then their neighbours, and so on.

Congruence Detection – p.11/28



The compatible Method–1
This method quickly decides whether a face pair can
potentially be congruent.
Two faces can only be congruent if they satisfy all the
following requirements:

• They must be of the same type (planar,
cylindrical, etc.)

• Cylinders, cones, spheres and tori must have the
same convexity or concavity

• Radii of cylinders, cones, spheres and tori must
agree

• Semi-angles of cones must agree

Congruence Detection – p.12/28



The compatible Method–2
• Faces must have the same number of edge loops
• Corresponding loops must agree in type

(external, internal or end loops)
• Corresponding loops must have the same number

of edges
• Corresponding edges must agree in length
• Corresponding vertices must have the same

number of edges around them
• Face types around corresponding vertices must be

consistent

Congruence Detection – p.13/28



The congruence Method
This method decides if two faces, or two sets of faces,
are congruent. The steps are as follows:

• collect the characteristic points from each face set
• compute a special tetrahedron T1 for the first set

(guaranteed to be large)
• perform a search for (maybe multiple) congruent

tetrahedra T21, T22, . . . in the second set
• compute the mapping relating T1 to each T2i

• check if the remaining points in each set agree
under this mapping, in each case

• return the result, and the mapping(s) if congruent

Congruence Detection – p.14/28



The expand Method
This method takes a seed pair of congruent faces, and
expands it to two congruent features, as follows:

• put each face from the seed pair in a list
• find a new pair of faces which are neighbours of

some face in each list respectively
• test if these two faces are congruent (pre-test

using compatible)
• if congruent, add each face to the respective list

and compute congruence of the two lists
• if lists congruent, keep new pair, else discard it
• continue until there are no neighbouring pairs left

to consider.
Congruence Detection – p.15/28



Algorithm—Remarks
As stated, this algorithm would be very inefficient:

• each face pair would potentially be re-tested for
congruence many times

So, we cache the result of testing congruence of face
pairs.

We merge multiple congruences at the end of the
algorithm e.g.

• {A,B}, {B,C} → {A,B,C}

Congruence Detection – p.16/28



Demonstrative Example–1
Faces 1 and 6 are detected as a seed pair of congruent
faces

PSfrag replacements

0 1

2 3

4

5 6

7 8

9

list1=(1)
list2=(6)

Congruence Detection – p.17/28



Demonstrative Example–2
Faces 4 and 9 are adjacent to 1 and 6, are congruent,
and extend the seed congruence

PSfrag replacements

0 1

2 3

4

5 6

7 8

9

list1=(1)
list2=(6)
list1=(1 4)
list2=(6 9)

Congruence Detection – p.18/28



Demonstrative Example–3
Faces 2 and 7 are not congruent. Faces 3 and 8 are
congruent, and extend the congruence

PSfrag replacements

0 1

2 3

4

5 6

7 8

9

list1=(1)
list2=(6)
list1=(1 4)
list2=(6 9)
list1=(1 3 4)
list2=(6 8 9)

Congruence Detection – p.19/28



Algorithm Analysis–1
First consider the congruence checker component:

• Suppose congruence is called on two sets of p
points.

• p is bounded for each type of surface.
• No more than O(p1.5) matching tetrahedra are

possible (see references)
• Testing each takes time O(p2).

So, overall, the congruence method takes time
O(p3.5).

Congruence Detection – p.20/28



Algorithm Analysis–2
Next, consider the whole algorithm.

Instead of a worst case analysis, we make some
assumptions:

• we are dealing with “real engineering objects”,
so:

• each face has a fixed maximum number of
neighbours ≤ m, a constant

• each vertex has a fixed maximum number of
edges ≤ m, a constant

Most objects to be reverse engineered will be of this
type.

Congruence Detection – p.21/28



Algorithm Analysis–3
Now consider three particular cases:

1 the object has no congruent features.
O(n2) pairs of faces are checked for congruence,
each in time O(m3.5). Overall time is O(n2).

2 there are n/2 separate congruences, each
comprising a single congruent face pair.
Similarly, overall time is O(n2).

3 a single congruence relates the two halves of the
object.
This takes time m

∑n/2−1

i=1
O((mi)3.5) = O(n4.5)

Expected complexity lies between O(n2) and O(n4.5).

Congruence Detection – p.22/28



Testing Congruence Detection–1
(Some) congruent features detected shown in red

Test objects 1 and 2

Test object 3

Congruence Detection – p.23/28



Testing Congruence Detection–2
Test objects 4, 5, 6

Congruence Detection – p.24/28



Congruences Found and Times
Object Faces Congruences Time (s)

1 13 2 2.20
2 38 5 9.88
3 33 5 10.40
4 27 3 5.45
5 7 3 1.43
6 70 20 21.19

Congruence Detection – p.25/28



Further Testing—Congruences
Further test models

Congruence Detection – p.26/28



Algorithm Performance Test
We plotted time taken (seconds) versus number of
faces for all test cases:

20 40 60 80 100 120 Faces

20

40

60

80

100

120
Time

The best fit to the timing data is O(n3.24).
Congruence Detection – p.27/28



Conclusions
• An algorithm for approximate congruence

detection has been developed,
• with reverse engineering in mind.
• It can handle simple non-planar faces.
• It finds all expected congruences.
• It runs in an acceptable length of time for

moderately complex models.

Congruence Detection – p.28/28


	Contents
	Problem Statement--1
	Problem Statement--2
	Previous Work
	Algorithm Overview
	Congruence of Two Faces
	Face Parameters
	Congruence of Two Edges--1
	Congruence of Two Edges--2
	Main Algorithm
	The 	exttt {compatible} Method--1
	The 	exttt {compatible} Method--2
	The 	exttt {congruence} Method
	The 	exttt {expand} Method
	Algorithm---Remarks
	Demonstrative Example--1
	Demonstrative Example--2
	Demonstrative Example--3
	Algorithm Analysis--1
	Algorithm Analysis--2
	Algorithm Analysis--3
	Testing Congruence Detection--1
	Testing Congruence Detection--2
	Congruences Found and Times
	Further Testing---Congruences
	Algorithm Performance Test
	Conclusions

