CARDIFF

UNIVERSITY

Approximate Congruence
Detection of Model Features
for Reverse Engineering

C. H. Gao, F. C. Langbein, A. D. Marshall and R. R. Martin

ralph@cs.cf.ac.uk

Department of Computer Science,
Cardiff University,
Wales, UK

Congruence Detection — p.1/28

CARDIFF
UNIVERSITY

Contents

Problem Statement

Previous Work

Approximate Congruence Detection Algorithm
Analysis

Experimental Results

Conclusions

Congruence Detection — p.2/28

CARDIFF

UNIVERSITY

Problem Statement-1

Reverse engineered models suffer from 1naccuracies
caused by:

Data acquisition errors—sensors are not perfect

Approximation and numerical errors during
reconstruction

Original model errors, such as wear of the model,
manufacturing method of the model

Faces are recovered individually.

Models built from these faces do not show
expected and desired regularities.

Congruence Detection — p.3/28

CARDIFF

UNIVERSITY

Problem Statement—2
Our Goal

Reconstruct an 1deal model of a physical object
with intended geometric regularities

Our approach:

Beautification: improve the model 1n a
post-processing step,

first detect intended regularities
then impose them on the model

This talk considers detecting congruent features
(sub-parts of the model).

Other work has considered simple regularities,
symmetry, constraint enforcement, d-o-f analysis.

Congruence Detection — p.4/28

CARDIFF

UNIVERSITY

Previous Work

Exact congruence detection: Alt, Akutsu

their algorithms calculate the transtformation
between two point sets

these algorithms can be hard to implement
Approximate congruence detection: Alt, Schirra

their algorithms are based on distance checking
between

two point sets
with a given tolerance

these algorithms have a high cost

Congruence Detection — p.5/28

CARDIFF

UNIVERSITY

Algorithm Overview

Find congruent pairs of seed faces

Expand seed pairs to neighbouring faces which
keep congruence (giving congruent features)

Avoid re-using any given congruent pair of faces

Avoid rechecking congruence of face pairs for
efficiency

Congruence checking is done using
hypothesise-and-test for efficiency

Find candidate 1sometry for 4 points from
each set

Verify by mapping remaining points

Congruence Detection — p.6/28

CARDIFF

UNIVERSITY

Congruence of Two Faces

Our models have planar, cylindrical, spherical, conical
and toroidal faces (and blends).
A face of given type 1s determined by

a sufficient set of points to determine face
parameters

the patch boundary curves

Matching these for two patches ensures congruence.
A boundary curve of given type 1s determined by

a sufficient set of points to determine curve
parameters

and end points

Congruence Detection — p.7/28

CARDIFF

UNIVERSITY

Face Parameters

A surtface 1s uniquely defined by the following
numbers of points (in general position):

Planar face: 3
Spherical face: 4
Cylindrical face 5
Conical face: 6
Toroidal face: 7

These points may be on the patch boundary for open
surfaces but must include at least one interior point for
closed surfaces.

Congruence Detection — p.8/28

CARDIFF

UNIVERSITY

Congruence of Two Edges-1

Straight line segments:
take both end points as the characteristic points
Circular arcs:

take end points and the mid-point of the arc

Congruence Detection — p.9/28

CARDIFF

UNIVERSITY

Congruence of Two Edges-2
Elliptical arcs:

, %, % of the way around the arc.

H~ =

take points

NURBS edges:

use suitable control points (see algorithms due to
Cohen, Hu and Ma et al.)

may need degree elevation, reparametrisation etc.

CARDIFF

UNIVERSITY

Main Algorithm

The main algorithm
looks for seed congruences and grows them
In detail, 1t

calls compatible to quickly eliminate face
pairs which can not be congruent

calls congruence to check for approximate
congruence between every compatible face pair
in the model

calls expand to extend each congruent face pair
found, not already used, to include adjacent faces,
then their neighbours, and so on.

Congruence Detection — p.11/28

CARDIFF

UNIVERSITY

The compatible Method-1

This method quickly decides whether a face pair can
potentially be congruent.

Two faces can only be congruent if they satisty all the
following requirements:

They must be of the same type (planar,
cylindrical, etc.)

Cylinders, cones, spheres and tori must have the
same convexity or concavity

Radii of cylinders, cones, spheres and tori must
agree

Semi-angles of cones must agree

CARDIFF

UNIVERSITY

The compatible Method-2

Faces must have the same number of edge loops

Corresponding loops must agree in type
(external, internal or end loops)

Corresponding loops must have the same number
of edges

Corresponding edges must agree in length

Corresponding vertices must have the same
number of edges around them

Face types around corresponding vertices must be
consistent

Congruence Detection — p.13/28

CARDIFF

UNIVERSITY

The congruence Method

This method decides 1f two faces, or two sets of faces,
are congruent. The steps are as follows:

collect the characteristic points from each face set

compute a special tetrahedron 17 for the first set
(guaranteed to be large)

perform a search for (maybe multiple) congruent
tetrahedra 751, T59, . . . in the second set

compute the mapping relating 77 to each T5;

check 1if the remaining points in each set agree
under this mapping, in each case

return the result, and the mapping(s) if congruent

Congruence Detection — p.14/28

CARDIFF

UNIVERSITY

The expand Method

This method takes a seed pair of congruent faces, and
expands it to two congruent features, as follows:

put each face from the seed pair 1n a list

find a new pair of faces which are neighbours of
some face in each list respectively

test 1f these two faces are congruent (pre-test
using compatible)

if congruent, add each face to the respective list
and compute congruence of the two lists

if lists congruent, keep new pair, else discard it

continue until there are no neighbouring pairs left
to consider.

Congruence Detection — p.15/28

CARDIFF

UNIVERSITY

Algorithm—Remarks

As stated, this algorithm would be very inefficient:

each face pair would potentially be re-tested for
congruence many times

So, we cache the result of testing congruence of face
pairs.

We merge multiple congruences at the end of the
algorithm e.g.

{A, B}, {B,C} —{A,B,C}

CARDIFF

UNIVERSITY

Demonstrative Example-1

Faces 1 and 6 are detected as a seed pair of congruent
faces

4 = Q \j_/lol :
a7 TS N g
0 1 56
list1=(1)

list2=(6)

CARDIFF

UNIVERSITY

Demonstrative Example-2

Faces 4 and 9 are adjacent to 1 and 6, are congruent,
and extend the seed congruence

5 3 = 7 8

- I I /
I : : BN /

CD/

I /L:L\‘

- 9
0 1 '5'6
list1=(1)
l1st2=(6)

list1=(1 4)
) list2=(6 9)

wl_

CARDIF

UNIVERSITY

!

Demonstrative Example-3

Faces 2 and 7 are not congruent. Faces 3 and 8 are
congruent, and extend the congruence

N

list1=(1 4)
) list2=(6 9)
list1=(1 3 4)
list2=(6 8 9)

CARDIFF

UNIVERSITY

Algorithm Analysis—1

First consider the congruence checker component:

Suppose congruence is called on two sets of p
points.

p 1s bounded for each type of surface.

No more than O(p'~®) matching tetrahedra are
possible (see references)

Testing each takes time O(p?).

So, overall, the congruence method takes time

O(p3'5).

Congruence Detection — p.20/28

CARDIFF

UNIVERSITY

Algorithm Analysis—2

Next, consider the whole algorithm.

Instead of a worst case analysis, we make some
assumptions:

we are dealing with “real engineering objects”,
SO:

each face has a fixed maximum number of
neighbours < m, a constant

each vertex has a fixed maximum number of
edges < m, a constant

Most objects to be reverse engineered will be of this
type.

Congruence Detection — p.21/28

CARDIFF

UNIVERSITY

Algorithm Analysis-3

Now consider three particular cases:

1 the object has no congruent features.
O(n?) pairs of faces are checked for congruence,
each in time O(m?>®). Overall time is O(n?).

2 there are n /2 separate congruences, each
comprising a single congruent face pair.

Similarly, overall time is O(n?).

3 a single congruence relates the two halves of the
object.

This takes time m >/} 210 O((mi)*°) = O(n*?)

Expected complexity lies between O(n?) and O(n*?).

CARDIFF

UNIVERSITY

Testing Congruence Detection—-1

(Some) congruent features detected shown 1n red

Test objects 1 and 2

Q(
(T »d

Test obJect 3

P N
y- _ N
N “ . .
5 i /

Congruence Detection — p.23/28

CARDIFF

UNIVERSITY

Testing Congruence Detection—2
Test objects 4, 5, 6

CARDIFF
UNIVERSITY

Congruences Found and Times

Object | Faces | Congruences | Time (s)
1 13 2 2.20
2 38 S 9.88
3 33 S 10.40
4 277 3 5.45
S 7 3 1.43
6 70 20 21.19

CARDIFF

UNIVERSITY

Further Testing—Congruences

Further test models

CARDIFF

UNIVERSITY

Algorithm Performance Test

We plotted time taken (seconds) versus number of
faces for all test cases:

Time
120
100}

807

60}

401}

20¢

20 40 60 80 100 120 Faces

The best fit to the timing data is O(n32).

Congruence Detection — p.27/28

CARDIFF

UNIVERSITY

Conclusions

An algorithm for approximate congruence
detection has been developed,

with reverse engineering in mind.
It can handle simple non-planar faces.
It finds all expected congruences.

It runs 1n an acceptable length of time for
moderately complex models.

Congruence Detection — p.28/28

	Contents
	Problem Statement--1
	Problem Statement--2
	Previous Work
	Algorithm Overview
	Congruence of Two Faces
	Face Parameters
	Congruence of Two Edges--1
	Congruence of Two Edges--2
	Main Algorithm
	The 	exttt {compatible} Method--1
	The 	exttt {compatible} Method--2
	The 	exttt {congruence} Method
	The 	exttt {expand} Method
	Algorithm---Remarks
	Demonstrative Example--1
	Demonstrative Example--2
	Demonstrative Example--3
	Algorithm Analysis--1
	Algorithm Analysis--2
	Algorithm Analysis--3
	Testing Congruence Detection--1
	Testing Congruence Detection--2
	Congruences Found and Times
	Further Testing---Congruences
	Algorithm Performance Test
	Conclusions

