# Finding Approximate Shape Regularities in Solid Models Bounded by Simple Surfaces

Frank C. Langbein (F.C.Langbein@cs.cf.ac.uk) Bruce I. Mills  $\langle B.I.Mills@cs.cf.ac.uk \rangle$ 

David Marshall  $\langle A.D.Marshall@cs.cf.ac.uk \rangle$ 

Ralph R. Martin  $\langle R.R.Martin@cs.cf.ac.uk \rangle$ 

7th June 2001

Department of Computer Science Cardiff University



## **Reverse Engineering Solid Models**

### **Data Acquisition**

- Obtain 3D point clouds from a laser scanner
- Register multiple views

### Segmentation

 Split the point cloud into subsets representing natural surfaces

#### **Model Creation**

Create a solid model by stitching surfaces

### Surface Fitting

- Find the surface type (plane, sphere, cylinder, cone, torus) of each subset
- Fit a surface of this type to the point set

### **Inaccurate Initial Model**

The initial model suffers from inaccuracies caused by

 sensing errors
 approximation and numerical errors
 possible wear
 manufacturing method

 Goal: Automatically reconstruct the *ideal* model with desired geometric regularities

### **Beautification**

Previous approaches:

- Augment the surface fitting step by constraint solving methods [Fisher,Benkő]
- ★ Feature based approach [Thompson]:
  - \* manually identify features like slots and pockets
  - \* use them to drive the segmentation and surface fitting

### Our approach:

Improve the model in a post-processing step called beautification

## **Beautification Strategy**

#### Analyser

Detect potential regularities which are approximately present in the initial model

#### Reconstruction

Reconstruct an improved model, fix topological prob- ← lems, align the model with the coordinate axes

#### Hypothesizer

Select a maximal, consistent subset of likely constraints

### **Constraint Solver**

Solve a weighted constraint system using an optimization technique (quasi–Newton methods on least squares error)

### **Geometric Regularities**

Global regularities: approximate symmetries
Local regularities:

- Extract properties of B-rep model elements (faces, loops, edges, vertices) as typed feature objects
- Find similar feature objects of the same type by creating a hierarchical clustering structure
- ★ Represent each cluster by an average feature object
- Find special feature objects similar to the average feature objects
- ★ Example: Find similar cylinder radii and a special value like an integer close to the average radius

## **Local Geometric Regularities**

#### Parameter

- Equal lengths
- Equal angles
- Special values:
  - integers
  - simple fractions
- Simple integer relations

#### Directions

- Parallel directions
- Directions with same angle relative to a special direction
- Symmetrical arrangements of directions



#### Axes

- Axis intersections
- Aligned axes
- Regularly positioned axes

#### Positions

- Equal positions
- Positions equal under projection
- Regularly arranged positions

### **Angle and Length Parameters**

 Cluster angles and lengths separately with angular and length tolerances, to find parameters with similar values

| Element       | Parameter                   | Туре   |
|---------------|-----------------------------|--------|
| sphere        | radius                      | length |
| cylinder      | radius                      | length |
| cone          | semi-angle                  | angle  |
| torus         | major radius                | length |
|               | minor radius                | length |
| straight edge | distance between end points | length |
| circular edge | radius                      | length |
|               | angle of circle segment     | angle  |

 Find a special value close to the average parameter value for a cluster:

\* Lengths:  $x = \frac{m}{n}K_l$  for length base units  $K_l$  like 1.0, 0.1, 2.54, ... \* Angles:  $x = \frac{m}{n}K_a$  for angle base units  $K_a$  like  $\pi, \frac{\pi}{180}, \ldots$  $x = \arctan\left(\frac{m}{n}\right)$ 

where  $m, n \in \mathbb{N}$ 

 ★ Special ratios between parameters of the same type
 Basic algorithm: Find simple fractions m/n approximating x with a tolerance t and n < M</li>

## **Finding Simple Fractions**

I. Find the closest integer  $a_0$  to x

- II. Find fractions for the remainder  $x_0 = |a_0 x|$  recursively; on recursion level *l*:
  - \* Let m/n be the fraction found so far with error  $x_l$
  - ★ For b = 1, 2, ... approximate  $x_l$  by fractions b/a with  $a = round (b/x_l)$  and  $a \le M$
  - \* Add each b/a to m/n and if the result has not been found before:

\* If the new fraction is close enough to x, report it

\* If the new error is still too large, call the algorithm recursively on the new remainder with new limit  $M = M_0 M$ 

### **Parallel Directions**

 Direction: a point on the unit sphere with antipodal points identified (projective plane)

| plane    | normal         | straight edge   | direction               |
|----------|----------------|-----------------|-------------------------|
| cylinder | axis direction | circular edge   | normal of circle plane  |
| cone     | axis direction | elliptical edge | normal of ellipse plane |
| torus    | axis direction |                 |                         |

Find parallel directions by clustering the projective points with

$$\angle (d_1, d_2) = \arccos\left(|d_1{}^t d_2|\right)$$

### **Directions in a Plane**

 Find directions in a plane: directions on a great circle of the unit sphere

- For each pair of parallel direction clusters generate a plane normal
- Cluster the plane normals in the same way as the parallel directions

## **Angle–Regular Directions**

Directions in a plane might be arranged symmetrically



### planar angle-regular

• For directions  $\{d_j\}$  in a plane:

$$\angle (d_j, d_k) \approx m \frac{\pi}{n}, \quad m, n \in \mathbb{N}$$

with 
$$n < \frac{\pi}{2t_{\text{angular}}}$$

## **Angle–Regular Algorithm**

Try all arrangements suggested by the angles:

- I. Compute all angles between the directions and for each angle find base angle candidates  $\pi/n$  within  $t_{\rm angle}$
- II. For each direction and its associated base angles  $\beta$ :
  - 1. Try to find a planar angle–regular direction subset by checking if the angles are approximate multiples of  $\beta$
  - If the direction subset is regular, accept the subset and remove base angles generating the same set Regular subset: 

     – all angle multiples
    - at least every second multiple
    - at least three consecutive directions

## **Conical Direction Arrangements**

- Directions on a small circle of the unit sphere are directions on a cone:
  - Combine each triple of linearly independent parallel direction clusters to a direction cone



 Handle the cone directions similar to the planar case

### Axes

Find aligned surface axes: \* Project positions of approximately parallel axes onto the plane through the origin ★ Cluster them Find axis intersections: ★ Compute the approximate intersection points of non parallel axes (the centre of the shortest line between each corresponding pair) ★ Cluster them

### **Regular Axis Arrangements**

Find axes with equal distances on a line or a 2D grid:
 \* Project positions of parallel axes in a plane
 \* Cluster all lines between pairs of the projected posi-

- tions to find axis positions approximately on a line
- Find distance-regular arrangements on these lines (similar to angle-regular arrangements)
- If possible combine distance-regular arrangements on the lines to 2D grids

### **Positions**

- Positions corresponding to vertices and surface root points:
  - Cluster the positions to find equal positions
  - Project the positions onto special planes and lines through the origin (obtained from orthogonal systems or main axes)
  - Cluster the projections to find partially equal positions
- Similar to regularly arranged axes, find regularly arranged positions

## Example

 Preliminary experiments with objects reverse engineered from simulated 3D point clouds (perturbed by 3 degrees, 0.3 length units; tolerances for 5 degrees, 0.5 length units)



 Desired regularities found (41) ★ conical angle regularities ★ axis intersection points ★ special edge lengths Unwanted regularities (11) ★ parallel planes ★ more conical angle regularities Missed regularities: none 

### **More Examples**



## Results

- Choosing small tolerance values results in a few, very likely regularities, but many desired regularities are missed
- Increasing the tolerance values adds the missing regularities, but also increases the likelihood of finding unwanted regularities
- For simple models there is a tolerance level which distinguishes exactly between wanted and unwanted regularities
- For more complicated models unwanted regularities can be minimized, but not avoided

## Conclusions

- The presented methods find geometric regularities suitable for beautification
- Subsequent beautification steps must select an appropriate subset of regularities to generate consistent constraint systems
- The number of tolerance values used in the algorithms can be reduced:
  - Automatically detect large tolerance jumps in the hierarchical clustering structure
  - \* Add consistency checks, e.g. the intersection of n axes should be a cluster of n(n-1)/2 intersections of axis pairs