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Current reverse engineering systems are able to generate simple valid boundary represen-

tation (B-rep) models from 3D range data. Such models suffer from various inaccuracies
caused by noise in the input data and algorithms. Reverse engineered geometric models

may be beautified by finding approximate geometric regularities in such a model, and
imposing a suitable subset of them on the model by using constraints. Methods to detect

suitable regularities for the beautification of B-rep models having only planar, spherical,
cylindrical, conical and toroidal faces are presented in this paper. The regularities are

described in terms of similarities. Different properties of faces, edges and vertices, and
small groups of these elements in a B-rep model are represented as feature objects. Sim-

ilar feature objects, such as directions which are parallel, form one sort of regularities.
For each group of similar feature objects, special feature objects which might represent

the group form further regularities, e.g. an integer value which approximates the radius
of similar cylinders. Further regularities arise from symmetries of feature object sets.

Experiments show that the regularities found are suitable for beautification such that

subsequent steps allow the selection of a consistent regularity set.

Keywords: Beautification; Geometric Regularities; Geometric Constraints; Reverse En-

gineering; Similarity; Solid Modelling.

1. Introduction

Reverse engineering the shape of physical objects has a variety of applications in

design and manufacturing, like reproduction and redesign. For many of these ap-

plications more than a simple copy is required and the information extracted from

the object should represent the design intent. We are interested in reverse engi-
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Fig. 1. Main Reverse Engineering Steps

neering a boundary representation (B-rep) model of a particular engineering part

from 3D range data, which has all the desired geometric regularities present in the

original, ideal design. Our ultimate goal is an intelligent 3D scanning system, which

requires a minimum amount of human interaction and is suitable for naive users

and non-engineering applications as well as engineers.

We intend to reconstruct models with accurate geometric properties for engi-

neering parts bounded by planar, spherical, cylindrical, conical and toroidal surfaces

that either intersect in sharp edges or are connected by fixed radius rolling ball

blends. There are reliable surface fitting methods available for these surfaces [1, 2]

and many interesting engineering objects can be generated using only these surface

types [3, 4]. We assume that blends have been identified in the model [5] and are

represented as edge and vertex attributes. Furthermore, the objects should have at

most about 200 faces, which is a realistic limit achievable with current technology.

Our particular approach to reverse engineering is illustrated in Figure 1 [6, 7].

Initially multiple views of a physical object are obtained from a 3D laser scanner as

dense 3D range data. The views are registered and merged into a single 3D point

set [8]. This set is triangulated [9] and then segmented into subsets such that each

subset represents a natural face of the object [1, 6]. For each of the point subsets

a surface type is determined and a surface of this type is fitted [1]. Finally the

surfaces are stitched to form a valid B-rep model, which we call the initial model.

The initial model suffers from various inaccuracies due to sensing errors during

the data acquisition phase as well as approximation and numerical errors arising

from the reconstruction process. Improving the precision of the sensing techniques

and the reconstruction methods could reduce the errors, but some errors will always

remain. As our intention is to recreate an ideal model for a physical object, we also

have to take additional errors into account, which were introduced by possible wear

of the object and the particular manufacturing method used to make it. To ensure

that certain geometric regularities intended in the design are present, such as aligned

cylinder axes or orthogonal and parallel planes, they must be identified and enforced

at some stage of the reverse engineering process.

Previous approaches augment the surface fitting step by constraint solving meth-

ods [10, 11, 12, 13] such that, for instance, two planes are fitted simultaneously under

the constraint that they are orthogonal. This requires specialised optimisation tech-

niques reducing the error between the points and the fitted surfaces under desired

geometric constraints. Another approach is to identify features like slots and pockets

whose approximate location and type is provided manually and use this information

to improve the results of the segmentation and surface fitting steps [14].
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In our approach we attempt to automatically improve the initial model in a

post-processing step which we call beautification. Our beautification strategy starts

by analysing the initial model to recognize geometric regularities which it satisfies

approximately. From this set a hypothesizer has to select a maximal subset of

regularities which are likely to be present in the ideal design and can be realized

simultaneously. A measure based on how well the regularity is present in the initial

model, and how common and important it is, can be used to derive a figure of

merit expressing our confidence that the ideal model possesses the regularity. Using

this measure and some geometric reasoning, the hypothesizer selects a first set of

regularities expressed as geometric constraints. In combination with a numerical

and/or graph-based constraint solver the initial selection of constraints is adjusted

to find a solvable constraint system, which should contain the desired geometric

regularities of the model. Based on the solution of the final constraint system a

new model is rebuilt (see Figure 2).

In this paper we present methods to detect approximate geometric regularities

in the initial model for the first beautification step. These methods are improved

and extended versions of those discussed in [15, 16]. We focus on local regularities

in the sense that they relate to single properties of one or only a small number of

elements in the B-rep model. For a method to detect approximate symmetries as

global regularities see [17]. In future work we will develop the hypothesizer and

constraint solving strategy.

Our regularities are defined as similarities between properties of B-rep model

elements, and similarities between these properties and given special properties.

For instance, we look for approximately equal cylinder radii, and we also try to find

a special value, like an integer, for the average radius of each set of similar radii.

We assume that the regularities are sufficiently distinct from approximation errors

in the model, so that they can be distinguished from the noise by using appropriate

thresholds. The output of the analyser is a list of regularities that the ideal model

might possess. Whether a particular regularity is indeed present has to be decided

later. Hence, we aim to produce a large set of possible regularities instead of looking

for a small set of very likely regularities.

In the following we introduce the types of regularity detected by our methods

and the notion of similarity as the fundamental concept used to define approximate

regularities. Furthermore, we describe how to detect our chosen regularities in gen-

eral using a hierarchical clustering algorithm. In the remaining sections we present

the individual regularities and particular methods for detecting them. Finally we
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Element Geometry Feature Object Type
face plane root point position

normal direction
polygonal loop(s) loop
root points of loops position

sphere centre position
radius length

cylinder point on axis position
axis direction direction
radius length

cone apex position
axis direction direction
semi-angle angle

torus centre position
axis direction direction
minor radius length
major radius length
sum of radii (unless lemon) length
difference of radii (unless apple) length

edge straight direction of edge direction
(optional) distance between end points length

circle radius length
angle of the circle segment angle
normal of circle plane direction

ellipse normal of ellipse plane direction
vertex point location position

Table 1. Basic Feature Objects Derived from a B-rep Model

provide results of applying the methods to some example models.

2. Approximate Geometric Regularities

We describe certain geometric regularities that are approximately present in a B-rep

model in terms of similarities. From a global point of view this leads to approximate

symmetries as similarities between the model and isometric images of the model,

which are discussed in [17]. This can be expanded to partial symmetries requiring

that only a subset of the model is approximately symmetric or that the model can

be extended in a well-defined way to make it symmetric.

Local regularities are based on properties of B-rep model elements like faces,

edges and vertices, which are represented by typed feature objects. The type is

defined by the property the object describes. A feature object is handled separately

from the B-rep model but refers back to the element(s) which generated it. For

instance, we have directional feature objects arising from the normal of a plane,

and the axis of a cone or cylinder. The radius of a cylinder and the semi-angle of



Approximate Geometric Regularities 5

a cone form two other types of feature objects. Note that a single model element

can generate several different feature objects of various types, which may not be

independent of each other. Further feature objects can be derived by combining

simple feature objects like the apex of a cone and the direction of its axis to form

an axis feature object. Such axis feature objects may generate intersection points

as further feature objects.

A list of basic feature objects is given in Table 1. The feature objects obtained

from a B-rep model element depend on its geometry and its boundary. Note that we

handle the feature objects arising from edges as optional since they do not always

provide additional information about the model, and may sometimes create an

unnecessarily large number of feature objects. We discuss the feature objects along

with related regularities in detail below, and also add additional derived feature

objects as appropriate.

We define and detect approximate geometric regularities in terms of similarities

between feature objects. For one sort of regularity, we compare feature objects of

the same type to derive sets of similar feature objects. For instance, we find parallel

directions using directional feature objects. Another sort of regularity identifies

special values for feature objects, by comparing them with predefined values, e.g.

a length which is an integer. The feature objects are elements of a feature space

defined by the feature object type. For instance, directional feature objects are

represented as points on the unit sphere with antipodal points identified, which is a

representation of the real projective plane P
2. We seek (partial) symmetries of the

feature objects in the feature space, e.g. for the directional feature objects we try to

find n points regularly arranged on a circle in P
2 such that we have an approximate

n-fold rotational symmetry.

2.1. Common Geometric Regularities

We surveyed about 600 mechanical components to determine common geometric

regularities which are suitable for beautification [3]. Various objects like small

engine parts, fittings and brackets for optical systems, plastic fittings, caps and

connectors, sliding fittings for cupboards, a general selection of CAD models from

online repositories and company catalogs, and parts from other surveys were re-

viewed. The parts chosen had low to medium complexity, i.e. less than about 200

faces and their geometric properties were significant for their application. They

were also physically small enough to be put on a typical 3D scanner, which means

that they fit inside a 50cm cube, and were light enough to man-handle onto the

scanner bed. The features were large enough (bigger than about 5mm) to provide

sufficient data to be able to properly fit surfaces, and there were no deep cavities

that could not be probed by a 3D laser scanner.

About 97% of the parts exhibited important geometric regularities which could

be classified using our similarity concept. This justifies our approach of trying to

exploit such regularities to improve the quality of reverse engineered models. We list
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Directions Parallel directions. 5
Directions which have the same angle relative to a
special direction.

4

Symmetrical arrangements of directions. 4
Axes Aligned axes. 3

Axes intersecting in a point. 3
Parallel axes arranged along lines and grids with reg-
ular distances between them.

3

Parallel axes arranged symmetrically on cylinders. 2
Positions Equal positions. 2

Equal positions under projection. 3
Regular distances between positions arranged on a
line or a grid.

3

Scalar Parameters Equal scalar parameters. 5
Special scalar parameter values. 3
Simple integer relations between scalar parameters. 4

Loops Equal loops independent of scaling. 4
Surface Types Surface is approximately a plane or a cylinder. —

Table 2. Common Geometric Regularities with their Estimated Frequency.

common regularities for which we present analysis methods in Table 2. The number

in the last column indicates how common the particular geometric regularity is with

5 being nearly always present to 1 being rare as determined manually (except for

surface types, see below).

We look for parallel directions and directions making the same angle to a special

direction. For instance, the directions could all be orthogonal to a special direction

which means that they lie in a plane, or they could have some other angle to the

special direction which makes them lie on a cone. In addition these directions could

be arranged symmetrically in the plane or on the cone as indicated in Figure 3.

Some of the directions can be associated with positions, and thus produce axis

feature objects. The positions are obtained from vertices, apices of cones, centres of

spheres and tori, etc. We also look for aligned axes, and their common intersection

points. Furthermore, parallel axes could be arranged along lines and grids with equal

distances between them or they could be arranged symmetrically on a cylinder.

For positions alone we seek equal positions, and positions which are equal when

projected onto a special plane or line derived from the main directions in the model.

In addition positions may be arranged regularly on a line or a grid with equal

distances between them.

Scalar parameters from faces and edges are either lengths or angles. For each

type separately we seek similar parameter values, and look for special values in-

cluding integers and simple fractions. We also try to find simple integer relations

between pairs of scalar parameters of the same type, i.e. relations of the form
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Fig. 3. Symmetrically Arranged Directions

n2p1 = n1p2 with the parameters pl and some integers nl.

Furthermore, we present a method to find similar polygonal loops independent

of a scaling factor which could be generalized to detect similarities between loops

with curved edges.

Finally we consider changing surface types of some faces. For example, a large

radius cylindrical face is similar to a planar face and may have been incorrectly

classified as planar. As misclassification is a problem of the model building software

and not a regularity of a real part, no frequency has been determined.

3. Detecting Similarities as Cluster Hierarchies

Before we discuss specific regularities, we introduce some general methods to find

similarities. Simple regularities are determined by finding similar feature objects.

Often these similarities are the first step towards more complex regularities. We

detect them using a hierarchical clustering algorithm. From the cluster hierarchy

we extract distinct tolerance levels and a maximal tolerance level, which we use to

simplify it.

Depending on the regularity type, we select a similarity measure δ to indicate

how close two feature objects are to each other when clustering. For a feature space

X, δ is defined as a symmetric, non-negative function δ : X × X → R
+
0 , such that

x1 = x2 implies δ(x1, x2) = 0. We call two feature objects x1, x2 ∈ X ε-similar

(with respect to δ) if δ(x1, x2) < ε, (ε ∈ R
+). This is sufficient for a measure to

decide if a feature object is close to a special feature object. In order to get stable

results from the clustering algorithm, the similarity measure should be a similarity

metric, i.e. it should also fulfil the triangle inequality and δ(x1, x2) = 0 should imply

that x1 = x2.

To represent clusters of similar feature objects by a single feature object, we

need an averaging method avg to combine two feature objects of the same type.

Given two ε-similar feature objects x1 and x2 of the same type and two positive

weights ω1, ω2, it generates a new average feature object xavg = avg(x1, ω1, x2, ω2),

which represents the clusters of x1 and x2 such that δ(xavg, xl) < ε, (l = 1, 2).

Given a set of feature objects, a similarity metric δ, an averaging method avg,

and some tolerance value ∆T , the hierarchical clustering algorithm should create

a hierarchical structure of clusters such that each cluster is either the union of its

sub-clusters or a simple set of feature objects and the top-level cluster is the whole
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set. We call a cluster which consists only of feature objects a base cluster. Each

cluster Ck should be represented by an average feature object ck and a tolerance

tk, which is the maximum distance of the elements in the cluster from the cluster

average with respect to δ. Furthermore, the average feature objects representing

two different clusters Cl, Ck must be at least ∆T + 2max{tl, tk} apart, i.e. the

clusters should be at least ∆T apart from each other. Each cluster in the cluster

hierarchy contains feature objects that are close to each other at some tolerance

level and at the same time are sufficiently distinct from other clusters. Note that

we do not limit the number of clusters, but generate as many clusters as required.

A variety of approaches exist to the clustering problem [18, 19]. The most com-

mon approach is the agglomerative (bottom-up) technique. Initially each element

represents a cluster with tolerance 0. We start with the smallest value of δ(cl, ck)

representing the closest pair in the current set and combine the two elements to give

a new element cj representing a cluster which replaces cl and ck. This is repeated

until only one element remains. A brute force solution searching for the closest ele-

ments each time requires O(n3) time for n elements. Note that there are alternative

numerical [20] and top-down [21] techniques.

To improve the brute force approach we use a distance matrix containing the

distances between the feature objects and maintain a quad-tree like data structure

to keep track of the closest pair [22]. We store the distances δ(cl, ck) between the

elements cl and ck representing clusters in a matrix D for l < k. The elements are

grouped arbitrarily into pairs (cl, cl+1) and the distance between two pairs is defined

to be the minimum distance between the four elements of the two pairs. These

pairs define a new closest pair problem in a matrix of half the size. Continuing this

recursively we get the closest pair in D as the element left in the last matrix at the

root of this structure. From there we can extract it and update the matrices. After

initializing we have to update at most two rows and two columns of each of the

matrices for each update operation. Hence, this clustering method requires O(n2)

space and time assuming that δ and avg require constant time and space.

In order to get a hierarchical structure fulfilling our special requirements for the

distance between the clusters we have to take care when combining two elements cl,

ck representing clusters with the tolerances tk ≥ tl. If d0 = δ(cl, ck) − 2min{tl, tk}
is smaller than ∆T , both clusters are merged into a single cluster. Otherwise, if

d1 = δ(cl, ck)− tl− tk is larger than ∆T , both clusters are sufficiently far apart from

each other and they become two sub-clusters of a new cluster. If d1 is smaller than

∆T , then, while d0 indicates that the clusters are sufficiently distinct, they are too

close with respect to their tolerances and thus we make Cl a sub-cluster of Ck.

3.1. Simplifying Cluster Hierarchies

As all feature objects are combined into a single top-level cluster, the hierarchy

contains clusters at high tolerance levels which are not likely to represent a desired

regularity. While we require the average feature objects of the clusters to be suf-
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ficiently distinct from each other, we do not create clusters at distinct tolerance

levels. Experiments with setting a maximum tolerance lead to reasonable results,

but only for simple objects was there a tolerance level which distinguished exactly

between desired and unwanted regularities, and a large number of tolerances to

detect different regularity types were required [15, 16]. In general the number of

unwanted regularities could only be minimised, but not avoided unless desired reg-

ularities were dropped as well. As this means we have to make a decision about

which regularities are used at a later stage in most cases, we drop the idea of using

maximum tolerance levels and instead simplify the cluster hierarchy by determining

the distinct tolerance levels within the cluster hierarchy and discard clusters above

the tolerance level where the largest jump between the tolerance levels occurs. Us-

ing merit functions and geometric reasoning the subsequent steps can employ the

simplified hierarchies to make consistent decisions about which regularities to in-

clude.

For simplification we use the constant ∆T from above to distinguish between

tolerances. Let {tl} be the set of cluster tolerances in the hierarchy such that

t0 < t1 ≤ t2 ≤ · · · ≤ tn with t0 the largest cluster tolerance smaller than ∆T or 0,

if no such tolerance exists. Let the first tolerance level T0 be t0. For l = 0, 1, 2, . . . ,

we remove tl from the list of tolerances if its distance to the last tolerance level

Tk is smaller than ∆T . Otherwise, it is used as a new tolerance level Tk+1. This

creates distinct tolerance levels {Tk} ⊂ {tl} that represent tolerance jumps larger

than ∆T . For each cluster in the hierarchy we determine the smallest Tk which is

larger than the cluster tolerance. If this Tk is the same as the one determined for

its sub-clusters, the sub-clusters are merged with the parent cluster. This results

in a cluster hierarchy where there is at least one Tk between the tolerances of the

sub-clusters and their parent.

To detect the largest jump between the distinct tolerance levels we need an

approximation Tm for the largest possible tolerance level, which is automatically

derived from the initial model (see below). Tm is required since all feature objects

may be similar to each other, in which case the largest tolerance jump is above the

largest tolerance of the clusters. We add Tm as the last element to the ordered set

{Tk} unless one of the Tk is larger than Tm, and find the index j of the maximum

of tolerance jumps δk = Tk+1 − Tk. Then clusters with tolerances larger than Tj

are removed from the hierarchy.

Figure 4 shows an example for clustering points in the plane (a) and the simpli-

fied cluster hierarchy (b). The simplification process removed some of the distinc-

tions at small tolerance levels as well as an intermediate cluster and the top-level

cluster.

For hierarchical clustering we only need one tolerance ∆T , which is either a

length tolerance ∆TL or an angular tolerance ∆TA for most regularities discussed

below. By increasing ∆T , feature objects are more likely to be judged the same.

Tm is automatically derived from the model. Let Lmax be the largest length present

in the model. Then an appropriate Tm for lengths is Lmax/2. Since we identify
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(a) (b)

Fig. 4. Example for Hierarchical Clustering and Simplifying the Cluster Hierarchy

opposite directions, our angles are in the interval [0, π/2] and thus Tm = π/4 is

appropriate for angles.

To find regularities as similarities we first create a hierarchical cluster structure

of appropriate feature objects and then simplify the hierarchy so that the remaining

clusters are at distinct tolerance levels and clusters at very large tolerance levels

are removed. The simplified hierarchy represents possible similarities between the

feature objects at different tolerance levels.

Depending on the feature object type, further consistency checks can be used to

decide if a cluster represents a regularity. For instance, an intersection point of n

axes should be a cluster of n(n − 1)/2 intersections of axis pairs. For some feature

object types we can also recompute the average feature objects for the clusters to

better fit the elements of the cluster before the simplification step.

We discuss clustering below for each of the feature object types, together with

specialised methods for special values and symmetries in the feature spaces.

4. Directions

We extract directions such as normals of planes and directions of cylinder and cone

axes from faces and edges of a B-rep model as indicated in Table 1. The direc-

tions are represented as points on the unit sphere with antipodal points identified,

i.e. opposite directions are considered to be equal. This direction space is the real

projective plane P
2. In this context we can describe regular arrangements of direc-

tions as points and circles in P
2. Further regularities are derived from symmetrical

arrangements of the points on the circles in P
2.

Approximately parallel directions are approximately equal points in P
2. We

find them by clustering the directions with a similarity measure that compares

the (smaller) angle between two directions d1 and d2, δ(d1, d2) = arccos(|d1
td2|).

Furthermore, we define the weighted average between two directions d1 and d2.

If d1
td2 is non-negative, i.e. d1 and d2 point roughly in the same direction, the

weighted average is (ω1d1 + ω2d2)/(ω1 + ω2) with the positive weights ω1, ω2. If

d1
td2 is negative, the weighted average is (ω1d1 − ω2d2)(ω1 + ω2). We create the

cluster hierarchy using ∆TA.

Before the cluster hierarchy is simplified we improve the average directions repre-
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senting the clusters in a least squares sense. Let dl, (l = 1, . . . , n), be the directions

of a cluster including all directions from its sub-clusters. We find a new average

direction x by minimizing the error of the linear system dl
tx = 1, (l = 1, . . . , n), in

a least squares sense using the singular value decomposition of the column vector

matrix [d1, . . . , dn]. Note that the dl all must point in the same half space as the

original average direction x0, which can be achieved by replacing dl with −dl if

dl
tx0 < 0.

Finally, the cluster tolerances are recomputed and the cluster hierarchy is sim-

plified using Tm = π/4. Even if the number of directions extracted is large, we

expect to find only a limited number of different directions. The cluster hierarchy

could still contain clusters at large tolerance levels which would usually require a

change of the combinatorial topological structure.

In the following sub-sections we discuss the arrangements of directions repre-

sented by circles in P
2 and regular arrangements on these circles. Directions that

are on a great circle of the sphere represent directions that are orthogonal to another

direction and thus lie in a plane, which we call direction plane. Directions that are

on a small circle of the sphere represent directions that lie on a cone, which we call

direction cone. In addition the arrangement of the directions in a plane or a cone

may be symmetric. We call these planar or conical angle-regular (see Figure 3).

4.1. Regularly Arranged Directions

We first try to find direction sets that lie on circles in P
2. A set of directions {dl}

on a circle satisfies the equation system |dl
tx| = a, where x ∈ P

2 is the centre of

the circle. If a = 0, we have a direction plane with normal x and if a ∈ (0, 1), we

have a direction cone with axis x. Note that for a plane, taking the absolute value

of dl
tx is not required, and we can drop it for a cone if we ensure that all directions

have the same orientation relative to x.

To find the sets of directions lying in a direction plane, we cluster the normals

representing all direction planes generated from each pair of linearly independent

directions. The clustering is done in the same way as clustering parallel directions,

but we employ the average directions from the parallel direction base clusters instead

of all directions. This not only reduces the number of normals generated, but also

avoids cases where the directions are approximately linearly dependent.

Before we simplify the cluster hierarchy, we recompute the average direction

plane normals using a least squares error method. For directions dl, (l = 1, . . . , n),

in a plane with normal x, we get the linear system dl
tx = 0, (l = 1, . . . , n), under

the constraint ‖x‖ = 1. Thus we minimize ‖Dx‖ for x ∈ P
2 with the column vector

matrix D = [d1, . . . , dn]. Let USV t be the singular value decomposition of D. As U

and V are unitary they do not change the norm of a vector. Thus ‖Dx‖ is optimal

if V tx = el where el is the l-th standard basis vector corresponding to the smallest

singular value of D, i.e. the solution to the least squares problem is x = V el. After

the average and the tolerances have been recomputed for each cluster, the cluster
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hierarchy is simplified using Tm = π/4.

A direction plane cluster is consistent if it contains n(n − 1)/2 plane normals

generated from n parallel direction base clusters. If a cluster is not consistent, we

either combine the cluster with its parent if it has one or remove it completely.

However, we also have to consider the parallel direction cluster hierarchy. Consider

a direction plane cluster consisting of n plane normals plk generated by the parallel

direction base cluster pairs dl and dk. This cluster is consistent if there are n(n−1)/2

different plk. If this is not the case, we count the number m of direction pairs dl,

dk for which there is no plk in the cluster, but which are considered to be parallel

in the parallel direction cluster hierarchy at a higher tolerance level, still smaller

than the tolerance of the direction plane cluster. We still consider the cluster to

be consistent if there are n1(n1 − 1)/2 different plk for n1 = n − m, as there are m

parallel direction pairs.

To find direction cones we have to consider an angle and a direction. For

each triple d1, d2, d3 of directions representing parallel direction base clusters,

we generate a direction cone with direction c and semi-angle α by solving the

linear system dl
tx = 1, (l = 1, 2, 3). From this we get the cone parameters as

α = arccos(|xtd1|/‖x‖) and c = αx. As the dl are in general only approximations of

the directions, we avoid finding nearly flat direction cones that actually represent

direction planes or direction cones that represent approximately parallel directions

by rejecting cones for which α < ∆TA or |π/2 − α| < ∆TA.

One way to find sets of directions on a cone would be to cluster the generated

direction cones as pairs (cl, αl) [16]. Better results can be achieved if we consider

the angles separately creating a cone angle hierarchy and use this hierarchy to guide

the clustering of cone directions. To cluster the angles, we generate a cone angle

feature object for each direction cone and cluster them using ∆TA and the similarity

measure δ(α1, α2) = |α1 − α2|. The cluster hierarchy is simplified using Tm = π/4.

We do a depth first traversal of the angle cluster hierarchy, clustering the cone

directions at the lowest level of the angle hierarchy first and reporting the results

to higher hierarchy levels. At the lowest level in the hierarchy we simply collect all

cone directions belonging to the angles combined in that cluster and cluster them

in the same way as the direction planes. For each of the clusters we check if they

are consistent. For direction cones this means that n directions cones have to be

generated by n(n−1)(n−2)/6 different parallel direction base clusters. Analogously

to the direction plane consistency check, we also check if directions on the cone are

approximately parallel at higher tolerance levels in the parallel direction hierarchy.

Consistent clusters are preserved and marked as consistent. Other clusters which

do not fulfill the consistency condition are marked as such and kept at the top level

in the current hierarchy.

When moving upwards in the angle cluster hierarchy the clustering results of

lower levels are combined into a single set of clusters and the clustering of the

cone directions is continued using them. At each level the clusters are checked for

consistency and only the consistent ones are preserved, while the others are simply
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reported to the next higher angle cluster level until the top-level angle clusters

are reached. When combining clusters at higher levels, those which are marked

consistent are always added as sub-clusters to new clusters.

This results in a direction cone cluster hierarchy which is created by only com-

paring the directions of the cones. To avoid mixing cones with different angles,

the angle clusters are used to ensure that only cone directions with similar angles

are combined at different tolerance levels. The direction cone cluster hierarchy is

simplified by considering the direction tolerances of the clusters using Tm = π/4.

We finally recompute the average direction cone representing a cluster built from

the direction base clusters dl by solving the linear system dl
tx = 1, (l = 0, . . . , n),

in a least squares sense using singular value decomposition to give the average semi-

angle and the average cone direction.

In general, direction cones alone do not represent an important regularity, espe-

cially as a model can easily create many different direction cones. The main reason

for detecting direction cones is to find symmetrical arrangements of directions as

discussed in the next sub-section.

4.2. Symmetrically Arranged Directions

Exploring direction planes and cones in more detail may reveal symmetries in the

arrangements of the directions (see Figure 3). Given a set of directions in a plane

or on a cone we look for subsets such that the angles between the directions in

this subset are integer multiples of a base angle β, i.e. the directions as points

on the unit sphere are arranged equispaced around a small or great circle. The

subsets can be incomplete in the sense that not all multiples of β need be present.

We present an algorithm to detect these symmetries in direction planes and later

discuss modifications for direction cones and other similar symmetries.

Let {dl} be a set of directions in a direction plane and let αlk be the angle

between dl and dk. We call the directions dl angle-regular if there is a β ∈ {αlk}
such that β = π/n for n ∈ N and for each αlk there is an integer p such that

αlk = pβ. As we identify opposite directions we only need to consider angles in

the interval (0, π]. We do not require that all multiples of β are present, but based

on which multiples are present we decide whether an angle-regular set is reported

as a regularity. We call the directions approximately angle-regular if the αlk are

approximately integer multiples of β.

At present we only look for base angles which are (approximately) present as

an angle between directions. For instance, if we have two approximate angles 2π/6

and 5π/6 relative to some direction, the underlying base angle π/6 is not detected.

However, the angles between the involved directions of such an arrangement are

found as special angle values. An efficient implementation of such cases is left as

future work. One might, for instance, employ approximate integer relations.

We check the directions dl from the direction plane clusters for angle-regular

arrangements. As the direction planes were created using the parallel direction
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I. Compute the angles αlk between directions dl and dk for l < k < m, where m
is the number of directions dl.

II. For all reference directions dk with k < m and for all angles αlk with k < l ≤
m:

1. Find the candidates βkn = π/n such that n < Nmax and |βkn−αlk| < t1.

2. Add βkn to the list of candidates for dk unless it is an integer multiple
of one of the βkn0

already in the list.

3. If βkn has been added to the list, remove any βkn0
from the list which is

an integer multiple of βkn.

III. For each reference direction dk with k < m−1 consider the subset {dk, . . . , dm}
and for each candidate βkn with n = 1, . . . , Nk, where Nk is the number of
base angle candidates for dk:

1. For each object dj with k < j ≤ m:
A. If for f = αjk/βkn, we have t = | round (f) βkn − αjk| < t1, then

record dj to be a round (f) multiple of the base angle. If there is
already a direction d as the multiple round (f), then only replace d
by dj if the tolerance of dj is smaller than the tolerance of d.

2. If the planar angle-regular subset found has at least two elements:
A. If we already found a subset with a base angle which is a divisor or a

multiple of the base angle of this subset, the two sets have common
directions and the error between the two initial directions is smaller
than t1, then merge the two subsets and adjust the base angle.

B. Otherwise, create a new planar angle-regular set with base angle
βkn.

Algorithm 1. Finding Planar Angle-Regular Direction Sets

clusters, the dl are the average directions of these clusters. To avoid ambiguous

angle-regular arrangements due to the tolerances involved, we derive a maximum

Nmax for the allowed n values of the base angles. Let t1 be the sum of ∆TA and

the the maximal tolerance of the parallel direction clusters and the direction plane

cluster. If n is larger or equal than Nmax tol = floor (π/(4t1)), angle regularities

with base angles π/n and π/(n + 1) cannot be distinguished at tolerance level t1.

Thus we set Nmax = min{Nmax tol, Nmax user/2}, where Nmax user is provided by

the user to compensate for small tolerance values. Even if the tolerances are small

an n larger than about 36 (a base angle of 10◦) may not be of interest. We divide

Nmax user by two so that we can also use it for the conical case where opposite

directions in the plane cannot be considered equal and thus we have twice as many

directions to consider (see below).

Given a set of m directions {dl}, we look for a minimum number of subsets

which are approximately angle-regular with respect to t1. The algorithm for this

consists of three main steps. First we compute all angles αlk, (k < l ≤ m), between

the directions. From these angles we derive a set of possible base angles βkn for each

dk, which we call the reference direction for the angles βkn. Note that more than
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one base angle candidate can be close to a single αlk depending on the tolerances.

In the third step we try to find angle-regular subsets by checking the angles αjk for

each reference object dk and all base angle candidates βkn (see Algorithm 1).

To compute the angles between the directions in step I, the reference object dk

is used to choose the angle that lies consistently to the right of the reference object

dk with respect to the direction plane normal q (see Figure 5). With v = q × dk we

have

αlk =

{

arccos(dk
tdl) if vtdl ≥ 0,

π − arccos(dk
tdl) if vtdl < 0.

(1)

This allows us to identify which of the kπ/n, (k = 0, . . . , n−1), directions is occupied

by a particular dj for some n ∈ N.

In step II we look for base angle candidates βkn for each set {dk, . . . , dm} refer-

enced by dk. We have to check the relations between the base angles added for a

single reference object to ensure that we use the smallest base angles and eliminate

multiples.

In step III we check each set {dk, . . . , dm} for k < m − 1 for angle-regular

subsets with respect to the candidates βkn found in the previous step. The reference

object is always an element of an angle-regular subset of the set. Thus, for each

βkn we seek approximately angle-regular subsets of {dk+1, . . . , dm}. A dl for l ∈
{k + 1, . . . ,m} belongs to the angle-regular subset, if, for fl = αlk/βkn, we have

| round (fl) βkn − αlk| < t1. However, we only allow one direction for each multiple

of βkn, as the directions have already been clustered into parallel directions. Hence,

if we have two objects dl1 and dl2 for which p = round (fl1) = round (fl2), we use

the one that is closer to p, i.e. the one for which |p − flj | is smaller.

Once we have found an angle-regular subset for a particular base angle and

reference direction, we first check if that subset can be merged with a set found

before. This is the case if one of the base angle candidates of the two subsets is a

multiple of the other, the subsets have common elements and the error between the

two reference directions is smaller than t1. If there is no such set, we create a new

regularity. While the algorithm has been designed to avoid cases where sets have

to be merged, they cannot be avoided completely due to the approximate nature of

the problem. Comparing the sets rather than the relations between the base angle

candidates is more robust and therefore preferred.
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After the angle-regular subsets have been detected, we further check the distri-

butions of the directions in each angle-regular subset. For a base angle π/n we have

possible directions at positions 0 to n − 1 (modulo n) and we check if every m-th

position is occupied starting with some direction in the set. m should be a divisor of

n and we seek a minimum number of different m. We mark the occupied positions

in a Boolean array and check for all occupied directions and all divisors m of n if

every m-th position is occupied in the array. This results in a matrix {rml} where

rml, (l < m), indicates if every m-th position is present starting with the direction

at position l. We check all directions with the smallest m first, such that we detect

redundant arrangements in the matrix and only report the smallest non-redundant

m.

If any of the computed αlk are not involved in an angle-regular subset, we check

whether we can find a special value for this angle, using the algorithm to detect

special angle parameters described in Section 7.

The symmetrical arrangements of directions in a cone are detected in a simi-

lar way to the planar case. We project the directions {dl} in the cone onto the

plane through the origin orthogonal to the axis of the cone. Due to the projection,

opposite directions on the plane actually represent different axis directions on the

cone. Therefore, we have to use base angles of the form 2π/n in the angle-regular

definition. However, each axis direction on the cone can still point in one of two

directions, and so we always project the direction pointing to the same side of the

plane orthogonal to the cone normal c, i.e. dl
tc > 0.

As opposite directions are no longer identified in this case, the maximum n for

the base angles is Nmax = min{Nmax tol, Nmax user} with Nmax tol = floor (π/(2t1)).

The tolerance t1 is derived in the same way as for the planar case. Note that

three axis directions forming an orthogonal system generate a special conical angle

regularity with semi-angle arccos(1/
√

3) and angle π/2 between the axis directions.

5. Axes

For all directions associated with a position, i.e. which represent axes, we consider

positional arrangement as well as the direction information. We seek approximate

intersections of axes, and regular arrangements of parallel axes.

For cylinders, cones and tori we combine the directions with the root point of

the surface to get the axis. The root point of a cone is its apex and the root point

of a torus is its centre. The root point of a cylinder could be defined specifically

as the point on its axis closest to the origin or the centroid of the model. For our

purposes it is enough to choose an arbitrary point on the axis. For directions derived

from edges, we use a special point of the edge. For elliptical edges we choose the

centre. For straight edges we could choose the mid-point of the edge. Again for our

purposes it is enough to choose an arbitrary point on the edge.

For planar faces we do not have an obvious root point as for other surface types,

but we can define one by considering its boundary loops. Suitable root points are
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the average position of the vertices around each loop, and the centre of the convex

hull of each loop. Note that using several such root points leads to multiple axes for

each planar face. Other possibilities exist for defining root points of planar surfaces,

or for directions defined by more general curve types.

For each pair of axes we can compute an approximate intersection point as the

centre of the shortest line between the two axes. Note that this point is only an

approximate intersection point if the axes nearly meet. However, we consider all

such points. This means an intersection point is a position p in R
3 with an associated

length value specifying the distance between the two axes. Also note that we use

actual axes for this and not any averages representing parallel direction clusters.

Furthermore, we only intersect axes that belong to different direction base clusters,

to avoid trying to intersect approximately parallel axes.

The intersection points are clustered using the Euclidean distance as a similarity

measure and the length tolerance ∆TL. The averaging method used for clustering

is the weighted average of two points in R
3. The resulting intersection point cluster

hierarchy is simplified using Tm = Lmax/2. After this we check if the distances

between the axes are consistent with the cluster tolerances. We start with the

clusters lowest in the hierarchy and move upwards from there. If a cluster contains

an intersection point feature object with an axis distance larger than the sum of

the cluster tolerance and ∆TL, the intersection point is moved to the parent of the

cluster, if there is one, or it is removed from the hierarchy.

Next, we check if each of the clusters in the hierarchy is consistent. If it is not

consistent the cluster is removed from the hierarchy and either merged with its par-

ents, or only its sub-clusters are left, if there are any. An axis intersection cluster

which contains n different axes is consistent if it has m = n(n − 1)/2 intersection

points of axis pairs. However, as some of the axes might be parallel, some inter-

section points might not be present, so the cluster is still consistent if it has only

m− p intersection points where p is the number of parallel axis pairs in the cluster

with respect to ∆TA in the parallel direction cluster hierarchy.

We are also interested in regular arrangements of parallel axes. Each cluster of

parallel directions is considered separately, and the directions for which we have a

root point are extracted. In addition we consider the axes from conical and planar

angle-regular arrangements if an intersection position for angle-regular arranged

axes has been found. We start by exploring the axes in the parallel direction base

cluster and move up to the parents in the hierarchy. If a regular arrangement of

axes has been found in a parent cluster, it is only accepted if it is not completely

inside a single sub-cluster. Otherwise it should have been detected earlier in the

sub-cluster.

Finding regular arrangements of axes can be interpreted as finding regular ar-

rangements of the axis positions projected on a plane orthogonal to the average

direction of the parallel direction cluster. To find a position for this plane we

project the axis positions on a line through the origin in the average direction and

take the average of these projections. By clustering the projected points using ∆TL,
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we create a cluster hierarchy of approximately aligned axes. If the parallel direction

cluster used to detect the parallel axes has sub-clusters, we only accept aligned axis

clusters which contain axes from different sub-clusters. The resulting clusters repre-

sented as points in a plane are examined further to detect if the points lie on a line,

a grid, or a circle, and are regularly spaced, as described in following sub-sections.

5.1. Parallel Axes along Lines and Grids

We detect parallel axes along lines and grids using the projected points from above.

For each pair of projected points, we create a line. These lines are clustered into

approximately parallel lines and in each cluster of parallel lines we group the points

generating the lines into point sets lying approximately on the same line. Then

we check whether the points on the average lines are regularly spaced. By further

examining pairs of approximately orthogonal groups of regularly spaced, parallel

lines, we find the grids.

In the first step we generate a line for each pair of points p1, p2 in the plane. To

cluster the lines into parallel lines, we represent the lines by vectors d = p2−p1. For

two such vectors d1, d2 with ‖d2‖ ≥ ‖d1‖, we use the similarity measure δ(d1, d2) =

‖d1 − (d1
tu)u‖ with u = d2/‖d2‖, and ∆TL as the cluster tolerance. Using the

distance between d1 and its projection on d2 instead of the angle between the two

vectors allows us to take the distance between the points into account. If we used

the angle between the vectors alone, two points which are on different parallel lines

in a grid and sufficiently far apart might generate a line which is approximately

parallel to the grid lines. For the same reason, we also define the weighted average

for clustering in terms of the lengths,

avgpl(d1, ω1, d2, ω2) = w

(
d1

‖d1‖
ω1 + sign(d1

td2)
d2

‖d2‖
ω2

)

(2)

with w = (‖d1‖ω1 + ‖d2‖ω2)/(ω1 + ω2)
2.

For each parallel line cluster, we solve the linear system dl
tx = 1, (l = 0, . . . , n),

in a least squares sense where the dl are the normalised direction vectors of the

parallel lines in the cluster. The solution x is used as the average direction for

the parallel line cluster and the cluster tolerance is updated. After this the cluster

hierarchy is simplified using Tm = Lmax/2.

The clusters represent sets of parallel lines, but we still have to group the points

which generate these lines to find distinct lines on which the points lie approxi-

mately. If we have two approximately parallel lines each generated by two points,

we can consider these points to lie approximately on the same line if (at least) one

of the points is used to generate both lines. In general we can use this to find

the distinct lines by detecting sets of points connected by lines in a parallel lines

cluster. We start with pairs of points each one representing a single parallel line in

the cluster. As long as we can find two sets of points which have at least one point

in common we merge the sets.
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Each of the point sets representing points that are approximately on a line is

further examined for regular arrangements of the points on the line, i.e. we look

for base distances such that the distances between a subset of the points on the

line can be represented as integer multiples of a base distance, analogously to the

method used for angle-regular arrangements (Algorithm 1). The main difference

is that we do not have a special value such as π/n for the base distance, but any

distance could be a base distance.

After these steps we have sets of parallel lines with points on them where some

subsets of them might be marked as distance-regular. To generate grids, we search

for orthogonal pairs of distance-regular parallel line sets. Lines which are not

distance-regular or for which we could not find an orthogonal partner are noted

as simple regularities. For the orthogonal pairs of line sets we try to generate

regular grids.

Each orthogonal pair is handled separately. First the two sets of parallel lines

in the pair are grouped into lines with compatible distance-regular arrangements.

In the following approximate always refers to an equality within the corresponding

parallel lines cluster tolerance plus ∆TL. Two parallel lines belong to the same

distance-regular group if one of their base distances is approximately a multiple of

the base distance of the other and the distance between the two reference points

on the line in the parallel direction is approximately an integer multiple of the base

distance. This produces two lists of groups which contain compatible distance-

regular lines. Corresponding elements of each group form an orthogonal pair of

compatible distance-regular lines. These pairs generate grids in such a way that the

distances between the lines in one group fit on the distance-regular arrangement of

the other group and vice versa.

The generated grids are not unique in the sense that various diagonals of a grid

can form a distance-regular line, and combining orthogonal pairs of these diagonals

can form additional grids. Thus, we have to find and remove such diagonal lines

and grids, and add additional points on them to the fundamental grid. A line is

a diagonal of a grid if the reference point of the line lies on the grid and the base

distance dl of the line can be generated from the two base distances d1 and d2 of

a grid. Let Dj be the unit vector representing the directions for the distance dj in

the grid and Dl be the direction of the line. The line is a diagonal of the grid if

dlDl ≈ round

(
dlDl

tD1

d1

)

d1D1 + round

(
dlDl

tD2

d2

)

d2D2. (3)

Another grid with base distances d3, d4 and the corresponding directions D3 and

D4 is a diagonal of the fundamental grid if its reference point is on the grid and

the distances are compatible. Without loss of generality, we assume that d2
1 + d2

2 <

d2
3 + d2

4, i.e. the diagonal of the second grid is longer than the diagonal of the first

one. Then the distances of the two grids are compatible, if Equation (3) holds for

l = 3 and l = 4. The grid with the shorter diagonal is the fundamental grid and

we eliminate the one with the longer diagonal. Figure 6 illustrates a diagonal grid
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Fig. 6. Combining a Fundamental Grid with Diagonal Lines and Grids

marked with dot-dashed lines and a distance-regular diagonal line drawn solid on a

fundamental grid marked with dashed lines. Only the positions of the fundamental

grid which are also on the illustrated diagonals are marked.

Any distance-regular line that is not combined to give a grid or removed as

a diagonal of a grid is noted as a regularity. In addition we also check whether

distance-regular lines and grids have a base distance which is a special value (see

Section 7).

5.2. Parallel Axes on Cylinders

Approximately parallel axes can be arranged equally spaced around a cylinder. For

cylinder, cone and torus axes we check if they approximately lie on a cylinder and

are symmetrically arranged. For this we can use the projections of the root points

onto a plane and decide if the points lie on circles. We use the base clusters of

aligned axis clusters and remove any clusters which do not contain at least one

cylinder, cone or torus axis.

In some cases, a set of points may lie both on a grid and on a circle, so we only

consider points derived from axes which do not lie on a large grid, having more than

5 points on it, and with enough points on each line of the grid in each direction.

For one grid direction let n0 be the maximum number of points on a single line and

let n1 be the average number of points on a line. There are enough points on each

line of the grid in this direction, if n0 > 2, n1 ≥ 3/4n0 and there are at least two

occupied lines in this direction, or n0 = 2, n1 = 2 and there are more than two lines

in this direction. This condition could be adjusted to suit other special cases, but

it helps to avoid finding many circles which are actually produced by a single large

grid.

Each triple of remaining clustered points generate a circle. We only consider

circles with radii larger than ∆TL and smaller than Lmax, and the smaller arc of the

circle described by the three points should be larger than ∆TA. For n points there

are n(n − 1)(n − 2)/6 possible circles, which can easily become too many for our

hierarchical clustering algorithm. Thus, we first group the circles by clustering their

positions and stop as soon as the distance between the pairs of average positions

is larger than some dmax. Note that we do not create a cluster hierarchy. dmax

determines how many different average positions we consider. The larger it is,
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the more possible relations between circles we take into account. We set it to

∆TL min{Lmax/∆TL, Dmax} with some user-defined limit Dmax, which should be as

large as possible with respect to the memory available.

We find similar circles by considering each group of circles separately to reduce

the amount of memory required. The circles in a group should be clustered with

respect to their position and radius. Our strategy to cluster them is similar to that

used for finding direction cones. First we create a cluster hierarchy for the radii

and simplify it using Tm = Lmax/2. Then we use the radius cluster hierarchy to

guide the clustering of the positions. A circle cluster is consistent if for n different

points in the cluster generating the circles, we have n(n− 1)(n− 2)/6 circles in the

cluster. The resulting position clusters are finally simplified using Tm = Lmax/2.

Once we have the circle cluster, we recompute a circle that fits the points in a

least squares sense. For this we minimize the function F : (c, r) 7→ ∑

l(‖pl−c‖−r)2

for the circle centre c and the radius r with the points pl. As r = 1/n
∑

l ‖xl − c‖
for a minimum of F , we actually minimize c 7→ ∑

l(‖pl−c‖−1/n
∑ ‖pl−c‖)2 using

the Nelder-Mead downhill simplex method [23].

In a similar way to finding symmetrical arrangements of directions in a plane, we

can use Algorithm 1 to find symmetrical arrangements of points around the circle.

Additionally we check for special radius values.

6. Positions

In this section we briefly discuss regularities of positions such as vertices, root points

of surfaces, and axis intersection points. Using the hierarchical clustering algorithm

for these points with tolerance ∆TL, the Euclidean distance as a similarity measure

and the weighted average between points, we seek approximately equal positions.

The clusters are simplified using Tm = Lmax/2.

The average positions of the resulting clusters could be examined further for

distance-regular arrangements on lines and on two- and three-dimensional grids in

a similar way to the previous section. However, as the points are now in R
3, not in

R
2, many additional possibilities are present, which makes a general search for such

arrangements expensive. Furthermore, finding approximately regular arrangements

which are only there by chance and are not intended is likely to happen much more

often. Thus, we limit the search to special lines and grids. The directions of these

special lines and grids are taken from orthogonal systems identified as conical angle-

regular directions, and parallel direction clusters which contain more than 1/3 of

the total number of direction features from faces.

The directions are further used to find partially equal positions. Positions are

considered to be partially equal in 2D with respect to a direction if they are equal

when projected onto a plane orthogonal to the direction. Further, they are consid-

ered to be partially equal in 1D with respect to a direction if they are equal when

projected onto a line in the given direction. Both regularities can be detected by

clustering the projected points using ∆TL. We remove clusters from the hierarchy
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which contain projected points which are as close together as the original points, as

these represent approximately equal positions detected earlier. Finally the cluster

hierarchy is simplified using Tm = Lmax/2.

As all directions in the parallel direction cluster hierarchy are considered, there

may be positions considered to be partially equal with respect to different directions.

To eliminate such ambiguous cases we compare clusters from the same partially

equal cluster hierarchy to find clusters with the same positions and remove the

cluster with the larger tolerance. Note that there is also an ambiguity between 1D

and 2D partial equality. As this does not create a contradiction, we do not explicitly

check for it.

Also note that we could look for distance-regular grids and circles in the planes

of 2D partially equal positions and for distance-regular arrangements on the lines

of 1D partially equal positions.

7. Scalar Parameters

Table 1 lists length and angle parameters as two types of feature objects describing

the geometry of B-rep model elements independently of their location or orientation.

Note that we could also add blend radii as a third parameter type derived from the

blend attributes of the edges.

We find similar parameters of the same type using the hierarchical clustering

algorithm with the angular or length tolerance ∆T , and simplify the hierarchy

according to the parameter type. The average parameter value found for a cluster

may be close to a special value. We present methods to determine if parameter

values should be replaced by special values, and to seek integer relations between

parameter values below.

Note that we do not consider dependencies between the parameters to find

special values. However, the hypothesizer and constraint solver have to consider

dependencies, as consistency rules limiting which regularities can be selected at the

same time. In a similar way, dependencies between edge parameters and surface

parameters have to be taken care of. For example, the radius of a circle which is

the boundary of the top of a cylinder has to be equal to the cylinder radius.

7.1. Special Parameter Values and Ratios

For each average parameter value p for a cluster, we seek some special values

fl(nk/mk) close to p. Here nk and mk are integers and fl : R → R is a mem-

ber of a family of functions representing the scales on which we look for simple

fractions, which depends on the parameter type. A special value is close to p if it

is within the tolerance of the cluster or the appropriate ∆T , whichever tolerance is

larger.

The functions fl are usually of the form fl : v 7→ vKl, where Kl are base units for

length or angular measurements. For length units Kl depends on the measurements

in the model and could for instance be 1.0, 0.1 or 2.54 (cm to inch conversion). For
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angles we use base units π and π/180 (degrees) and in addition the special function

ft : v 7→ arctan(v).

To find special values for some v, we seek integer pairs nk, mk for each relevant

fl such that |f−1
l (v) − nk/mk| < t0. t0 depends on the cluster tolerance tc and the

appropriate ∆T . It also depends on the scale represented by fl. For the linear fl

we set it to t0 = max{tc,∆T}/Kl to have consistent tolerance values independent

of the constant Kl. As arctan(x) = x + O(x3), we use t0 = max{tc,∆T} for ft,

which is a good approximation as long as tc is small. Note that for ft we have

the condition | |v| − π/2| > ∆TA assuming that v ∈ [−π, π], which can easily be

achieved as v is an angle. The algorithm to find the integer pairs approximating

some w = f−1
l (v) is described in the next sub-section. Note that we may have to

eliminate duplicates, if we consider multiple functions fl, e.g. arctan(1) = π/4

Furthermore, we look for simple ratios between the average cluster parameters.

For each pair of average parameters vl and vk, we seek two integers nj , mj such that

|vl/vk − nj/mj | < tr, where tr is a separate user-defined tolerance, and the clusters

have been ordered such that vl/vk ≥ 1.0. 1/1 ratios are avoided as they represent

similarities in the cluster hierarchy. We also require that the difference between the

two parameters is larger than the maximum of the two cluster tolerances. To find

the integers we use the algorithm mentioned above with w = vl/vk.

Special values determined in this way have to be handled with care by the

subsequent beautification steps. We may obtain several special values for each

parameter and while a preferred value can be chosen using some merit function,

there is no clear indication which one is the desired special value. Some special

values are particularly simple, while others may be closer to the value.

Special values might also depend on manufacturing and functional purposes. We

do not consider the former for the ideal model. For values which are not simple

rational numbers and depend on functional purposes, other specialised methods will

need to be developed. Usually any special values in the ideal model are subject to

some tolerance. If we choose values within these tolerances, the model should be

usable.

7.2. Finding Simple Fractions

We have reduced the problems of finding special parameter values and ratios to

finding a list of simple fractions approximating a real number w within a tolerance

t0. For this we assume that integer values of w are always special, and without loss

of generality we also assume that w is non-negative. As integers are always special,

we first find the closest integer a0 to w and note it as a special value if it is within

the tolerance t0. The remaining problem is to find simple fractions for the signed

remainder w0.

Finding an integer relation between real numbers, using Euclid’s algorithm for

two numbers, or the PSLQ algorithm for more than two numbers [24], and recog-

nising numerical constants [25] are related problems, but they assume that a close
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I. The function has been called as simple frac(w,n,m,s,M,neg) where w
is the value which has to be approximated by a fraction, n, m are the two
integers representing the fraction n/m found so far with the sign indicated by
s, M is the maximum denominator and neg indicates whether w has to be
added or subtracted from n/m.

II. Let a = 1.

III. While the denominator b = round (a/w) is not larger than M :
1. If b > a:

A. Let r = w − a/b.

B. If r is negative, set neg r to true and r = |r|. Otherwise neg r is
false.

C. If neg is false, the new numerator is p = nb + ma. Otherwise:
i. If nb < ma, the new numerator is p = ma − nb and s = −s.

ii. Otherwise the new numerator is p = nb − ma and neg r =
not(neg r).

D. The new denominator is q = ma.

E. Reduce the fraction p/q to simplest terms.

F. If r < t0, add sp/q to the special values list, if it is not already in it.

G. If r > t1 and sp/q was not already in the special values list, call
simple frac(r,p,q,s,M0M,neg r).

H. Let a = a + 1.

Algorithm 2. Recursive Algorithm for Finding Simple Fractions.

approximation is required. Instead, we try to find some special values not too dis-

tant from w, which are in some sense simple rather than as close as possible to

w.

A straight forward method for finding fractions within a tolerance is to determine

the numerators n for a given denominator m by multiplying w0 by all integers m =

1, . . . ,M0, where M0 is some maximum allowed denominator. If |w0 − n/m| < t0
with n = round (w0m), i.e. if n/m is within the tolerance limit, then n/m is a

suitable special fraction. However, as we also require to find fractions closer to w0,

we must use larger values for M0, which makes this method expensive.

If 1/(2t0) < m, then more than one n/m for a fixed m could be in the interval

(w0 − t0, w + t0). To avoid this ambiguity we set the maximum allowed value for m

to M0 = floor (1/(2t0)). Additionally we limit M0 by two configuration parameters

Mmin and Mmax, say 3 and 10, to avoid too small or too large an M0 if we have a

large or small tolerance t0.

An alternative to the simple method is to approximate real numbers using

continued fractions [26]. We approximate w0 by a1 = floor (1/w0) such that

w0 = 1/(a1 + w1) and continue approximating w1 and so on until wl is smaller

than some tolerance t1. While this quickly computes a good approximation, it does

not generate all special values close to w, especially as the iterative process based
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0.59 = 1/2 + 0.09
︸︷︷︸

= 1/11 [→ 13/22] − 0.000909
= 2/22 − 0.000909

= 2/3 − 0.076667
︸ ︷︷ ︸

= 1/13 [→ 23/39] − 0.000256
= 3/5 [→ 3/5] − 0.01

Table 3. Finding special values for 0.59 with t0 = 0.05, t1 = 0.01 and M0 = 5.

on the function c : x 7→ 1/x − floor (1/x) behaves chaotically [27].

Our method thus combines the simple method with the continued fraction

method to find a number of simple special values as well as some other special

values closer to w0 without checking a large number of possible denominators. This

leads to a recursive algorithm checking some fractions with the simple method at

each recursion level. On recursion level l, we have a fraction nl/ml approximating

w0 with a remainder wl. In a loop for a = 1, 2, . . . , we approximate wl by fractions

a/b with b = round (b/wl) as long as b < Ml, where Ml is a limit for the denom-

inators at this recursion level. We add each b/a to nl/ml. If this new fraction

is not already in the list of special values, we add it to the list. If the new error

wl+1 is larger than t1, we call the algorithm recursively on wl+1 with an increased

denominator limit Ml+1 = M0Ml. This increase ensures that we still find valid

approximations on higher recursion levels.

The complete recursive algorithm considering the signs of all involved values

is listed in Algorithm 2. Due to the behaviour of the function c from above, it

is more likely to find fractions with small denominators if |w0| > 0.5. As w0 is

the remainder to the closest integer, we have |w0| ≤ 0.5. Thus, we start with

w = 1.0 − |w0|, n = 1, m = 1 and the flag neg = true (otherwise we would start

with with w = |w0|, n = 0, m = 1, neg = false). M is initially M0 and s is −1 if

w0 is negative and 1 otherwise.

Table 3 contains an example for 0.59. The special values generated in the process

are marked with →. For the intermediate result 1/2, which is too far away from

0.59 to be accepted as a special value, we do one recursion step to find more special

values for the error 0.13.

Note that the algorithm can only miss special values whose denominator is larger

than M0. The precision increases with the depth of recursion. With appropriate t1
and Mmax we get the simple method as a special case.

8. Similar Polygonal Loops

As another regularity, we seek approximately equal edge loops in the B-rep model.

Our current method only considers polygonal loops. A more sophisticated system

handling all loops by considering the polygons formed from the vertices but taking

the geometries of the edges into account could be based on this system. The basic
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αkδk

Fig. 7. Representing Polygons as Distributions on the Unit Circle

idea of our method is to represent each polygon as a function and then cluster the

Fourier coefficients of these functions [28].

There are various ways to represent a polygon as a function. One way is to define

a curvature of a polygon. Let αk be the angle at the k-th vertex of the polygon with

m vertices vk such that v0 = vm and let lk be the accumulated length of the line

segments from v0 to vk. In our particular approach we use a distribution (see [29]

for details) f of the form f =
∑m−1

k=0 αkδk. δk is the Dirac distribution defined on

the unit circle T with the singularity at 2πlk/lm such that 〈δk, φ〉 = φ(2πlk/lm) for

φ ∈ C∞(T) where C∞(T) is the space of infinitely differentiable functions on T in

the complex plane identified with the infinitely differentiable, 2π periodic, complex

functions on R. This means that we project the polygon on the unit circle and

represent the projection as a sum of distributions αkδk, which represent the αk at

the projected position of vk on the unit circle indicated by δk (see Figure 7). The

complex Fourier coefficient of order j, (j ∈ Z), of the distribution f is

uj =
1

2π
〈f, exp(−ij·)〉 =

1

2π

m−1∑

k=0

αk exp

(

−ij2π
lk
lm

)

. (4)

For each polygon we compute the first n Fourier coefficients of f , which gives us

a complex vector u of Fourier coefficients with n components uj . When comparing

two of these vectors u, v we use the similarity measure δ(u, v) =
∑d

j=1 | |uj | −
|vj | |, comparing only the amplitude and not the phase. The averaging method

for clustering is the usual weighted average of complex vectors. The vectors are

clustered with a tolerance ∆TP and the resulting cluster hierarchy is simplified. By

using the Fourier transform of f , we compare loops independently of scale. Note

that f could be chosen differently and that we could also split the polygons into

small sections and compare those [28]. While there are other methods to compare

polygons, our method is efficient and simple, and provides a natural similarity

measure.

Let p be the minimum of (lk+1 − lk)/lm, i.e. the smallest ratio between an edge

length and the circumference of the polygon. Let P be the minimum p from all

polygons being compared. Then at least ceil (1/P ) Fourier coefficients have to be
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computed to ensure that all relevant frequencies are considered. As the Fourier

coefficients of f can be computed exactly, only a small number of coefficients is

sufficient to characterize the shape of the polygon. Typically we use the first 10

coefficients.

For an m-sided, regular polygon, the only non-zero coefficients are those of order

km, (k ∈ Z). In the approximate case the values of these coefficients are sufficiently

larger than the others, so that they can be used to identify regular polygons. It

appears that this can also be used to find polygons which are based on an m-sided,

regular polygon, with minor modifications like an additional or missing vertex.

9. Surface Types

A different kind of error also needs to be corrected during beautification. For some

surfaces, the surface fitting software might not have found the correct geometric

type. For example, part of a cone with a small apex angle could be interpreted as

a cylinder.

To determine if a surface type might need to be changed during beautification,

we have to check whether each piece of surface present in the model could be well

approximated by another surface type. We check if a surface is approximately a

plane or a cylinder. Note that a cylinder might also be approximately a cone, or

a plane might be approximately a sphere, etc., but for such cases, we do not have

any indication of parameter values to use for the alternative surface. Furthermore,

for beautification our aim is to replace more complex surfaces by simpler ones, not

vice versa.

To decide if a piece of surface might need replacing, we use the curvature of the

surface, which is also used for determining the surface type in the model building

software [1]. For planar, cylindrical, spherical and toroidal surfaces the principal

curvatures k1, k2 are constant. If
√

k2
1 + k2

2 is approximately zero as indicated by

some tolerance tc, the surface is approximately a plane. If only one ki is approxi-

mately zero, the surface is approximately a cylinder with radius 1/kj , where kj is

the second curvature.

We have to take special care for a cone, as one of the principal curvatures is not

constant. Let k2(p) be the non-constant principal curvature at a point p on a conical

face. Conical faces for which the surface type can be changed do not contain the apex

and are always finite, so k2 has a minimum and maximum. If maxp k2(p)−minp k2(p)

is approximately zero with respect to tc, then the cone is approximately a cylinder or

a plane. It is approximately planar if K = (k2(pmin)+k2(pmax))/2 is approximately

zero, otherwise it is approximately a cylinder with radius 1/K.

However, it is not sufficient to only check the curvature to decide if a surface

should be of a different type. It has to be possible to change the surface within

the combinatorial topological structure of the model. For this we check if all the

boundary loops of the surface are also approximately on the alternative surface.

This depends on the surface types involved and basically requires fitting a surface
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(a) (b) (c) (d) (e)
Time (sec): 0.83 0.89 0.59 0.14 2.2
Desired: 56 28 31 25 67
Unwanted: 8 5 1 1 16
Missed: 0 2 4 0 9

Fig. 8. Experiments with Simulated Range Data.

of an appropriate type to special points taken from the boundary in a least-squares

sense. In addition, closed boundary curves which cannot be transformed continu-

ously in the face to a point are an indication that a surface cannot be a plane, but

it could be a cylinder.

10. Experiments

We now give some experimental results to demonstrate how our methods work

in practice. The methods were implemented∗ on a GNU/Linux platform (Pentium

III, 450 Mhz, 256MB memory), and were tested on real reverse engineered and

simulated data from various engineering objects. We present some results of the

test runs with simulated data, and detailed results of testing the methods with a

real data set, and discuss the general results.

10.1. Experiments with Simulated Data

By rotating and translating faces of exact models and generating a point cloud from

these perturbed objects, we created simulated range data. From the point cloud

we used reverse engineering software to obtain reconstructed models (see Section 1

and [6]). The resulting initial models were then analysed by our methods.

Some of our test objects are shown in Figure 8, where (c), (d) were obtained

from [30]. Faces were perturbed by 2◦. The length perturbation was about 1% of the

corresponding Lmax (about 0.1 to 0.2 length units). In order to consider the effects

of the hierarchical structures, the tolerance values for clustering were set to half

of these amounts, i.e. ∆TL = 0.005Lmax and ∆TA = 1.0◦. For simplicity, feature

objects from edges were not considered. As for the simulated data we have a known

upper tolerance limit, we ignored any clusters which had tolerances larger than

2◦ and 0.01Lmax length units. We only counted regularities generated by clusters

with tolerances just under these limits and not any of their sub-clusters. This

∗The sources are available under the GNU General Public License at <uri: http://www.langbein.

org/software/sil/>.
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gives a better picture of the actual desired regularities found and takes into account

that subsequent steps have to identify regularities at high tolerance values which

would require big changes to the model. Furthermore, we did not count the special

values found as regularities for the results. In Figure 8 we also list the number of

desired, unwanted and missed regularities found. An unwanted regularity is one

that is not part of the design and conflicts with the desired regularities. Missed

regularities represent major regularities not detected by our methods rather than

all valid relations between the feature objects which were undetected.

Object (a) consists of two planar angle-regular arrangements of planes with base

angle π/4 which have been detected. However, an alternative arrangement combin-

ing both into a single regularity with base angle π/18 has also been detected at

a larger tolerance level. Further unwanted regularities were conical angle-regular

arrangements with cones with semi-angles close to π/2 created by the planar faces.

Further regularities included aligned axes, axis intersection points and similar polyg-

onal loops.

In Object (b) the planar angle-regular direction sets of the planar faces and the

conical angle-regular sets of the cylinder axes were detected. Additional conical

angle-regular sets of cylinder and plane axes were detected, some of which were un-

wanted. Unfortunately the intersection point of the axes generated from the centre

of the convex hulls of the side faces was not detected correctly, as the perturbation

of the side faces moved some of the axes too far apart. This was also the cause that

one aligned axis pair was missed.

Analysing (c) resulted in a number of equal cylinder radii with special values.

The methods detected that all the directions in the model are part of an orthogonal

system, with one main direction of parallel axes. Furthermore, it was found that

all axes of the main cylinders are aligned except for one. The axes of the opposite

holes in the sides of the large cylinder were also found to be parallel and to all lie

in a plane with an intersection point on the central axis. The planar angle-regular

algorithm detected their symmetrical arrangement. Of the four intersection points

of the axes of the holes in the large cylinder and the axes of the holes in the planar

surface at the bottom only one was detected. The symmetrical arrangement of the

cylinder axes on a cylinder aligned with the main central axes was also detected.

Object (d) has a single main axis which was detected. Furthermore, the regular

arrangements of the holes on a circle was found. The remaining regularities were

similar length and angle parameters. The methods errornously suggested that two

cylinder radii which were close to each other may be equal, which would require a

change in the combinatorial topological structure.

In object (e) the orthogonal arrangements of the planes and the conical angle-

regular arrangements of the planes at the top were detected. One planar angle-

regular arrangement was missed as it required a larger tolerance setting. Further

regularities included aligned axes, of which a few were not detected. The regular

arrangement of the cylinders was only partly detected with one cylinder missing

from the circular arrangement and two cylinders missing from the grid.
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By adjusting the tolerance values it was possible to include nearly all of the

missed regularities mentioned above. However, this also added further unwanted

regularities at higher tolerance values while the desired ones were still present at

lower tolerance values. The decision about which regularities are desired has to be

made by subsequent beautification steps and not by the analyser.

The experiments with simulated data showed that when using small tolerance

levels we find a few, very accurate, and thus also very likely regularities. At larger

tolerance levels, we detect more desired regularities and eventually all desired reg-

ularities are found. However, by increasing the tolerance levels we also increase the

likelihood of detecting unwanted regularities. Only for simple objects are there tol-

erance levels which distinguish exactly between desired and unwanted regularities.

Because of the latter observation we do not use upper limits for the regularity

tolerances, but instead we simplify the cluster hierarchy. The subsequent beautifi-

cation steps have to select a suitable subset of all the regularities detected, using

geometric reasoning. Often, regularities at high tolerance levels are inconsistent

with regularities at lower levels. If this is detected the regularities at the higher

levels can be identified as unwanted (see, for instance, the two angle-regular ar-

rangements in object (a) which were combined to give a single angle regularity at a

higher tolerance level). Besides the tolerance levels, the subsequent steps can also

consider the kind of each regularity, and, for instance, prefer an orthogonal system

at a higher tolerance level to setting the angles to 89◦. To help make such decisions,

we could also consider if a regularity would require a change in the combinatorial

topological structure of the model. Additionally, we could avoid accepting regu-

larities at extremely different tolerance levels in different parts of the object when

taking a global view. However, especially if the object has been created by com-

bining many individual views with possibly different scanner settings, the tolerance

levels may not necessarily be consistent.

10.2. An Experiment with Real Data

Next we discuss in detail the results of analysing a model reverse engineered from

real range data. The reverse engineered model is shown in Figure 9. For simplicity

we did not consider feature objects generated by edges. To analyse the model we

used ∆TA = 1◦ and ∆TL = 0.2 length units (2% of the length of the model), which

created a good set of regularities. In the following we present the regularities and

the cluster hierarchies in detail. Note that due to the hierarchies, we cannot easily

count the regularities in a consistent way like we did for the simulated data, since

we did not remove regularities above certain tolerance levels.

Two main parallel direction clusters were detected, where one was a simple

cluster representing the main axis at the lowest tolerance level. The other one

consisted of two directions representing the plane axes orthogonal to the main axes.

Even if parallel in the ideal model, the angle between the two directions in the initial

model was sufficiently far apart (about 3◦) such that the two directions were sub-
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Fig. 9. A Model Reverse Engineered from Real Range Data.

clusters of another cluster. It was also found that these two planes were orthogonal

to the main axis.

As the two plane directions were considered not to be parallel at a small tolerance

level, some unwanted regularities were reported. There was one suggesting some

special values for the angle between the directions, and a conical angle regularity

consisting of the two plane directions and the main axis. Both regularities would

only be realisable if the two directions are not parallel. These regularities were

detected as our methods consider all sub-clusters at the different tolerance levels,

in order to detect possible regularities created by them. Dependencies like this can

easily be found in the subsequent steps by detecting that different values for the

same angles are required by the regularities. We can either make the two planes

parallel and then also orthogonal to the main axis or we accept the two unwanted

regularities mentioned above. In the first case we accept a regularity at a larger

tolerance level, as a parallel regularity appears to be desirable and allows other

desirable regularities to be realised.

From the parallel direction cluster representing the main axes the methods fur-

ther detected that the axes of the cylinders and the cone are aligned. The axis of

the larger cylinder was slightly further away from the average of the aligned axes

(about 0.3 length units) such that it was a sub-cluster of the main regularity.

Some of the surface root point positions and vertex positions were considered

to be equal in the position cluster hierarchy. All clusters had tolerances above 2

length units and would require changes to the combinatorial topological structure

of the model which would remove large surfaces.

Two pairs of similar cylinder radii were detected at the lowest tolerance level,

which were considered to be equal at a higher tolerance level. Making them equal

would require a change in the combinatorial topological structure.

In general the results for real data are similar to those for simulated data. The

major difference is that we cannot rely on consistent tolerance levels for the com-

plete model, which further shows the advantages of not using a maximal tolerance.

It appears that the desired regularities can be separated from the unwanted regu-

larities with the methods already mentioned briefly for the simulated data. Further

experiments with methods developed for the subsequent beautification steps have
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to be conducted, though.

11. Conclusions

We have presented algorithms based on similarities to find approximate geometric

regularities in inaccurately reverse engineered B-rep models. Instead of using vari-

ous thresholds to decide which regularities are present in the model, the methods use

cluster hierarchies, and list which regularities are present at which tolerance level.

Tests with various perturbed objects were satisfactory in the sense that most de-

sired geometric regularities were found and appear to be suitable for the subsequent

beautification steps. Unwanted regularities, especially at larger tolerance levels, are

also reported and will have to be identified in the subsequent beautification steps

using geometric reasoning.

The methods given here could be expanded to find additional types of regularities

based on the same principles. The methods could also be modified to handle other

face and edge types by defining feature objects for them. Furthermore, a machining

feature recognizer could be employed to partition the model into interesting subsets

which could be analysed and beautified separately before they are combined using

higher level beautification on the whole model. Especially for more complex models

this might improve the results.

In future work we intent to develop a system which tries to find a maximal,

consistent set of constraints describing the main regularities, which will be used to

generate an ideal model. This includes developing methods to detect inconsistencies

between the constraints based on geometric reasoning, and using optimization and

graph-based methods to solve geometric constraints, while detecting inconsistencies

between the constraints. We also intent to develop decision methods to resolve

conflicts between contradictory regularities.
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