
Numerical Methods for
Beautification of Reverse

Engineered Geometric Models

R. R. Martin
F. C. Langbein A. D. Marshall

11th July 2002

Department of Computer Science

Cardiff University



Reverse Engineering

• Engineering converts a concept into an artifact
• Reverse engineering converts an artifact into a concept
• Desired result is a representation of the design intent,

not a simple copy

• Problem: Reverse engineered models suffer from
inaccuracies caused by

? sensing errors during data acquisition
? approximation and numerical errors from reconstruc-

tion algorithms
? possible wear of the artifact
? manufacturing method used to make the artifact

Numerical Methods for Beautification 1



Beautification

• Goal: Reconstruct an ideal model of a physical object
with intended geometric regularities

? Only for engineering objects with planar, spherical,
cylindrical, conical and toroidal surfaces (and blends)

• Previous approaches:
? Augment the surface fitting step by constraint solving

methods [Fisher,Benkő]
? Manually identify features like slots and pockets and

use them to drive the segmentation and surface fitting
[Thompson]

• Our approach: Beautification , improve the model in
a post-processing step

Numerical Methods for Beautification 2



Beautification Strategy

Analyser
Detect potential regulari-

ties which are approximately

present in the initial model

Reconstruction
Reconstruct an improved

model, fix topological prob-

lems, align model with

coordinate axes, etc.

→

←

Hypothesizer
Solve a constraint system

derived from the regularities

which describes a complete,

improved model with likely

regularities

(only a subset of the con-

straints will be mutually

consistent)

Numerical Methods for Beautification 3



Beautification Strategy

Analyser
Detect potential regulari-

ties which are approximately

present in the initial model

Reconstruction
Reconstruct an improved

model, fix topological prob-

lems, align model with

coordinate axes, etc.

→

←

Hypothesizer

Constraint Selection

Based on priorities and in-

consistencies select a set

of likely constraints

↓ ↑
Constraint Solver

Try to solve constraint sys-

tem and indicate inconsis-

tencies (solvability test)

Numerical Methods for Beautification 3



Geometric Regularities

Directions
• Parallel directions
• Directions with

same angle rela-
tive to a special
direction
• Symmetrical ar-

rangements of
directions

Axes
• Axis intersections
• Aligned axes
• Parallel axes ar-

ranged equally
spaced along
lines, grids or on
cylinders

Positions
• Equal positions
• Positions equal

under projection

• Positions arranged
regularly on lines
and grids

Parameter
• Equal lengths
• Equal angles
• Integer relations
• Special values:
? integers
? simple fractions

Numerical Methods for Beautification 4



Constraint Selection & Solving

• Core of beautification problem:

constraint selection and solving

? Regularities become sets of geometric constraints
? Model topology is described by geometric constraints
• Algorithm has to select desirable constraints such that

the constraint system has a solution
• Finding a solution is a secondary task

Numerical Methods for Beautification 5



Geometric Constraints and Objects

• Geometric constraints used to express regularities:
d1

td2 = cos(α) Const./var. angle between directions
dtd = 1 Normalize direction
‖p1 − p2‖ = λ Const./var. distance between positions
p = 1

n

∑n
k=1 pk Average position∑

kαksk = σ Linear relation between scalars
p ∈ O Vertex on geometric object

• Geometric object types:
? plane, sphere, cone, cylinder, torus, circular ellipsoid
? straight line, circle, ellipse
? vertex
? direction, angle, length

Numerical Methods for Beautification 6



Selection & Solving Strategy

I. Prioritize the regularities based on
– how well they are satisfied in the initial model
– how common and desirable the related regularity is

II. Select initial subset S from all detected regularities
– Resolve simple inconsistencies using selection rules
– Favour regularities with high priorities

III. In order of highest to lowest priority add regularities c
from S to a constraint system C
– Try to solve constraint system C with new regularity c
– Add c to C if extended system is solvable
– Otherwise adjust S using the selection rules from II

as c is not used

Numerical Methods for Beautification 7



Prioritizing Regularities

• Priorities determine which regularity to choose in case
of an inconsistency
• Computed as weighted average with values in [0,1]:

wc(r)(cewe(r) + cqwq(r) + cbwb(r))
? with merit functions in [0,1]

we(r) numerical accuracy of regularity
wc(r) constant indicating how common the regular-

ity type is
wq(r) specific quality/desirability depending on type

and involved arrangements and constants
wb(r) constant minimum desirability

? and weighting constants ce, cq, cb

Numerical Methods for Beautification 8



Quality Factors

• Specific quality wq(r) of a regularity is determined by
factors like
? Special values involved (fractions with small integers

preferred)
? Number of involved B-rep elements with common

boundary
? Number of occupied positions for symmetrical ar-

rangements on grids, circles, cylinders, . . .
? Number of B-rep elements of same geometric type
• wq(r) is weighted average of merit functions for these

factors

Numerical Methods for Beautification 9



Selection Rules

• Selection rules to resolve simple inconsistencies be-
tween constraints:
? Constraints between the same objects with different

constants
? Different constraints between objects which are iden-

tified by coincidence constraints
• Generic selection rule:

A rule (n1,R1,n2,R2) is violated if at least nk + 1 con-
straints in the set Rk are selected for each Rk 6= ∅
• One interpretation:

If at least n1 + 1 elements of R1 are selected, then at
most n2 elements of R2 should be selected

Numerical Methods for Beautification 10



Initial Selection

• Initially all constraints are selected
• Consecutively enforce each rule such that a maximal

set of constraints with largest priorities are selected
• Basic concept for rule enforcement algorithm:
? If a rule is violated deselect sufficient constraints with

lowest priority
? Check if these deselections allow the selection of pre-

viously deselected constraints by checking previously
enforced rules

Numerical Methods for Beautification 11



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • • Initially all regularities selected

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

At most either A or B, not both, can be
selected
→ Deselect A due to lower priority

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

If B is selected, then at most either C
or D, not both, can be selected
→ Deselect B due to lower priority

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

← B modified, so recheck rule 1
• � • •

→ Can reselect A

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

← B modified, so recheck rule 1
• � • •

3: R1 = {B,D},n1 = 0,R2 = {A,C},n2 = 1
� � • •

If B or D are selected, then at most ei-
ther A or C, not both, can be selected
→ Deselect A due to lower priority

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

← B modified, so recheck rule 1
• � • •

3: R1 = {B,D},n1 = 0,R2 = {A,C},n2 = 1
� � • •

← A modified, so recheck rule 1
� � • •

→ Cannot reselect B due to rule 2
→ Final selection

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Numerical Solvability Test

• After initial selection each regularity is consecutively
added to a constraint system in order of priority
• Each time the constraint system has to be checked for

solvability:
? System is solved as numerical minimization problem

(numerically stable BFGS, BFGS/Gauss-Newton hybrid, . . . )

? System is solvable if least-squares error is ∼ 0
? Guarantees solvability up to numerical tolerance
• If system is solvable, the regularity is accepted
• Otherwise (conditional) selection rules involving the

deselected regularity are used to check if alternative
regularities can be selected

Numerical Methods for Beautification 13



Examples

Detected
Regularities

89 382 216

After initial
selection

34 263 156

Finally
selected

23 117 93

Time ∼ 2h ∼ 25h ∼ 23h

Numerical Methods for Beautification 14



Results

• Major regularities can be enforced on improved model
? Symmetrically arranged face groups
? Orthogonal/parallel directions, . . .
• Some problems due to ambiguities remain
? Choice of special values for lengths and angles not

always consistent
? There is a choice between regularities of high quality

and regularities with small errors
• Slow computation
? Most of the time spent on solving constraint systems

(one constraint system solved for each regularity)

? Only proof of concept (see next slide)

Numerical Methods for Beautification 15



Solvability Test Improvements

• To speed up algorithm: faster solvability test
• Detect structural inconsistencies without solving the

constraint system
• Use degree-of-freedom analysis to build up a consis-

tent constraint graph
• Solve the constraint system numerically only once
• Currently under investigation:
? Speeds up solvability test from hours to minutes
? Further work required to ensure selection of consis-

tent system

Numerical Methods for Beautification 16



Selection Improvements

• To improve quality of models: intelligent selection
• Ambiguities between approximate regularities cause

inconsistent selection of regularities with respect to de-
sign intent
? E.g. do we have a cube with edge lengths 2 or a block

with edge lengths 2 and 2.1, or . . . ?
? Local decisions can favour the block arrangements
• Make decisions in the context of the whole model, not

locally with respect to inconsistencies
• Reduce/replace user-defined constants for priorities by

simpler methods based on multiple-choice questions
and learning

Numerical Methods for Beautification 17



Conclusion

• We have given a general approach to improve inaccu-
rately reverse engineered geometric models
• The current numerical method improves models, but
? Running time is too long
? Regularity selection not consistent with respect to de-

sign intent
• Current work is addressing these problems

Numerical Methods for Beautification 18


	Numerical Methods for Beautification of Reverse Engineered Geometric Models
	Reverse Engineering
	Beautification
	Beautification Strategy
	Geometric Regularities
	Constraint Selection & Solving
	Geometric Constraints and Objects
	Selection & Solving Strategy
	Prioritizing Regularities
	Quality Factors
	Selection Rules
	Initial Selection
	Rule Enforcement Example
	Numerical Solvability Test
	Examples
	Results
	Solvability Test Improvements
	Selection Improvements
	Conclusion


