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Reverse Engineering

• Engineering converts a concept into an artifact
• Reverse engineering converts an artifact into a concept
• Desired result is a representation of the design intent,

not a simple copy

• Problem: Reverse engineered models suffer from
inaccuracies caused by

? sensing errors during data acquisition
? approximation and numerical errors from reconstruc-

tion algorithms
? possible wear of the artifact
? manufacturing method used to make the artifact
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Beautification

• Goal: Reconstruct an ideal model of a physical object
with intended geometric regularities

? Only for engineering objects with planar, spherical,
cylindrical, conical and toroidal surfaces (and blends)

• Previous approaches:
? Augment the surface fitting step by constraint solving

methods [Fisher,Benkő]
? Manually identify features like slots and pockets and

use them to drive the segmentation and surface fitting
[Thompson]

• Our approach: Beautification , improve the model in
a post-processing step
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Beautification Strategy

Analyser
Detect potential regulari-

ties which are approximately

present in the initial model

Reconstruction
Reconstruct an improved

model, fix topological prob-

lems, align model with

coordinate axes, etc.

→

←

Hypothesizer
Solve a constraint system

derived from the regularities

which describes a complete,

improved model with likely

regularities

(only a subset of the con-

straints will be mutually

consistent)
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Beautification Strategy

Analyser
Detect potential regulari-

ties which are approximately

present in the initial model

Reconstruction
Reconstruct an improved

model, fix topological prob-

lems, align model with

coordinate axes, etc.

→

←

Hypothesizer

Constraint Selection

Based on priorities and in-

consistencies select a set

of likely constraints

↓ ↑
Constraint Solver

Try to solve constraint sys-

tem and indicate inconsis-

tencies (solvability test)
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Geometric Regularities

Directions
• Parallel directions
• Directions with

same angle rela-
tive to a special
direction
• Symmetrical ar-

rangements of
directions

Axes
• Axis intersections
• Aligned axes
• Parallel axes ar-

ranged equally
spaced along
lines, grids or on
cylinders

Positions
• Equal positions
• Positions equal

under projection

• Positions arranged
regularly on lines
and grids

Parameter
• Equal lengths
• Equal angles
• Integer relations
• Special values:
? integers
? simple fractions
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Constraint Selection & Solving

• Core of beautification problem:

constraint selection and solving

? Regularities become sets of geometric constraints
? Model topology is described by geometric constraints
• Algorithm has to select desirable constraints such that

the constraint system has a solution
• Finding a solution is a secondary task
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Geometric Constraints and Objects

• Geometric constraints used to express regularities:
d1

td2 = cos(α) Const./var. angle between directions
dtd = 1 Normalize direction
‖p1 − p2‖ = λ Const./var. distance between positions
p = 1

n

∑n
k=1 pk Average position∑

kαksk = σ Linear relation between scalars
p ∈ O Vertex on geometric object

• Geometric object types:
? plane, sphere, cone, cylinder, torus, circular ellipsoid
? straight line, circle, ellipse
? vertex
? direction, angle, length
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Selection & Solving Strategy

I. Prioritize the regularities based on
– how well they are satisfied in the initial model
– how common and desirable the related regularity is

II. Select initial subset S from all detected regularities
– Resolve simple inconsistencies using selection rules
– Favour regularities with high priorities

III. In order of highest to lowest priority add regularities c
from S to a constraint system C
– Try to solve constraint system C with new regularity c
– Add c to C if extended system is solvable
– Otherwise adjust S using the selection rules from II

as c is not used
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Prioritizing Regularities

• Priorities determine which regularity to choose in case
of an inconsistency
• Computed as weighted average with values in [0,1]:

wc(r)(cewe(r) + cqwq(r) + cbwb(r))
? with merit functions in [0,1]

we(r) numerical accuracy of regularity
wc(r) constant indicating how common the regular-

ity type is
wq(r) specific quality/desirability depending on type

and involved arrangements and constants
wb(r) constant minimum desirability

? and weighting constants ce, cq, cb
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Quality Factors

• Specific quality wq(r) of a regularity is determined by
factors like
? Special values involved (fractions with small integers

preferred)
? Number of involved B-rep elements with common

boundary
? Number of occupied positions for symmetrical ar-

rangements on grids, circles, cylinders, . . .
? Number of B-rep elements of same geometric type
• wq(r) is weighted average of merit functions for these

factors
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Selection Rules

• Selection rules to resolve simple inconsistencies be-
tween constraints:
? Constraints between the same objects with different

constants
? Different constraints between objects which are iden-

tified by coincidence constraints
• Generic selection rule:

A rule (n1,R1,n2,R2) is violated if at least nk + 1 con-
straints in the set Rk are selected for each Rk 6= ∅
• One interpretation:

If at least n1 + 1 elements of R1 are selected, then at
most n2 elements of R2 should be selected
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Initial Selection

• Initially all constraints are selected
• Consecutively enforce each rule such that a maximal

set of constraints with largest priorities are selected
• Basic concept for rule enforcement algorithm:
? If a rule is violated deselect sufficient constraints with

lowest priority
? Check if these deselections allow the selection of pre-

viously deselected constraints by checking previously
enforced rules

Numerical Methods for Beautification 11



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • • Initially all regularities selected

•: regularity selected, �: regulairty deselected
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Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

At most either A or B, not both, can be
selected
→ Deselect A due to lower priority

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

If B is selected, then at most either C
or D, not both, can be selected
→ Deselect B due to lower priority

•: regularity selected, �: regulairty deselected

Numerical Methods for Beautification 12



Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

← B modified, so recheck rule 1
• � • •

→ Can reselect A

•: regularity selected, �: regulairty deselected
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Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

← B modified, so recheck rule 1
• � • •

3: R1 = {B,D},n1 = 0,R2 = {A,C},n2 = 1
� � • •

If B or D are selected, then at most ei-
ther A or C, not both, can be selected
→ Deselect A due to lower priority

•: regularity selected, �: regulairty deselected
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Rule Enforcement Example

Regularities A,B,C,D with w(A)<w(B)<w(C)<w(D)

A B C D 3 rules enforced in sequence:
• • • •

1: R1 = ∅,n1 = 0,R2 = {A,B},n2 = 1
� • • •

2: R1 = {B},n1 = 0,R2 = {C,D},n2 = 1
� � • •

← B modified, so recheck rule 1
• � • •

3: R1 = {B,D},n1 = 0,R2 = {A,C},n2 = 1
� � • •

← A modified, so recheck rule 1
� � • •

→ Cannot reselect B due to rule 2
→ Final selection

•: regularity selected, �: regulairty deselected
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Numerical Solvability Test

• After initial selection each regularity is consecutively
added to a constraint system in order of priority
• Each time the constraint system has to be checked for

solvability:
? System is solved as numerical minimization problem

(numerically stable BFGS, BFGS/Gauss-Newton hybrid, . . . )

? System is solvable if least-squares error is ∼ 0
? Guarantees solvability up to numerical tolerance
• If system is solvable, the regularity is accepted
• Otherwise (conditional) selection rules involving the

deselected regularity are used to check if alternative
regularities can be selected
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Examples

Detected
Regularities

89 382 216

After initial
selection

34 263 156

Finally
selected

23 117 93

Time ∼ 2h ∼ 25h ∼ 23h
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Results

• Major regularities can be enforced on improved model
? Symmetrically arranged face groups
? Orthogonal/parallel directions, . . .
• Some problems due to ambiguities remain
? Choice of special values for lengths and angles not

always consistent
? There is a choice between regularities of high quality

and regularities with small errors
• Slow computation
? Most of the time spent on solving constraint systems

(one constraint system solved for each regularity)

? Only proof of concept (see next slide)
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Solvability Test Improvements

• To speed up algorithm: faster solvability test
• Detect structural inconsistencies without solving the

constraint system
• Use degree-of-freedom analysis to build up a consis-

tent constraint graph
• Solve the constraint system numerically only once
• Currently under investigation:
? Speeds up solvability test from hours to minutes
? Further work required to ensure selection of consis-

tent system
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Selection Improvements

• To improve quality of models: intelligent selection
• Ambiguities between approximate regularities cause

inconsistent selection of regularities with respect to de-
sign intent
? E.g. do we have a cube with edge lengths 2 or a block

with edge lengths 2 and 2.1, or . . . ?
? Local decisions can favour the block arrangements
• Make decisions in the context of the whole model, not

locally with respect to inconsistencies
• Reduce/replace user-defined constants for priorities by

simpler methods based on multiple-choice questions
and learning
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Conclusion

• We have given a general approach to improve inaccu-
rately reverse engineered geometric models
• The current numerical method improves models, but
? Running time is too long
? Regularity selection not consistent with respect to de-

sign intent
• Current work is addressing these problems
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