Merging and Smoothing Machining Boundaries on Cutter Location Surfaces

Weishi Li*
Hefei University of Technology, China

Ralph R. Martin f
Cardiff University, Wales, UK

Frank C. Langbein
Cardiff University, Wales, UK

Figure 1: A phone mould: (a) rest model (the surface is not smooth due to a previous machining pass), and initial boundary curves; (b)
initial boundary curves and derived tool paths, with close-up view; (c) smoothed boundary curves and derived tool paths, with close-up view.

Abstract

In region machining, neighbouring regions may be close together,
but disconnected. Boundary curves may also have unwanted ge-
ometric artifacts caused by approximation and discretisation. We
present a strategy to improve the topology and geometry of such
boundary curves, allowing the generation of better tool paths, and in
turn, improved tool wear and surface quality of the machined part.
‘We make such improvements in three steps: firstly, disconnected re-
gions are merged where appropriate, using a method based on mor-
phological operations from image processing. Secondly, boundary
segments with undesirable geometric properties are identified and
replaced by simpler segments, using a vertex deletion operation. Fi-
nally, flaws at a smaller geometric scale are removed, using a curve
shortening algorithm. Experimental results are given to illustrate
our algorithm.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—geometric algorithms, languages,
and systems; J.6 [Computer Applications]: Computer-Aided
Engineering—computer-aided manufacturing

Keywords: boundary, cutter location surface, region machining,
merging, smoothing

1 Introduction

When machining free-form surfaces, the area to be machined is of-
ten divided into several cutting areas for various reasons, such as
the need to remove remaining stock (rest) material, the desire to use

*e-mail: Weishi.Li@hotmail.com
fe-mail: Ralph.Martin@cs.cf.ac.uk
fe-mail: F.C.Langbein@cs.cf.ac.uk

different tool path generation strategies for particular areas, or a de-
sire or need to use different tools or different part orientations [Choi
et al. 2002; Radzevich 2005; Ren et al. 2005]. The extent of each
area to be machined is typically determined by boundary curves on
a cutter location (CL) surface, which contains the cutter’s reference
point as the cutter moves [Choi et al. 2002]. Methods used for com-
puting such boundaries can be seen e.g. in [Park and Choi 2001].
Such an algorithm usually results in a piecewise-linear curve ap-
proximating some real, continuous, boundary on the CL-surface.
For various kinds of region machining, especially rest machining,
the regions may be undesirably fragmented into multiple pieces and
the boundaries may also exhibit unwanted geometric artifacts, due
to approximation and discretization, because of underlying surface
artifacts, or simply because the correct answer has complex geome-
try [Flutter and Todd 2001], especially after previous tool passes—
see Figure 1(a)".

The motivation for this work is that fragmented boundaries with
poor geometry result in undesirable tool paths, both from the point
of view of operating the machine tool, and in terms of quality of
final surface finish. Long, smooth paths (and hence boundaries) are
preferable for machining, especially high-speed machining [Hobbs
2007; Flutter and Todd 2001]—see Figure 1(c). Fragmented bound-
ary curves should be merged, and undesirable geometric artifacts
should be removed from boundaries.

We now specify the problem in more detail. We assume some al-
gorithm has generated boundary curves B;, ¢ = 0,...,n, delim-
iting certain regions on the CL-surface. Each boundary curve B;
is a piecewise linear curve in 3D approximately lying on the CL-
surface, which we assume to be defined as a height field z(z,y)
over a bounded region of the z-y plane. Typically, while the ver-
tices of each boundary curve lie exactly on the CL-surface, its edges
do not. We assume the maximal normal distance between these
piecewise linear, approximate boundary curves and the CL-surface
is known (i.e. can be derived from a knowledge of upstream algo-
rithms), and has the value . Any given boundary curve on the CL-
surface separates the surface into two regions. The boundary curves
may be nested, to any depth, with alternate regions being inside and

"n Figures 1(b,c), for clarity, the initial product model is shown rather
than the rest model—the rest model may occlude the reader’s view of the
boundaries and tool paths.

outside the machining area; boundary curves do not intersect. We
assume the outside is always on the right of each boundary curve.
The CL-surface is not necessarily smooth, and may be composed
of pieces which meet in sharp edges. In practice, to limit rates of
vertical movement, it is desirable to treat nearly-vertical regions of
the CL-surface with a slope bigger than a given threshold m as if
they were vertical. We assume that the user specifies a smallest
meaningful feature size d,;, on the CL-surface—geometric detail
at a smaller scale represents undesirable artifacts.

When merging boundaries and modifying their geometries, there
are hard constraints on how much change is acceptable. When
performing boundary merging, we assume that the user indicates
which region boundaries can potentially be merged, as allowed by
external considerations. The user also supplies a threshold €; any
two indicated regions whose minimal distance in x-y projection
is less than € should be merged, provided that there is no jump
in height between them: boundaries should not be merged across
nearly-vertical regions of the CL-surface. The spacing of vertices
on newly created boundary segments should be comparable to that
of the original boundaries. The shapes of newly created boundary
segments should be suggested by the shapes of the original bound-
aries, and should merge them in a ‘natural’ way. The vertices of
newly created boundary segments must lie on the CL-surface. The
merged boundaries need not initially be particularly smooth, as later
steps of our algorithm will subject them to boundary smoothing, as
will other remaining original boundary segments.

When performing boundary smoothing, we assume the user pro-
vides two tolerances ¢ and £~ controlling allowable outward and
inward motion of each boundary curve respectively. These need not
be the same, and either may be set to zero. In general, the user may
wish to specify the smoothing tolerances e ™ and e~ separately from
the merging tolerance e. Smoothing must keep all boundary curves
free from intersections. The vertices of each final boundary curve
must lie on the CL-surface. The maximal distance between the final
boundary curves and the CL-surface, measured in the surface nor-
mal direction, should not exceed the input error § for the original
boundaries. The average length of any final boundary edges should
be similar to that of the original boundary edges, where possible.
The final boundary must not pass through nearly-vertical regions
of the CL-surface. Furthermore the boundary should not go too
close to the bottom of nearly-vertical regions of the CL-surface, to
allow for the finite size of the cutter: in z-y projection, this dis-
tance should be no less than a distance d,, determined by the cutter
radius.

We solve this problem in the rest of the paper. Section 2 discusses
related work while Section 3 summarises our method. A boundary
merging algorithm is presented in Section 4, and boundary smooth-
ing is discussed in Section 5. Practical results are shown in Sec-
tion 6, and conclusions are given in Section 7.

2 Related Work

We are unaware of any existing algorithms specifically intended for
improving fragmented and non-smooth boundary curves of the kind
produced by region machining CAM algorithms. However, the fact
that such problematic boundaries are produced is discussed in [Flut-
ter and Todd 2001], and an expert at a leading CADCAM company
has emphasized the real-world significance of this problem [Hobbs
2007]. We now discuss existing work concerning polygon merging
and polygon smoothing.

In image processing, a widely used approach to merging regions is
morphological closing [Soille 1999]. Unfortunately, under certain
circumstances it may fail to close two regions which are less than
a chosen minimum distance apart. Thus, in Section 4.2, we show

Ila¥alals 2

N K g
J ' S

(a) (b) (©) ()]

Figure 2: Artificial example of boundaries on a CL-surface: (a)
original boundaries, (b) merged boundary, (c) boundary after
rough smoothing (d) boundary after final smoothing.

how to reliably close any two such regions, using a medial axis
transform (MAT) of a rasterised version of the regions.

Our finishing smoothing problem can be considered to be a piece-
wise linear curve fairing problem, with specific requirements. An
algorithm for computing fair curves on surfaces was presented
in [Hofer and Pottmann 2004]. It is difficult to extend such an al-
gorithm to fair boundary curves on CL-surfaces as their height can
only be evaluated pointwise, and doing so is potentially expensive.

Several algorithms have been proposed to fair planar piecewise
linear curves, e.g. [Renz 1982; Mullineux and Robinsona 2007;
Yang and Wang 2001]; fairing 3D piecewise linear curves has also
been considered [Eck and Jaspert 1994]. Indeed, Choi et al’s algo-
rithm for fairing 3D piecewise linear curves [Choi et al. 2002] is
intended for fairing of machining boundaries. However, we wish to
smooth the boundary curves on a CL-surface while satisfying addi-
tional constraints. Furthermore, most algorithms with the exception
of [Eck and Jaspert 1994] are global fairing algorithms, and poten-
tially all vertices of the curve are adjusted. However, we wish to
retain the original boundary wherever appropriate, and need a local
fairing algorithm.

A shortening flow for polygons was presented in [Bruckstein et al.
1995], and is employed in this paper to fine tune the boundaries,
taking into account their curvature and other properties.

3 Algorithm Overview

We now overview our strategy for improving input boundaries. Our
algorithm both merges fragmented boundary curves, and smooths
out geometric flaws in boundary curves. The process of merg-
ing boundaries may locally decrease smoothness, but smoothing a
boundary curve certainly cannot disconnect it. Hence, merging is
performed first, and then smoothing.

We call the input boundaries the original boundaries. After bound-
ary merging, we have merged boundaries, which are then input to
the boundary smoothing phase. These typically comprise some of
the original boundary curve segments, plus some new curve seg-
ments generated by merging. The output boundaries after perform-
ing smoothing are the final boundaries. The process is illustrated
using an artificial example of boundary curves on a CL-surface in
Figure 2. Note the CL-surface contains a near-vertical region which
the final boundary curve must avoid.

To perform boundary merging, we use a closing operation, based
on ideas from image processing. We solve the boundary merging
problem by treating it initially as a 2D problem in z-y projection,
then consider the consequences in 3D. The 2D polygons arising

from projecting the 3D boundary polygons are rasterised, and then
merged using a closing operation based on morphological opera-
tions from image processing. Any pixels corresponding to nearly-
vertical areas of the CL-surface are then excluded as the merged
boundaries must not pass through such areas; rasterization allows
us to do this in a simple manner. Finally, piecewise linear boundary
curves are reconstructed and projected back onto the CL-surface to
obtain the merged boundary.

In finishing smoothing, the goal is to keep maximum absolute
geodesic curvature low, and also to minimise the number of zero-
crossing points of signed geodesic curvature. Doing so helps to
meet the goal of reducing tool acceleration and deceleration when
machining the region bounded by the boundary. However, as it
is time-consuming to estimate the normal of the CL-surface and
hence the geodesic curvature, instead we use as a proxy the turning
angle between successive projected boundary curve edges. (The
CL-surface is a single-valued surface with respect to z, and further-
more the normal at any point of the CL-surface has a positive z
component. Thus, the signed turning angle has the same sign as the
signed geodesic curvature).

For efficiency, we use a local approach to smoothing the bound-
ary curves—we only modify flawed parts of the boundary curves,
and retain the rest. We classify these flaws into two types: local
flaws and extended flaws. Local flaws occur at vertices where the
boundary curve changes direction too suddenly, or where the turn-
ing angle of the boundary curve repeatedly changes sign from point
to point. Extended flaws correspond to wobbles (repeated changes
of sign of turning angle across several points), or deep concavities
(or convexities, dependent on the level of the boundary curve and
the direction in which the boundary may be modified).

We smooth each boundary curve in two steps: rough smoothing,
which fixes issues associated with extended flaws, followed by fin-
ishing smoothing, which modifies local flaws.

In the rough smoothing step, bad segments of boundary are iden-
tified, and replaced by simpler segments which are guaranteed to
both lie within the tolerance zone and avoid nearly-vertical regions
of the CL-surface. In the finishing smoothing step, vertices at which
local flaws exist are identified, and moved to nearby locations using
a curve shortening flow (smoothing the curve), again while meeting
the constraints.

During rough and finishing smoothing we must prevent the final
boundary from passing too close to the bottom of nearly-vertical
regions of the CL-surface; otherwise, the tool paths derived from
these boundaries may cause interference between the tool and the
surface of the given model. This is controlled by the given dis-
tance d,. Our approach to meeting this requirement is to use a 2D
fat edge [Duguet and Drettakis 2002] corresponding to each pro-
jected boundary curve edge. This is a closed 2D curve formed by
offsetting each boundary curved segment all round by d,, . For ex-
ample, the boundary shown in Figure 2(d) was obtained using fat
edges with d,, = 5, where the size of the CL-surface shown is about
110 x 160 units.

‘We now detail in turn the boundary merging, rough smoothing, and
finishing smoothing steps.

4 Boundary Merging

We now present our algorithm for merging boundaries. In region
machining, some areas may only be expanded, while other areas
may only be contracted, due to the requirements to cut away certain
parts of the stock and leave other parts intact. Clearly, as merging
adds extra parts of the CL-surface to the area to be machined, it

(b)

Figure 3: Shortcoming of the standard closing operation: (a) dila-
tion result; also showing its medial axis; (b) final closing result.

is only applicable to regions which may be expanded. Two such
selected regions should be merged if their boundaries lie within a
distance € of each other; the choice of this merging tolerance is
determined by external, technological criteria [Hobbs 2007].

We initially consider merging the set of original boundary curves
as a 2D problem, after projecting these curves into the z-y plane,
and generate a tentative solution which is then checked in 3D. We
use image processing methods to merge the boundaries instead of
merging the polygons directly, as a raster makes it easier to provide
guarantees concerning the requirement that nearly-vertical regions
should be excluded.

The first task is to generate a gridded, or raster, representation of
the 2D polygons. This is done using a standard computer graphics
scan conversion algorithm.

4.1 Scan Conversion

To rasterise the polygon, a suitable grid interval d must be deter-
mined. By Nyquist’s Theorem, d should satisfy d < dpi,/2.
Also, d should satisfy d < [. as stated in Section 1. Let d =
min(dyin /2, le). In subsequent processing we offset the polygons
according to the tolerance . We can do so most accurately, at least
for axis aligned rectangles, by ensuring the grid interval d is an ex-
act fraction of €, while also satisfying d < d. Thus we set d = ¢/n,
where n is the smallest integer greater than or equal to €/d).

The merging process needs a little extra working space outside
the polygon boundaries. The rasterised image is formed by tak-
ing a bounding box {(Zmin, Ymin), (Tmax, Ymax)} enclosing all
polygons to be merged, and extending it outwards by a distance
e = €/2 + 2d in both positive and negative z- and y-directions.
The lower-left corner of the grid is placed at (Zmin — €, Ymin — €)
and the grid size in pixels is thus [(Zmax — Tmin + 2€)/d] X
[(ymax — Ymin + 26)/d—| .

Having chosen a suitable spacing and size for the grid, we classify
each grid square as either (at least partly) covered-by-some-polygon
or not-covered-by-any-polygon.

4.2 Image Closing

Our approach is based on morphological closing operations which
are explained in [Soille 1999]. We use a disc as the structuring
element because the merging distance should be the same in all
directions. Its radius is r = ¢/(2d) to meet the requirement that
two polygons whose minimum distance is less than or equal to €
should be connected by the closing operation.

A problem with the standard image closing operation is that ero-
sion may re-open some areas connected by dilation. An example is
shown in Figure 3. In Figure 3(a), the dashed lines delimit the initial
polygons, while the solid line indicates the boundary of the single
region remaining after dilation. As the minimum distance between
the two initial polygons is less than 2r, the dilated result connects

(b)

(@

Figure 4: Closing two regions with local MAT adjustment: (a) dilation result and its medial axis; (b) closing result using traditional
morphological algorithm; (c) extension of the connection segment; (d) modified dilated shape reconstructed from the adjusted MAT; (e) final

result after erosion.

them. However, erosion re-opens the two regions as shown in Fig-
ure 3(b), where the dashed line is the dilation result and the solid
lines denote the final boundaries.

This unwanted behaviour can be explained by considering the me-
dial axis transform (MAT). In the dilated region, the associated ra-
dius of the MAT must be bigger than r for each medial axis pixel
inside the initial polygons, but this is not necessarily true for any
medial axis pixels outside the initial regions. If there are pixels on
the MAT with associated radius less than or equal to 7, the dilated
region will be re-opened by the erosion operation. See Figure 3(a).
The green and red segments give the medial axis of the dilated re-
sult; pixels coloured red may have associated radius less than r.

The medial axis segments of the dilated shape that lie outside the
initial regions, connecting different regions, are referred to as con-
nection segments. We examine the radii associated with each pixel
of such connection segments to identify areas where the connected
region may become disconnected by erosion. If the minimum asso-
ciated radius at any such pixel is less than r, re-opening would oc-
cur during erosion if nothing were done to prevent it—see Figure 3.
Furthermore, if the radius were less than r + [, where [is the length
of the connection segment, the final result would include undesir-
ably narrow shapes connecting the regions—see Figure 4(b). We
thus adjust the associated radius function of connection segments
of the MAT where the associated radius is less than r + [.

Before adjusting the radii, each identified connection segment is
extended in both directions along the medial axis—see Figure 4(c).
Doing so allows us to give the closing region a natural shape: the
associated inscribing circles inside the original regions allow us to
determine new radii for each pixel of the segment in a suitable way.
Each segment is extended to whichever comes first: either the near-
est medial axis branch pixel—see the left side of the connection
segment illustrated in Figure 4(c), or the first pixel (i, j) along the
medial axis which satisfies L > r; ; — r, where r; ; is the radius
associated with pixel (7, j), and L is the distance from (¢, 7) to the
corresponding initial endpoint of the segment—see the right side of
the connection segment illustrated in Figure 4(c).

A new associated radius is assigned to each pixel of each extended
connection segment of the MAT, by linearly interpolating the MAT
radii at the segment’s endpoints, subject to the constraint that the
difference between the old and the new associated radius is not
more than r: this provides a smoothly varying shape, while ensur-
ing that the distance between the merged boundary and the original
boundaries can not exceed e. After such adjustment, we have a
new MAT M (Ds(f)), which is in places the same as the MAT of
Ds(f). Our reliable closing operation is formally defined by

Cs(f) = Es(M™ (M(Ds(f))))- M

The maximal distance between a pixel in M~ (M (Ds(f))) and

Ds(f) is not greater than 7 and so the distance from Cs(f) to
f is not greater than €/2, and erosion can no longer disconnect
the dilated shape. The new region provides a natural connection
between the initial regions because of the way we have interpolated
appropriate MAT radii from these regions.

After the closing operation, the pixels in the new regions may unde-
sirably cover nearly-vertical parts of the CL-surface, and these must
be excluded for machining [Hobbs 2007]. This is done by checking
each newly added pixels and removing it again if necessary. If mul-
tiple pixels are removed so as to re-disconnect two newly connected
regions, all newly added pixels are removed between them, as these
no longer make a useful contribution. Slightly more complex rules
are need in the case of multiple newly connected regions.

4.3 Polygon Reconstruction

Having appropriately merged the raster representations of the orig-
inal regions, polygons are now reconstructed from the result using
a simple aproach. Where possible, the original boundary curves
are kept, and new polyline segments are generated only where new
regions are adjacent to the background.

5 Boundary Smoothing

Boundary smoothing is performed in two steps: rough smooth-
ing, then finishing smoothing. The input may include both origi-
nal boundary curve segments on the CL-surface, and segments of
boundary curves arising from merging. The raster used for merg-
ing is also passed to the boundary smoothing process, as a basis for
detecting nearly-vertical regions.

5.1 Rough Smoothing

The aim of rough smoothing is to remove extended flaws as far as
possible while respecting the constraints: each smoothed boundary
must lie within a tolerance €™ outwards, and ¢~ inwards, of the
input boundary, and at the same time, it must not cross any nearly-
vertical regions. It is too time consuming to iteratively remove ex-
tended flaws using curve smoothing methods of the kind used for
finishing smoothing. Instead, a quicker approach is used to fix ex-
tended, more significant problems of this kind: we simply delete
certain boundary curve vertices identified as belonging to bad seg-
ments, which has the effect of replacing the latter by a smoother
curve.

We first identify and label all potentially deletable vertices of each
boundary curve, taking into account the nature of the tolerances £
and €. Contiguous spans of such vertices are marked as candidate
segments. We then assess each candidate segment: if it represents
a deep concavity or is a wobble in the boundary curve, it is marked

as a bad segment. Here, a ‘wobble’ is a piece of curve whose cur-
vature changes sign unnecessarily, bending this way and that. Bad
segments are replaced by simpler pieces of boundary curve, using
a vertex deletion operation; other candidate segments are left un-
changed.

This rough smoothing process may introduce sharp corners into the
boundary, but these will be removed during finishing smoothing.

5.1.1 Bad Segment Identification

We start by finding a set of potentially deletable vertices. If
et > 7, we only attempt to delete concave vertices; otherwise
we only attempt to delete convex vertices adjacent to concave ver-
tices. Thus if a boundary curve can only be expanded, we may
only delete concave vertices, as deletion of convex vertices would
make the boundary contract. On the other hand, if a boundary curve
can only contract, we may only delete convex vertices adjacent to
concave vertices if we wish to retain sections of the original bound-
ary. For a boundary curve that can be modified in either direction,
we may attempt to delete vertices using either approach above, but
again note that we wish to retain sections of the original boundary
where it is feasible to do so.

The whole algorithm iteratively tests whether vertices could be
deleted with respect to the tolerance ™ and €~ until no further
change might occur, as deleting a vertex of one boundary may allow
some vertex of another boundary to also be subsequently deleted.
For example, after a vertex is deleted, the vertices formerly adja-
cent to it may change from convex to concave, or vice versa. Each
segment that corresponds to a set of contiguously deletable vertices
of an original polygon P; is a candidate segment.

We now identify which of the candidate segments are considered
to be bad segments of the boundary curves. To assess wobbles,
we compute the relative magnitude of total turning angle to total
absolute turning angle:

J J
ma(i,§) = D el /Y lal.)
k=i k=i

where «; is the turning angle at boundary point p;. The smaller
Me«, the more severe the wobble in terms of oscillation of direction,
and magnitude of changes in direction.

To identify deep concavities or long convexities, we compute:

k=i, d lpi-1 — pj+all

Distances here are measured in 3D. For a concavity, the bigger m.,
the deeper the concavity.

If either tolerance exceeds a threshold, ma < k or me > A, we
flag the segment as a bad segment. Suitable values for x and \ are
dependent on the dynamic performance of the machine tool and the
specific object to be machined.

5.1.2 Vertex Deletion

Vertex deletion is a simple operation which we now consider. Delet-
ing a vertex from a polygon modifies the polygon at the scale of the
triangle formed by the vertex and its two adjacent vertices. The
input polygons are simple, and do not intersect each other. Thus,
when we delete a vertex, as long as there are no vertices of the cur-
rent, or any other, polygon inside (or on) the triangle formed by that
vertex and its two neighbours in the z-y projection, the operation
does not cause any polygons to intersect (or touch).

5.1.3 Bad Segment Simplification

Having determined the bad segments, we replace each one with a
simpler segment, using the vertex deletion algorithm, while con-
straining the modified boundary to avoid nearly-vertical regions of
the CL-surface.

We modity the bad segments by deleting one vertex at a time, eval-
uating the surface height z(z, y) at appropriate locations to ensure
avoidance of nearly-vertical regions. To do so, we use a discrete
scheme with a regular 2D grid G. The grid for boundary merging
is reused here. (If the boundary merging step was deemed unnec-
essary and omitted, we sample the bounding box of the boundaries
in z-y projection of the bad segment with a regular new 2D grid
G with spacing dy);,/2). When p; is considered for deletion, the
heights of all grid points inside Ap;_1p;jp;j+1 (and inside the fat
edge pj—1p;j+1 on the CL-surface if d, > 0) are evaluated using
z(x,y). If the slope between any two such adjacent grid points,
or the slope between p;_1/p;/p;j+1 and the corresponding nearest
grid point whose height has been determined, is bigger than m,
Apj_1p;pj+1 at least partially overlaps a nearly-vertical region in
projection, so p; cannot be deleted. We use fat edges instead of
edges of zero width if d, > 0.

The vertex deletion process generally introduces new long edges
into the boundary curves. Points are sampled on the CL-surface
along each such long edge and inserted into it, to make the average
3D length of the output edges similar to L., the average 3D edge
length of the original boundary curves.

5.2 Finishing Smoothing

The rough smoothing process may introduce sharp corners. These,
together with any remaining original pointwise flaws in the bound-
aries, are removed by the final finishing smoothing scheme, while
still ensuring all constraints remain satisfied.

A point p; is considered bad if the turning angle satisfies either
of the following conditions: |a;| > amax, or aj—1c; < 0 and
ajajyr < 0and (|aj —aj—1| > amax or [a;j+1 —a;| > dmax)-
The smaller the values of amax and aimax, the smoother the curve
obtained. Suitable values are dependent on the dynamic perfor-
mance of the machine tool. Generally the higher the speed of ma-
chining, the smaller the values should be.

For each bad point p;, we compute a new 2D position g; us-
ing the discrete version of curve shortening flow given by Bruck-
stein [Bruckstein et al. 1995]:

C

2(pj+1 —2p; +pj-1), “

q =pj +
where c is a tuning parameter; 0 < ¢ < 2/3 results in a smooth
curve [Bruckstein et al. 1995].

After computing g; we take the constraints into account to ensure
that we do not move the point to an new unacceptable location. If g;
would place p; in an unacceptable location, instead we try moving
its neighbouring vertices in the opposite direction where possible.

The new position of g; of p; must be inside the tolerance zone
defined by % and £, and updating the position of p; to g¢;
should not result in any boundary curves intersecting (including
self-intersections), or cutting across a nearly-vertical region, or
passing too close to the bottom of a nearly-vertical region of the
CL-surface when d,, > 0. The above are satisfied using the same
general ideas as in Section 5.1.3. We must also ensure that the edges
of the final smoothed curve lie within a user-specified distance ¢ of
the true CL-surface. Smoothing is iterated until no point needs fur-
ther modification.

(b)

Figure 5: A combustion chamber(Left: three fragmented rest
boundary curves; right: three noisy nested boundary curves): (a)
original boundary curves, (b) merged boundary curves, (c) final
boundary curves.

6 Practical Results

All algorithms presented in this paper have been implemented as
a DLL using C++, and integrated into Delcam’s PowerMILL soft-
ware for testing and evaluation. Space is only available for one
further example. The model was provided by Delcam plc. For sim-
plicity and ease of visualization, we do not compute and show the
CL-surface itself, but only the product model from which the CL-
surface is derived.

Two sets of initial boundary curves for a combustion chamber
model are shown in Figure 5(a). For the left set, it is desirable
to merge them into a single boundary curve. The boundary curves
of the right set are nested, and bound a single region. Self-merging
occurs in this example, erasing the pocket on the upper right. Merg-
ing also removes the smaller inner loop. The flaws introduced into
each set of boundary curves during the boundary merging process
are removed (locally, at least) by the rough smoothing and finishing
smoothing.

7 Conclusions

Various algorithms are used to generate boundaries for region ma-
chining on a cutter location surface (CL-surface). Typically the
boundaries output by these algorithms may be fragmented and ex-
hibit geometric flaws, for various reasons. This paper has presented
a strategy for improving such boundaries, while constraining the

tool path to lie in certain areas, and avoid others. We can merge
them appropriately, and remove unwanted artifacts. We are un-
aware of any existing algorithms specifically intended to do this.

Experiments have demonstrated to the satisfaction of a leading
CADCAM company the success of our approach in improving
boundaries, and consequently the tool paths generated from them,
with positive benefits to machining including increased tool life,
faster machining, and better surface finish.

Acknowledgements

The authors wish to acknowledge the support of Delcam plc,
including many helpful discussions with Dr Steve Hobbs, and
the assistance of Dr Chris Bainbridge when integrating our code
with PowerMILL. This work was supported by EPSRC grant
GR/T24579/01.

References

BRUCKSTEIN, A. M., SAPIRO, G., AND SHAKED, D. 1995.
Evolutions of planar polygons. International Journal of Pattern
Recognition and Artificial Intelligence 9, 6, 991-1014.

CHoI, B. K., KiM, B. H., AND JERARD, R. B. 2002. Sculptured
surface nc machining. In Handbook of Computer Aided Geomet-
ric Design, Elsevier, G. Farin, J. Hoschek, and M.-S. Kim, Eds.,
543-574.

DUGUET, F., AND DRETTAKIS, G. 2002. Robust epsilon visibility.
ACM Transactions on Graphics 21, 3, 567-575.

ECk, M., AND JASPERT, R. 1994. Automatic fairing of point sets.
In Designing fair curves and surfaces, SIAM, N. S. Sapidis, Ed.,
44-60.

FLUTTER, A., AND ToDD, J. 2001. A machining strategy for
toolmaking. Computer-Aided Design 33, 13, 1009-1022.

HoOBBS, S., 2007. Personal communication.

HOFER, M., AND POTTMANN, H. 2004. Energy-minimizing
splines in manifolds. ACM Transactions on Graphics 23, 3, 284—
293.

MULLINEUX, G., AND ROBINSONA, S. T. 2007. Fairing point
sets using curvature. Computer-Aided Design 39, 1, 27-34.

PARK, S. C., AND CHoOI, B. K. 2001. Boundary extraction algo-

rithm for cutting area detection. Computer-Aided Design 33, 8,
571-579.

RADZEVICH, S. P. 2005. A cutting-tool-dependent approach for
partitioning of sculptured surface. Computer-Aided Design 37,
7,767-778.

REN, Y. F., ZHU, W. H., AND LE, Y.-S. 2005. Material side trac-
ing and curve refinement for pencil-cut machining of complex
polyhedral models. Computer-Aided Design 37, 10, 1015-1026.

RENZ, W. 1982. Interactive smoothing of digitized point data.
Computer-Aided Design 14, 5, 267-269.

SOILLE, P. 1999. Morphological Image Analysis: Principles and
Applications. Springer.

YANG, X. N., AND WANG, G. Z. 2001. Planar point set fairing
and fitting by arc splines. Computer-Aided Design 33, 1, 35-43.

