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Reverse Engineering

• Engineering converts a concept into an artifact
• Reverse engineering converts an artifact into a concept
• The desired result is a representation of the design in-

tent, not a simple copy

Goal: Reconstruct an ideal model of a physical
object with intended geometric regularities
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Reconstructing Solid Models

• Initially the shape of a physical object is represented by
a point cloud, e.g. obtained from a laser scanner
• An initial B-rep model can be generated from this
? Models with only planar, spherical, cylindrical, conical

and toroidal surfaces
? There are methods to reconstruct these reliably
? Many engineering parts can be described in this way
• The initial model is disturbed by noise introduced by
? inaccuracies of the physical object
? scanning process
? reconstruction phases
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Beautification

• Improve initial model in a post–processing step, called
Beautification :
? Analyse the model to find approximate geometric reg-

ularities
? Reconstruct an improved model using geometric con-

straints
• Approximate symmetries of the initial model can be used

to beautify it
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Approximate Symmetry

• A geometric symmetry of a solid object is an isometry
mapping the object onto itself
• Finite symmetry groups of the object are symmetries of

special point sets
• Infinite symmetry groups are not the topic of this talk;

they are either spherical or have a single central axis
• There are various ways to define approximate symme-

try; none more justified than the other
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Previous Work

• Exact symmetry of polyhedra in 3D can be detected in
O(n log n) time [Sugihara]
• Different approaches for approximate symmetry:
? Find exact isometries which approximately preserve a

given set of points (O(n6)) [Alt]
? Find point sets close to the original points which are

exactly symmetric (NP–complete) [Iwanowski]
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Our Approach

• Find symmetries of the model as point set symmetries
• Detect symmetries as distance–preserving permuta-

tions; the geometric realization becomes secondary
• Automatically choose natural tolerances reducing local

ambiguity instead of finding symmetry for a given toler-
ance
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Point Set Symmetries

• A symmetry of the model is a symmetry of a point set de-
rived from the model (vertices, centres of spheres, tori,
apices of cones)
• There is typically a point set with the same symmetries

as the model
• The point set could have more, but not less symmetries
• Add a post–processing step to check if the point set

symmetries also preserve geometry types and combi-
natorial information
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Permutations

• An approximate isometry of a point set is a permutation
preserving the distances between the points approxi-
mately
• The permutations are the leaves of a tree of partial in-

jections:
? A partial injection is a list of point pairs where each

point appears at most once as first and at most once
as second element of the pairs

? The root of the tree is the empty list
? The children of a partial injection are obtained by

adding one more point pair to the list

Approximate Symmetry Detection 8



Algorithm Overview

Approximate symmetry detection for point sets:

I. Create consistent clusterings of the points at differ-
ent tolerance levels

II. For each consistent clustering, search the tree of
partial injections to find valid isometries
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Stage I: Consistent Clusterings

• Select tolerance levels by creating consistent clusterings
of the points
• Consistent clusterings:
? Each point belongs to exactly one cluster
? All distances between the points in a cluster are

smaller than the tolerance
? Distances between points from different clusters are

larger than the tolerance

Approximate Symmetry Detection 10



Example for Consistent Clusterings
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Example for Consistent Clusterings



Example for Consistent Clusterings
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Stage II: Symmetry Analysis 1

Detect distance–preserving permutations of the
clustered point set

1. Find a large, non–degenerate tetrahedron whose ver-
tices are
? the centroid of the clustered point set
? three points on the convex hull of the clustered point

set chosen to be as far apart as possible from each
other
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Stage II: Symmetry Analysis 2

2. Do a limited depth–first search over the tree of partial
injections mapping the points of the tetrahedron:
? The centroid always has to be mapped onto itself
? Backtrack to the parent whenever the newly added

point pair induces an isometry which does not approx-
imately preserve the distances between the points

? Once three points are mapped, the fourth point can
only be mapped to two possible locations

? All subsequent points are mapped to one location,
thus check the remaining distances directly
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Symmetry Analysis Example

• Select tetrahedron: 0, 1, 2, 3
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Symmetry Analysis Example

• Select tetrahedron: 0, 1, 2, 3

• Map the centroid: 0→ 0

• Map 1→ 2
? Distance check: d(0, 1) ≈ d(0, 2)

• Map 2→ 4
? Distance check: d(0, 2) ≈ d(0, 4)
? Distance check: d(1, 2) 6≈ d(2, 4)

• Backtrack and map 2→ 3
? Distance check: d(0, 2) ≈ d(0, 3)
? Distance check: d(1, 2) ≈ d(2, 3)
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Elongated Objects

• A point set that is several times longer than it is across,
can only have prismatic symmetries
• The algorithm sees this as an approximately linear ar-

rangement
• The rotational and mirror symmetries can be detected in

a second pass by expanding the points radially from the
central axis
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Performance Analysis

• Worst case time order: O(n3.5 log4 n);
requires as many consistent clusterings as points
• For usual engineering objects a pragmatic upper bound

is O(n2 log4 n)
• Tests showed that the algorithm produces correct results

for typical engineering objects in about 20 minutes
• For objects with little symmetry, the algorithm is very fast
• More time is needed for very symmetric objects
• Experiments with typical objects supported the prag-

matic upper bound
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Experiments
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Conclusions

• Our concept of approximate symmetry lead to an algo-
rithm with good theoretical and practical performance
• The algorithm has no tuning parameters, no measure of

symmetry, just exact answers to the existence of approx-
imate symmetry
• The results are highly immune to small variations

Future Work: Detect partial symmetries
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