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License
This text and the presented algorithms are free; you can redistribute them

and/or modify them under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This text is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

If you make any changes to this file or use it for another application please
inform the author(s) about it.

Comments, suggestions and error reports to the author(s).

1 Introduction

This document describes the PIDS algorithm and its application. PIDS is an
algorithm to simplify expressions which are given as nested lists. The sim-
plification is done by a set of rules which can be applied to the expressions.
However the rules just describe how the expression can be rewritten, the real
simplification is driven by a merit function. The purpose of PIDS is to simplify
mathematical expressions. There might be other applications, though. In this
article we just give a few examples for mathematical expressions. Note that the
whole algorithm and this document is still under development. Huge parts of
this document are still a part of the void.

2 Simplification as Graph Search

Assume we have an expression given as nested list and a set of rules. We
are searching a somewhat ’simple’ expression which could be derived from the
original expression by applying the rules. This process could be regarded as
a graph search. The vertices of the graph are all possible expressions and the
edges are defined by the rules. We start at some expression and try to find
another one, which we call ’simple’ or at least ’simpler’ in some sense. The
problem of this search is, that we do not exactly know our goal. The only thing
we can do is to follow some or all edges in the graph and evaluate all found
states. In the general case this becomes a pretty complex problem, especially
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if we consider ’real world’ problems. If we want to follow all paths through the
graph, even the easiest problem might take days to be computed. If we follow
just one path, the result might not at all be simple. So we have to find a way
to look only at the most promising paths and forget about the rest. This might
still lead to expressions which are not the ideal solution, but we hope to find
at least an acceptable one. Another problem is to tell the algorithm, what a
simple expression is. Here we need some function which tells us how simple an
expression is. This however still requires us to have the expression and we can
never be sure to have to ultimate solution. We will have a look at certain graph
searching algorithms which at least partly solve this problems. Note that if we
want to do real simplification, we always have to search a solution. If we only
provide a rewrite mechanism, we can’t get more than a simple ’beautifier’ of
expressions. First we define what we understand by expressions and how our
rules are represented.

3 An ADT for Expressions

3.1 Definition

We define an abstract data type E to represent arbitrary expressions for the
use in the simplification algorithms based on the graph search. The idea behind
these expressions are mathematical ones, which are represented in prefix (lisp)
notation. The expression given to the algorithm is a nested list, i.e. a list whose
elements could be primitives, lists or empty. A definition in EBNF would be

expr = ( ”nil” | list )
list = ”(” element { ” ” element } ”)”

element = ( primitive | list )

where primitive is the set of all the primitives of our expressions. There
might be further conditions where certain primitives could be placed. For math-
ematical expressions for instance the first element of each list is an operator and
the rest of the elements are the arguments of this operator. The operator also
defines how many arguments are allowed. In the following we assume that
all expressions are given correctly. We don’t add a syntax check. Note that
expression is just the syntax we use to represent the expression, it has not to
be stored in the given way.

Now we want to define an ADT E to store expr in a suitable way. We do not
just store the expression, but also allow to add a set of windows to the expression.
A window marks a part of the expression, either a primitive or a complete list.
We add this feature to make it easier to detect a simplified expression. As long
as there are windows in an expression, the expression can be simplified further.
Note that simplify does not mean make an expression simpler, but to apply a
rule. Actually a window will tell us where in the expression we still have to apply
some rule. If an expression contains more than one window, we have to define
a special window, which tells us for which part of the expression we should try
to find a rule and apply it. We call this window in the following the deepest
window. What window this will be, is mainly defined by the implementation
of the ADT E. The only thing we require is that there are no further windows
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in the sub-expression of the deepest window. So we only apply rules to sub-
expressions which have already simplified elements. Once an expression has no
more windows, the expression can’t be changed any further by the rules.

We have to add a mechanism to add, remove and change the position of the
windows. To make the implementation fast and simple, we only allow to change
the position of the deepest window. We can add windows at all primitives of
an expression or at all lists, which only contain primitives. These are exactly
the positions were we will start to apply rules. The deepest window could be
moved down or up. If we move the deepest window down, we add windows to
all elements of the list the deepest window points to. Moving up means to add
a window to the list which contains the element the deepest window points to.
If there is no such list, i.e. we are at the top list in the expression, the deepest
window is removed from the expression.

Finally we need a way to change the expression. We only apply rules at
the deepest window. So we allow to replace the sub-expression at the deepest
window by another sub-expression (given in the expr syntax). Further we allow
to move the deepest window up, down or leave it were it was before the sub-
expression was exchanged.

The complete specification of E is given by the following list. C is the set of
expressions given in expr syntax. Further we denote the set of list of elements
from the sets A1, . . . , An as (A1, . . . , An).

1. ECreate: C → E
The function value ECreate(e,c) is an element e of E which represents
an expression c ∈ C. There are no windows in e.

2. Bottom: E → E
The function value EBottom(e) is the expression e containing a window
for each list in e which has just primitive elements. Existing windows will
not be removed. If there is already a window at an operator of the type
mentioned above, there will be no new window added. This operation
may change the deepest window.

3. EBottomArgs: E → E
The function value EBottomArgs(e) is the expression e containing a win-
dow for each primitive in e. Existing windows will not be removed. If
there is already a window at a primitive, there will be no new window
added. This operation may change the deepest window.

4. EDown : E → E
The function value EDown(e) is the expression e where the deepest window
is removed and a new window for each element in the former deepest
window is added to e.

5. EUp : E → E
The function value EUp(e) is expression e where the deepest window is
removed and a new window is created for the list which contained the
element the former deepest window pointed to.

6. ENoWindows : E → B
The function value ENoWindows(e) is true if e is empty and false otherwise.
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7. EExp : E → C
The function value EExp is the sub-expression in the deepest window (in
expr syntax).

8. EReplace : E × (C, IR) → E
The function value EReplace(e,(c,r)) is the expression e where the sub-
expression in the deepest window is replaced by c. If r is positive the
deepest window is moved up (by EUp), if r is negative the deepest window
is moved down (by EDown). If r is zero, the position of the deepest window
is not changed.

3.2 Implementation

We provide a very simple implementation of the E ADT. It’s mainly for test
purposes and it should be improved later. This implementation is for simplifying
mathematical expressions. So each list of expr contains an operator as first
element and a certain number of additional elements which are the arguments
of the operator. Since in mathematical expressions the first element of a list is
always an operator, we don’t add windows to this element. Further EDown does
not add windows to elements of the list which are primitives and EBottom only
adds windows to lists which do only contain primitives, there are no windows
added to primitives. EBottomArgs adds windows to all primitives in the list,
which are no operators. We assume that the argument of ECreate is already is
some kind of normal form. Later we might add some function that normalizes
the given expression.

The expressions will be stored as nested lisp lists. The windows are added as
lists, which contain the keyword window as first element and the sub-expression
as second one, for instance (window (* a b)). Note that this forbids an op-
erator with the name window. The deepest window is the first window found,
which has no windows in the expression it points to, while doing a pre-order
traversing of the expression.

;; expr.el - expression ADT

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along

;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(defun ECreate (c)
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c)

(defun EBottom (expr)

(if (atom expr)

expr

(let ((argl (cdr expr))

(newargl nil)

(mark t))

(while argl

(if (atom (car argl))

(setq newargl (append newargl (list (car argl))))

(setq newargl (append newargl (list (EBottom (car argl))))

mark nil))

(setq argl (cdr argl)))

(setq newargl (cons (car expr) newargl))

(if mark

(list ’window newargl)

newargl))))

(defun EBottomArgs (expr)

(if (atom expr)

(list ’window expr)

(let ((argl (cdr expr))

(newargl nil))

(while argl

(setq newargl (append newargl (list (EBottomArgs (car argl))))

argl (cdr argl)))

(setq newargl (cons (car expr) newargl)))))

(defun EDown (expr)

(car (EDownAtDeepestWindow expr)))

(defun EDownAtDeepestWindow (expr)

(if (atom expr)

(list expr nil)

(let ((argl (cdr expr))

(deep nil)

(window nil)

(newargl nil)

r)

(if (eq (car expr) ’window)

(setq deep t))

(while argl

(setq r (EDownAtDeepestWindow (car argl)))

(if (car (cdr r))

(setq deep nil

window t

newargl (append newargl (list (car r)) (cdr argl))

argl nil)

(setq argl (cdr argl)

newargl (append newargl (list (car r))))))

(cond (deep

(list (EDownExecute (car (cdr expr))) t))

(window
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(list (cons (car expr) newargl) t))

(t

(list (cons (car expr) newargl) nil))))))

(defun EDownExecute (expr)

(if (atom expr)

expr

(let ((argl (cdr expr))

(newargl nil)

(r t))

(while argl

(if (consp (car argl))

(setq newargl (append newargl (list

(list ’window (car argl))))

r nil)

(setq newargl (append newargl (list (car argl)))))

(setq argl (cdr argl)))

(setq expr (cons (car expr) newargl))

(if r

(list ’window expr)

expr))))

(defun EUp (expr)

(car (EUpAtDeepestWindow expr)))

(defun EUpAtDeepestWindow (expr)

(if (atom expr)

(list expr nil)

(let ((argl (cdr expr))

(deep nil)

(window nil)

(up nil)

(newargl nil)

r)

(if (eq (car expr) ’window)

(setq deep t))

(while argl

(setq r (EUpAtDeepestWindow (car argl)))

(cond ((or (eq (car (cdr r)) ’found)

(eq (car (cdr r)) ’remove))

(setq deep nil

window (car (cdr r))

newargl (append

(append newargl (list (car r))) (cdr argl))

argl nil))

((eq (car (cdr r)) ’up)

(setq deep nil

up t

newargl (append

(append newargl (list (car r))) (cdr argl))

argl nil))

(t

(setq argl (cdr argl)

newargl (append newargl (list (car r)))))))
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(cond (deep

(list (car (cdr expr)) ’up))

(up

(list (list ’window (cons (car expr) newargl)) ’remove))

(window

(if (and (eq window ’remove)

(eq (car expr) ’window))

(list (car newargl) ’found)

(list (cons (car expr) newargl) ’found)))

(t

(list (cons (car expr) newargl) nil))))))

(defun ENoWindows (expr)

(cond ((atom expr)

expr)

((eq (car expr) ’window)

nil)

(t

(setq expr (cdr expr))

(let ((r t))

(while (and expr r)

(setq r (ENoWindows (car expr))

expr (cdr expr)))

r))))

(defun EExp (expr)

(if (atom expr)

nil

(let ((argl (cdr expr))

(r nil))

(while argl

(setq r (EExp (car argl))

argl (cdr argl))

(if r

(setq argl nil)))

(cond (r

r)

((eq (car expr) ’window)

(car (cdr expr)))

(t

nil)))))

(defun EReplace (expr c)

(let ((expr (car (EReplaceAtDeepestWindow expr (car c)))))

(cond ((equal (car (cdr c)) 0)

expr)

((> (car (cdr c)) 0)

(EUp expr))

((< (car (cdr c)) 0)

(EDown expr)))))

(defun EReplaceAtDeepestWindow (expr c)

(if (atom expr)

(list expr nil)

7



(let ((argl (cdr expr))

(deep nil)

(window nil)

(newargl nil)

r)

(if (eq (car expr) ’window)

(setq deep t))

(while argl

(setq r (EReplaceAtDeepestWindow (car argl) c))

(if (car (cdr r))

(setq deep nil

window t

newargl (append (append newargl (list (car r))) (cdr argl))

argl nil)

(setq argl (cdr argl)

newargl (append newargl (list (car r))))))

(cond (deep

(list (list ’window c) t))

(window

(list (cons (car expr) newargl) t))

(t

(list (cons (car expr) newargl) nil))))))

4 The Rule Set ADT

4.1 Definition

We also need a set of rules which defines the edges of the graph. Therefore we
define an ADT which represents a set of such rules. A rule consists of a left and
a right side. The left side is the condition which tells us when we can apply the
right side. Note that we represent the left side as a function x : C →BOOLEAN.
The set of all these functions is X. The right side of a rule is represented by a
function f : C → C. The set of these functions is F . A rule set is basically a
collection of those rules. We also provide a way to find all rules in the rule set
which could be applied to a given expression.

The notation ([A]) represents the set of lists of elements in A. The type of
the rule set ADT is denoted by S. Note that the following provides a function
that can add more rules with the same left side. This is to enable a faster
implementation for the inserting and the search procedures.

1. RSEmpty : . → RS
The function value of RSEmtpy is an empty set of rules.

2. RSIsEmpty : RS → B
The function value of RSIsEmpty(r) is true if r is empty otherwise it is
false.

3. RSInsert : RS ×X × ([F ]) → RS
The function value of RSInsert(r,x,([f]) is the set of rules r with ad-
ditional rules, which have the left side x and the right side represented by
the list ([f ]).
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4. RSSearch : RS × C → ([F ])
The function value of RSSearch(r,c) is a list of maps f : C → C which
could be applied to expression c according to the rules in r.

To make this more efficient, we should provide some mechanism to express a
hierarchy of rules. The left sides of the rules may be logical expressions combined
by ’and’. If we split up these expressions and create a decision tree, RSSearch
could be implemented faster.

4.2 Implementation

Again a very simple implementation. The set of rules is represented as list of
lists, which contain x as first element and ([f ]) as second one.

;; ruleset.el - ruleset ADT

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along

;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(defun RSEmpty ()

(list nil))

(defun RSIsEmpty (rs)

(equal (car rs) nil))

(defun RSInsert (rs x fl)

(append (list (list x fl)) rs))

(defun RSSearch (rs expr)

(let ((res nil))

(while (not (RSIsEmpty rs))

(let ((r (car rs)))

(if (funcall (car r) expr)

(setq res (append res (car (cdr r)))))

(setq rs (cdr rs))))

res))
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5 The Simplification Algorithm

We have reached the point where we should discuss the graph searching algo-
rithms. First will provide a few standard algorithms for graph searching which
finally lead to the PIDS algorithm. For details about these algorithm refer to
Artificial Intelligence, 2nd Edition by Elaine Rich and Kevin Knight, McGraw
Hill, 1991, part I, chapter 2 and 3. All algorithms use a merit function, which
evaluates a vertex of the graph and a set of rules. Both will be described later.
When we are talking about a state in the following, we mean a vertex of our
graph.

5.1 Simple Search

We assume you know about breadth and depth first searching in graphs. Ap-
plying this to our problem would in both cases create all possible simplifications
before we can stop. In principle both methods have to fail, since we don’t know
our goal state. We might consider the following simple algorithm

1. Create a list VISITED with the initial state as member.

2. Create a list WORK with the initial state as member.

3. Create an empty list SIMP.

4. Loop until WORK is empty

(a) Remove an element from WORK and make it the current state.

(b) Generate all expressions we can derive from our set of rules from the
current state and store those not in VISITED in SUCC.

(c) Store all members of SUCC in VISITED

(d) Store all elements of SUCC in SIMP which do not contain windows
and store them in WORK otherwise.

5. All elements in SIMP are simplified. Choose one or more elements from
SIMP to be the goal state using the merit function.

Depending on how we choose/store elements of WORK, we get breadth or
depth searching. We can prevent the loop from traversing the whole graph.
Therefore we also have to check if there is already an element in SIMP which
we regard as simple enough using the merit function.

5.2 Agenda Driven Search

The mathematics discovery program AM by Lenat used a different kind of
search, since the goal state was not known. The program should just look
around and try to find something interesting. This lead to the agenda driven
search method as provided in Elaine Rich’s book

1. Do until a goal state is reached or the agenda is empty:
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(a) Choose the most promising task from the agenda. Notice that this
task can be represented in any desired form. It can be thought of as
an explicit statement of what to do next or simply as an indication
of the next node to be expanded.

(b) Execute the tasks by devoting to it the number of resources deter-
mined by its importance. The important resources to consider are
time and space. Executing the tasks will probably generate addi-
tional tasks (successor nodes). For each of them, do the following

i. See if it is already on the agenda. If so, then see if this same
reason for doing it is already on its list of justifications. If so,
ignore this current evidence. if this justification was not already
present, add it to the list. If the task was not on the agenda,
insert it.

ii. Compute the new tasks rating, combining the evidence from all
its justifications. Not all justifications need have equal weight.
It is often useful to associate with each justification a measure
of how strong a reason it is. The measures are then combined at
this step to produce an overall rating for the task.

We will now try to use this general technique for our purposes. This first
leads to

5.3 The Interest Driven Search - IDS

We have a merit function, a set of rules and an expression to be simplified. In
order not to search the whole graph, we try to evaluate the expressions and
always take the most promising one for the next expansion by the given rules.

1. Store the initial expression and its evaluation by the merit function in the
list WORK and add a window structure to this expression by EBottom.

2. Create a list VISITED containing the initial expression.

3. Create an empty list SIMP.

4. Loop while WORK is not empty and there is no expression in SIMP which
is already simple enough (which is indicated by a small value of our merit
function).

(a) Remove the best expression from WORK, i.e the one with the small-
est merit function value and make it the current expression.

(b) Generate a list of all rules which could be applied to the deepest
window of the current expression. For each rule do the following

i. Apply the rule to the function (this includes moving the deepest
window and rewriting the sub-expression in the deepest window).

ii. If the result is already in VISITED, continue with the next rule,
otherwise add the result to VISITED.

iii. If there is no window left in the result, check if it is already in
SIMP. If so, drop the result, otherwise add it to SIMP

iv. If there is at least one window left, check if it is already in
WORK. If so, drop it, otherwise add it to WORK.
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6 The Pre-estimated Interest Driven Search -
PIDS

To make the search faster, we do not just evaluate the expressions, but also the
rules. Therefore we have to add values to the rules that tell us how promising
it is that the rule actually creates a simpler expression. Further we split the set
of rules. There is one set which is used for searching, denoted by RULES, and
another one which is always applied when its left side is satisfied, denoted by
BRULES.

1. Create an empty list WORK and SIMP.

2. Apply BRULES to the initial expression.

3. Generate all right sides of the rules in RULES which could be applied
to the deepest window in the expression. Create for each function an ele-
ment of WORK, containing the expression, the merit value of the function
modified by the merit value of the rule and the function.

4. Create an empty list SIMP.

5. Loop until WORK is empty or there is a ’good-enough’ expression in
SIMP.

(a) Take the most promising element from WORK, apply the function
to the expression, apply the BRULES and evaluate the result with
the merit function.

(b) If there is no deepest window left in the result, store it together with
its merit value in SIMP, if it is not already in SIMP.

(c) If there are windows left, generate a set of functions which could be
applied to the deepest window of the result. Create for each function
an element of WORK, containing the expression, the merit value of
the function modified by the merit value of the rule and the function,
if it is not already in WORK or was visited earlier.

To implement this algorithm, we have to change the rule sets ADT. Further
we define a new ADT for handling the WORK list.

6.1 A new ADT for rule sets

We do no longer just evaluate expressions but also rules. This values must be
given, though and are not computed by a function. The following redefinition
of the rule set ADT RS will allow us to store this values with the rules. We
evaluate rules with non-negative real numbers. A rule with evaluation 0 has the
lowest possible ‘use’. Higher values represent higher use. We will use RN to
denote the new ADT.

1. RNEmpty : → RN
The function value of RNEmtpy is an empty set of rules.

2. RNIsEmpty : RN → B
The function value of RNIsEmpty(r) is true if r is not empty otherwise it
is false.
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3. RNInsert : RN ×X × ([(F, IR+
0 )]) → RN

The function value of RNInsert(r,x,([(f,v)]) is the set of rules r with
additional rules represented by the list ([(f, v)]), which could be applied
to an expression e if x(e) is true. The members of ([(f, r)]) are maps
f : C → C which represent the right side of a rule and associated non-
negative real numbers which represent the ‘value’ of the rule. x : C → B
is a map which represents the left side of the rules.

4. RNSearch : RN × C → ([(F, IR+
0 )])

The function value of RNSearch(r,c) is a list of maps f : C → C and
non-negative real numbers v which evaluate the corresponding function
which could be applied to expression c according to the set of rules r.

We give an implementation, which is based on the rule set ADT RS from
above.

;; rulexset.el - new ruleset ADT

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along

;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(defun RNEmpty ()

(list nil))

(defun RNIsEmpty (rs)

(equal (car rs) nil))

(defun RNInsert (rs x fl)

(append (list (list x fl)) rs))

(defun RNSearch (rs expr)

(let ((res nil))

(while (not (RNIsEmpty rs))

(let ((r (car rs)))

(if (funcall (car r) expr)

(setq res (append res (car (cdr r)))))

(setq rs (cdr rs))))

res))
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6.2 An ADT for simplification lists

PIDS does no longer just apply a rule. It will first store all possible rules that
could be applied to an expression. Their merit value of the expression and the
evaluation of the rule will decide which expression is considered to be the best
choice for further examination. How this is done is defined by this ADT, which
we will denote by S. The special feature of this list, is that an element can
only be inserted once. Once it has been inserted, it cannot be inserted again,
even if it was removed meanwhile. This prevents us from inserting elements, we
already evaluated.

1. SEmpty : . → S
The function value SEmpty is an empty simplification list, i.e. a list which
does not contain any entries and allows to insert any entry.

2. SIsEmpty : S → B
The function value SIsEmpty(l) is true if l is empty and false otherwise.
l is considered to be empty if there are no values left in the list. This does
not mean that the list still accepts every member as entry in the list.

3. SAddList:S × E × IR+
0 × ([(F, IR+

0 )]) → S
The function value SAddList(s,e,n,([(f,v)])) is the rule list s contain-
ing also an entry for each (f, v). This entry consists of the expression e, the
simplification function f and an evaluation computed from the functions
merit value n and the rules merit v. If this entry was already inserted in
the list, it is not inserted again - even if it was already removed again by
SGetBest. the list.

4. SGetBest : S → (S, E, F )
The function value SGetBest(s) is a list containing the most promising
expression e, the corresponding f and the simplification list s without this
simplification.

A possible implementation is given by the following code. We store S as a
list of two lists. The first one represents the members of S and the 2nd one
contains all entries once inserted in the list.

;; slist.el - simplification lists ADT

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along
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;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(defun SEmpty ()

(list nil nil))

(defun SIsEmpty (s)

(equal (car s) nil))

(defun SAddList (s expr merit rulex)

(let ((w (car s))

(a (car (cdr s))))

(while rulex

(let* ((r (car rulex))

(eval (- merit (car (cdr r))))

(el (list eval expr (car r))))

(if (< eval 0)

(setq eval 0))

(if (not (ShelpIsIn a el))

(setq w (ShelpInsert w el)

a (ShelpInsert a el)))

(setq rulex (cdr rulex))))

(list w a)))

(defun ShelpIsIn (l el)

(let ((r nil))

(while l

(if (equal (car l) el)

(setq r t

l nil)

(setq l (cdr l))))

r))

(defun ShelpInsert (s el)

(let ((hs s))

(setq s nil)

(if (SIsEmpty hs)

(setq s (list el))

(while hs

(cond ((< (car (car hs)) (car el))

(setq s (append s (list (car hs)))

hs (cdr hs))

(if (equal hs nil)

(setq s (append s (list el)))))

((and (equal (car (car hs)) (car el))

(equal (car (cdr (car hs))) (car (cdr el))))

(setq s (append s hs)

hs nil))

((equal (car (car hs)) (car el))

(setq s (append s (list (car hs)))

hs (cdr hs))

(if (equal hs nil)

(setq s (append s (list el)))))

(t
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(setq s (append s (list el) hs)

hs nil))))))

s)

(defun SGetBest (s)

(let ((b (car (car s))))

(setq s (list (cdr (car s)) (car (cdr s))))

(list s (car (cdr b)) (car (cdr (cdr b))))))

6.3 An implementation of PIDS

Using all the above ADTs we get the following implementation. Note that by the
choice of the function not-good-enough and the global variable return-all-simp,
we generate all (by the choice of rules and brules) possible simplifications of
the given expression (unless we run out of resources).

;; pids.el - the PIDS algorithm

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along

;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(defun PIDS (cexpr rules brules meritf)

(setq PIDS-counter 0)

(let* ((expr (apply-basic-rules brules (EBottom (ECreate cexpr))))

(work (SAddList (SEmpty) expr (funcall meritf expr)

(RNSearch rules (EExp expr))))

fr

merit

(simp nil))

(if (not (ENoWindows expr))

(while (and (not (SIsEmpty work)) (not-good-enough simp))

(let* ((bestsimp (SGetBest work))

(oldexpr (car (cdr bestsimp)))

(simplexpr

(apply-basic-rules brules (EReplace oldexpr

(funcall (car (cdr (cdr bestsimp)))

(EExp oldexpr))))))

(setq work (car bestsimp))

(while (and (not (ENoWindows simplexpr))

(not (setq fr (RNSearch rules (EExp simplexpr)))))
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(setq simplexpr (EUp simplexpr)))

(setq merit (funcall meritf simplexpr))

(if (ENoWindows simplexpr)

(setq simp (insert-in-sorted-list simplexpr merit simp))

(setq work (SAddList work simplexpr merit fr))))

)

(setq simp (insert-in-sorted-list expr (funcall meritf expr) simp)))

(return-one-or-all simp)))

(defun not-good-enough (simp)

(setq PIDS-counter (+ PIDS-counter 1))

(cond ((and (not return-all-smp) simp)

t)

((and (> PIDS-counter 400) simp)

nil)

((and simp (< (car (car simp)) 1))

nil)

(t

t)))

(defun apply-basic-rules (rules expr)

(let (r)

(while (and (not (ENoWindows expr))

(setq r (RNSearch rules (EExp expr))))

(setq expr (EReplace expr (funcall (car (car r)) (EExp expr)))

r (RNSearch rules (EExp expr)))))

expr)

(defun is-in-sorted-list (el merit l)

(let ((r nil))

(while l

(if (equal (car (cdr (car l))) el)

(setq r t

l nil)

(setq l (cdr l))))

r))

(defun insert-in-sorted-list (el merit l)

(let ((hl l))

(setq l nil)

(if hl

(while hl

(if (< (car (car hl)) merit)

(progn

(setq l (append l (list (car hl)))

hl (cdr hl))

(if (equal hl nil)

(setq l (append l (list (list merit el))))))

(if (equal (car (car hl)) merit)

(if (equal (car (cdr (car hl))) el)

(setq l (append l hl)

hl nil)

(progn

(setq l (append l (list (car hl)))
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hl (cdr hl))

(if (equal hl nil)

(setq l (append l (list (list merit el)))))))

(setq l (append l (list (list merit el)) hl)

hl nil))))

(setq l (list (list merit el)))))

l)

(setq return-all-simp t)

(defun return-one-or-all (l)

(if return-all-simp

(let (r)

(while l

(setq r (append r (list (car (cdr (car l)))))

l (cdr l)))

r)

(car (cdr (car l)))))

7 The Merit Functions

In the following we only consider the simplification of mathematical expressions.
The choice of the merit function actually defines what we call simple. There
are quite a lot of possibilities to choose such a function. We might for instance
count arguments, or operators or consider the relation between arguments and
operators. Further we can add weights to operators depending on which oper-
ators we prefer to have in our simple expressions. And there are all kinds of
combination of those functions. It is obvious that there is not one ideal merit
functions, but that there are more depending on what we want to achieve. To
make things (very!) easy, we only allow the addition and multiplication. A few
simple merit functions are

;; meritf.el - merit function for example

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along

;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(defun meritf-const (expr)

10)

18



(defun meritf-count-arg (expr)

(if (consp expr)

(let ((r 0) (l (mapcar ’meritf-count-arg (cdr expr))))

(while l

(setq r (+ r (car l))

l (cdr l)))

r)

1))

(defun meritf-count-op (expr)

(if (consp expr)

(let ((r 1) (l (mapcar ’meritf-count-op (cdr expr))))

(while l

(setq r (+ r (car l))

l (cdr l)))

r)

0))

(defun meritf-count-plus-4mul (expr)

(if (consp expr)

(let ((r 1) (l (mapcar ’meritf-count-plus-4mul (cdr expr))))

(if (equal (car expr) ’*)

(setq r 4))

(while l

(setq r (+ r (car l))

l (cdr l)))

r)

0))

(defun meritf-count-4plus-mul (expr)

(if (consp expr)

(let ((r 4) (l (mapcar ’meritf-count-4plus-mul (cdr expr))))

(if (equal (car expr) ’*)

(setq r 1))

(while l

(setq r (+ r (car l))

l (cdr l)))

r)

0))

8 The Rules

We continue considering only addition and multiplication. We have to define a
set of rules for the PIDS algorithm. Note that these rules consist of a left side
which gives the condition when to apply the rule and a right side which consists
of a rewrite function and a direction to move the deepest window. Especially this
direction is important for our rules. If we never move it up, we never get a result,
if we always move it up, we might overlook some important simplifications. Also
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providing an empty rule, i.e. one that just moves the deepest window up, seems
to be important. Another representation, especially a hierarchical one, like a
decision tree, might improve the whole algorithm considerably. Note that a good
evaluation of the rules also depends on the used merit function. Introducing a
function for the evaluation of the rules might be a good idea.

;; rules.el - rules for example

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along

;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(setq Rules (RNEmpty))

; empty-rule

(setq Rules (RNInsert Rules ’test-empty

’((simp-empty 0))))

(defun test-empty (expr)

(consp expr))

(defun simp-empty (expr)

(list expr 1))

; ((a + b) + c) = (a + (b + c))

(setq Rules (RNInsert Rules ’test-plus-ass1

’((simp-plus-ass1 2))))

(defun test-plus-ass1 (expr)

(and (equal (car expr) ’+)

(consp (car (cdr expr)))

(equal (car (car (cdr expr))) ’+)))

(defun simp-plus-ass1 (expr)

(list (list ’+ (nth 1 (nth 1 expr))

(list ’+ (nth 2 (nth 1 expr)) (nth 2 expr))) -1))

; (a + (b + c)) = ((a + b) + c)

(setq Rules (RNInsert Rules ’test-plus-ass2

’((simp-plus-ass2 2))))

(defun test-plus-ass2 (expr)

(and (equal (car expr) ’+)

(consp (nth 2 expr))

(equal (car (nth 2 expr)) ’+)))

(defun simp-plus-ass2 (expr)
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(list (list ’+ (list ’+ (nth 1 expr) (nth 1 (nth 2 expr)))

(nth 2 (nth 2 expr))) -1))

; a + b = b + a

(setq Rules (RNInsert Rules ’test-plus-com

’((simp-plus-com 1))))

(defun test-plus-com (expr)

(equal (car expr) ’+))

(defun simp-plus-com (expr)

(list (list ’+ (nth 2 expr) (nth 1 expr)) 1))

; a * (b *c) = (a * b) * c

(setq Rules (RNInsert Rules ’test-mul-ass1

’((simp-mul-ass1 2))))

(defun test-mul-ass1 (expr)

(and (equal (car expr) ’*)

(consp (nth 2 expr))

(equal (car (nth 2 expr)) ’*)))

(defun simp-mul-ass1 (expr)

(list (list ’* (list ’* (nth 1 expr) (nth 1 (nth 2 expr)))

(nth 2 (nth 2 expr))) -1))

; (a * b) * c = a * (b * c)

(setq Rules (RNInsert Rules ’test-mul-ass2

’((simp-mul-ass2 2))))

(defun test-mul-ass2 (expr)

(and (equal (car expr) ’*)

(consp (nth 1 expr))

(equal (car (nth 1 expr)) ’*)))

(defun simp-mul-ass2 (expr)

(list (list ’* (nth 1 (nth 1 expr))

(list ’* (nth 2 (nth 1 expr)) (nth 2 expr))) -1))

; a * b = b * a

(setq Rules (RNInsert Rules ’test-mul-com

’((simp-mul-com 1))))

(defun test-mul-com (expr)

(and (equal (car expr) ’*)))

(defun simp-mul-com (expr)

(list (list ’* (nth 2 expr) (nth 1 expr)) 0))

; a * (b + c) = a * b + a * c

(setq Rules (RNInsert Rules ’test-mulplus-dist1

’((simp-mulplus-dist1 4))))

(defun test-mulplus-dist1 (expr)

(and (equal (car expr) ’*)

(consp (nth 2 expr))

(equal (car (nth 2 expr)) ’+)))

(defun simp-mulplus-dist1 (expr)

(list (list ’+ (list ’* (nth 1 expr) (nth 1 (nth 2 expr)))

(list ’* (nth 1 expr) (nth 2 (nth 2 expr)))) -1))

; a * b + a * c = a * (b + c)
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(setq Rules (RNInsert Rules ’test-mulplus-dist2

’((simp-mulplus-dist1 6))))

(defun test-mulplus-dist2 (expr)

(and (equal (car expr) ’+)

(consp (nth 1 expr))

(equal (car (nth 1 expr)) ’*)

(consp (nth 2 expr))

(equal (car (nth 2 expr)) ’*)

(equal (nth 1 (nth 1 expr)) (nth 1 (nth 2 expr)))))

(defun simp-mulplus-dist2 (expr)

(list (list ’* (nth 1 (nth 1 expr))

(list ’+ (nth 2 (nth 1 expr)) (nth 2 (nth 2 expr)))) -1))

(setq BRules (RNEmpty))

; 0 + a = a

(setq BRules (RNInsert BRules ’test-plus-zero

’((simp-plus-zero 5))))

(defun test-plus-zero (expr)

(and (equal (car expr) ’+)

(equal (nth 1 expr) 0)))

(defun simp-plus-zero (expr)

(list (nth 2 expr) 1))

; n + m = (n+m)

(setq BRules (RNInsert BRules ’test-plus-add

’((simp-plus-add 4))))

(defun test-plus-add (expr)

(and (equal (car expr) ’+)

(numberp (nth 1 expr))

(numberp (nth 2 expr))))

(defun simp-plus-add (expr)

(list (+ (nth 1 expr) (nth 2 expr)) 1))

; a + a = 2 * a

(setq BRules (RNInsert BRules ’test-plus-add2

’((simp-plus-add2 3))))

(defun test-plus-add2 (expr)

(and (equal (car expr) ’+)

(equal (nth 1 expr) (nth 2 expr))))

(defun simp-plus-add2 (expr)

(list (list ’* 2 (nth 1 expr)) 0))

; 0 * a = a

(setq BRules (RNInsert BRules ’test-mul-zero

’((simp-mul-zero 5))))

(defun test-mul-zero (expr)

(and (equal (car expr) ’*)

(equal (nth 1 expr) 0)))

(defun simp-mul-zero (expr)

(list 0 1))
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; n * m = (n*m)

(setq BRules (RNInsert BRules ’test-mul-mul

’((simp-mul-mul 3))))

(defun test-mul-mul (expr)

(and (equal (car expr) ’*)

(numberp (nth 1 expr))

(numberp (nth 2 expr))))

(defun simp-mul-mul (expr)

(list (* (nth 1 expr) (nth 2 expr)) 1))

8.1 Testing the rules

The follow small program contains a few examples for applying the above rules.

;; main.el - main program for example

;;

;; Copyright (C) 1994-1995 Frank C Langbein

;; <langbein@mathematik.uni-stuttgart.de>

;;

;; This program is free software; you can redistribute it and/or modify it

;; under the terms of the GNU General Public License as published by the Free

;; Software Foundation; either version 2 of the License, or (at your option)

;; any later version.

;;

;; This program is distributed in the hope that it will be useful, but

;; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

;; for more details.

;;

;; You should have received a copy of the GNU General Public License along

;; with this program; if not, write to the Free Software Foundation, Inc.,

;; 675 Mass Ave, Cambridge, MA 02139, USA.

(load "expr.el")

(load "rulexset.el")

(load "slist.el")

(load "pids.el")

(load "meritf.el")

(load "rules.el")

; (setq return-all-simp nil)

; (setq return-all-simp t)

(PIDS ’(+ 2 3) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ 1 (+ 2 3)) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ (+ 0 a) a) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ (* 0 a) a) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ a a) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ (+ a a) (+ a a)) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ (+ b a) a) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ a (+ a b)) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(+ (+ a (+ a b)) (+ a a)) Rules BRules ’meritf-count-4plus-mul)

(PIDS ’(* 5 (* a 4)) Rules BRules ’meritf-count-4plus-mul)
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(PIDS ’(* 2 (+ a a)) Rules BRules ’meritf-count-4plus-mul)

; ....

If we compute all the simplifications, as it is the default of the above im-
plementation of PIDS, the above examples take quite some time. If we set
return-all-simp to nil, speed increases and we still find something that is
really simple. However to provide an efficient way, we should add some kind
of sorting for plus, allow more than two arguments. Especially the sorting of
the arguments might increase speed since we do not check for all permutations
anymore. Some rules could be eliminated, too. The sorting could be done explic-
itly by ECreate or by the BRULES set. A combination of both might be best.
There are lots of possibilities for the rules, the merit function and changing the
algorithm, which might make the simplification a lot more efficient. However,
time does not allow to investigate this further.
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