Towards Choosing Consistent Geometric Constraints

F. C. Langbein A. D. Marshall R. R. Martin

27th March 2002

Department of Computer Science Cardiff University

Reverse Engineering

- Engineering converts a concept into an artifact
- Reverse engineering converts an artifact into a concept
- Desired result is a representation of the design intent, not a simple copy
- Reverse engineered models suffer from inaccuracies caused by
 - ★ sensing errors during data acquisition
 - * approximation and numerical errors from reconstruction algorithms
 - ★ possible wear of the artifact
 - manufacturing method used to make the artifact

Beautification

- Goal: Reconstruct an *ideal* model of a physical object with intended geometric regularities
- Only for engineering objects with planar, spherical, cylindrical, conical and toroidal surfaces
- Previous approaches:
 - Augment the surface fitting step by constraint solving methods [Fisher,Benkő]
 - Manually identify features like slots and pockets and use them to drive the segmentation and surface fitting [Thompson]
- Our approach: Improve the model in a postprocessing step called beautification

Beautification Strategy

Analyser

Detect potential regularities which are approximately present in the initial model

Reconstruction

Reconstruct an improved model, fix topological problems, align model with coordinate axes, etc.

Hypothesizer

Solve a constraint system derived from the regularities which describes a complete, improved model with likely regularities

Beautification Strategy

Analyser

Detect potential regularities which are approximately present in the initial model

Reconstruction

Reconstruct an improved model, fix topological problems, align model with coordinate axes, etc.

Hypothesizer

Constraint Selection

Based on priorities and inconsistencies select a set of likely constraints

\downarrow 1

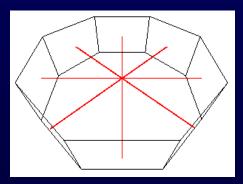
Constraint Solver

Try to solve constraint system and indicate inconsistencies (solvability test)

Geometric Regularities

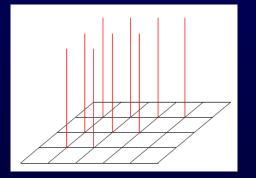
Directions

- Parallel directions
- Directions with same angle relative to a special direction
- Symmetrical arrangements of directions



Axes

- Axis intersections
- Aligned axes
 Parallel axes arranged equally spaced along lines, grids or on cylinders



Positions

- Equal positions
- Positions equal under projection
- Positions arranged regularly on lines and grids

Parameter

- Equal lengths
- Equal angles
- Integer relations
- Special values:
 - ★ integers
 - ★ simple fractions

Constraint Selection & Solving

- Beautification as constraint selection and solving problem
 - ★ Regularities become sets of geometric constraints
 - Model topology is described by geometric constraints
- Algorithm has to select desirable constraints such that the constraint system has a solution
- Finding a solution is a secondary task

Selection & Solving Strategy I

I. Prioritize the constraints based on

- how well they are satisfied in the initial model
- how common and desirable the related regularity is
- II. Select initial set S of constraints using selection rules considering the priorities:
 - a. Resolve simple inconsistencies between constraints (constraints between the same objects with different constants)
 - b. Only add constraints if constraints they depend on are also present

(incidence hierarchies, low- to higher-level regularities, etc.)

Selection & Solving Strategy II

- III. In order of highest to lowest priority remove a constraint c from S until S is empty also considering dependencies:
 - a. Try to add c to the selected constraint system ${\cal C}$
 - b. If c could not be added, then ignore c and adjust S according to the selection rules

Central issues of the algorithm:

- Selection rules and priorities determine which regularities are favoured
- Step III.a determines the solvability and eventually a solution of the selected constraint system

Selection & Priorities

- Priorities determine locally which regularity to choose in case of an inconsistency, no global meaning
- Selection rules add additional structure to selection process in order to avoid arbitrary order
- Algorithmic details are explained elsewhere...
- Future improvements for selection:
 - Make decisions in the context of the whole model, not just locally with respect to the regularities
 - Reduce/replace user-defined constants for priorities by simpler methods based on multiple-choice questions and learning
 - ★ AI techniques, e.g. belief networks, neural networks

Constraint Solver & Solvability Test

- Given: consistent constraint system C, additional constraint c
 Problem: try to expand C to C' by adding c such that * C' is consistent (has at least one solution)
 * C' has less solutions than C (c is not redundant)
- Try to simplify C' by identifying and solving a subsystem
- Approach: degree-of-freedom analysis in a topological context
 - ★ Geometric objects are elements of abstract manifolds
 - Constraints limit the allowed values for the objects to sub-manifolds

Geometric Constraint Problem

Elements of a Geometric Constraint Solving Problem:

Finite set of abstract manifolds rep-Mresenting types of geometric objects (set of all planes, set of all vertices, ...) Finite set of geometric objects (variables in the constraint system) $t:\overline{O} \to \overline{M}$ Function assigning a type to each element of O, special type constraints Finite set of geometric constraints C

m Functions assigning a value to each object in O

 $m \in M$

 $f: O \rightarrow$

Geometric Types

 M is a set of manifolds whose elements are geometric objects of a single type:

- * Set of all vertices: $M_V \simeq \mathbb{R}^3$ (position)
- ★ Set of all planes: $M_P \simeq \mathbb{R}^1 \times \mathbb{S}^2$ (distance & direction) ★ Set of all spheres: $M_S \simeq \mathbb{R}^3 \times \mathbb{R}^+$ (position & radius)
- t assigns a type to each object $o \in O$:
 - ★ Type constraint requiring that $f(o) \in t(o)$

Vertex Distance Constraint

Geometric objects: o₁, o₂ ∈ O
Geometric types: t(o₁) = t(o₂) = ℝ³ (f(o₁), f(o₂)) ∈ ℝ³ × ℝ³

- Constraint: constant distance λ between vertices o₁, o₂ (f(o₁), f(o₂)) ∈ {(x₁, x₂) : ||x₁ - x₂|| = λ} =: c
 ★ c is a sub-manifold of ℝ³ × ℝ³
 - $\star c$ is a sub-manifold of $\mathbb{R}^{\circ} \times$
 - $\star c$ is homeomorphic to
 - (1) $\mathbb{R}^3 \times \mathbb{S}^2$: Choose first vertex freely, then the 2nd vertex is determined by a direction
 - (2) $\mathbb{S}^2 \times \mathbb{R}^3$: Analogously, $o_1 \leftrightarrow o_2$
- \rightarrow Two options to interpret c as sub-manifold of $\mathbb{R}^3 \times \mathbb{R}^3$

Vertex on Plane Constraint

• Geometric objects: vertex $v \in O$, plane $p \in O$ $(f(v), f(p)) \in \mathbb{R}^3 \times (\mathbb{R}^1 \times \mathbb{S}^2)$ • Constraint: vertex v in plane p $(f(v), f(p)) \in \{(x_1, (x_2, x_3)) : x_3^t x_1 = x_2\} =: c$ $\star c$ as sub-manifold of $\mathbb{R}^3 \times (\mathbb{R}^1 \times \mathbb{S}^2)$ is homeomorphic to (1) $\mathbb{R}^2 \times (\mathbb{R}^1 \times \mathbb{S}^2)$ Choose an arbitrary plane • Choose a point on the plane (2) $\mathbb{R}^3 \times (\mathbb{R}^0 \times \mathbb{S}^2)$ Choose an arbitrary point Choose a normal for the plane through the point

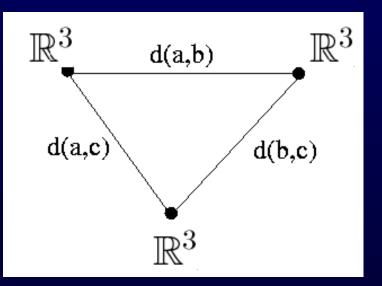
General Geometric Constraints

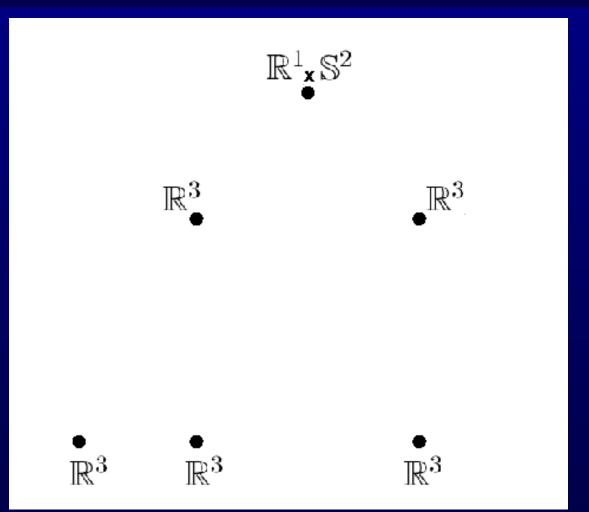
• General form of a constraint as pair $(o, c) \in C$: $\star o = (o_1, \ldots, o_n)$ is a tuple of geometric objects $o_l \in O$ which are involved in the constraint $\star c$ is a set of allowed values, i.e. $(f(o_1), \ldots, f(o_n)) \in c$ * From the type constraints: $c \subset t(o_1) \times \cdots \times t(o_n) =: T$ $\star c$ is a sub-manifold of T \star For each c there is a set of product-manifolds s: * s has the same form than T, relates to the same objects * s is homeomorphic to c

However, exact properties still unclear

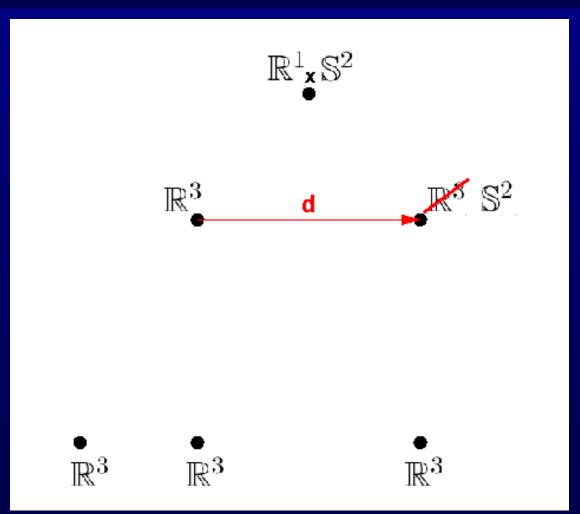
Constraint Graph

The constraints (o, c) ∈ C define a (hyper-)graph:
The geometric objects O are the vertices
The types t(o) label the vertices
The o from the constraints are the edges
The c are labels for the edges
Graph for three distances between three vertices:

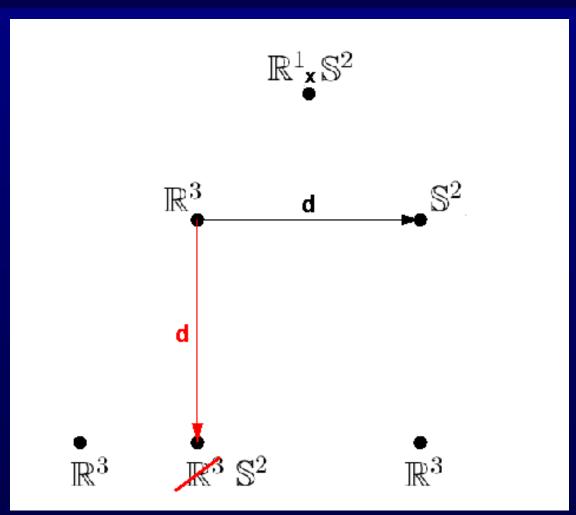




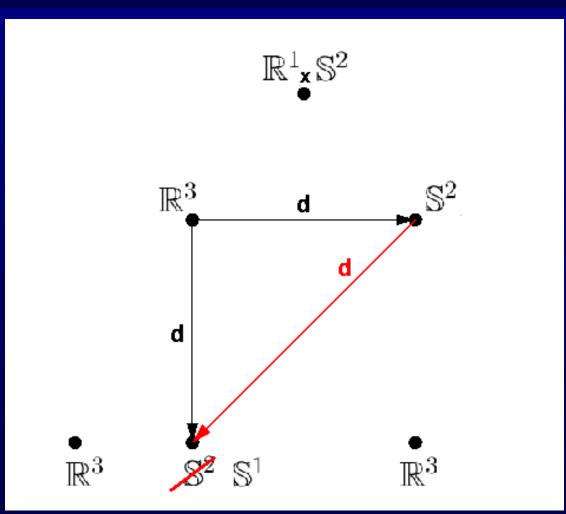
Simple example with 5 vertices, 1 plane



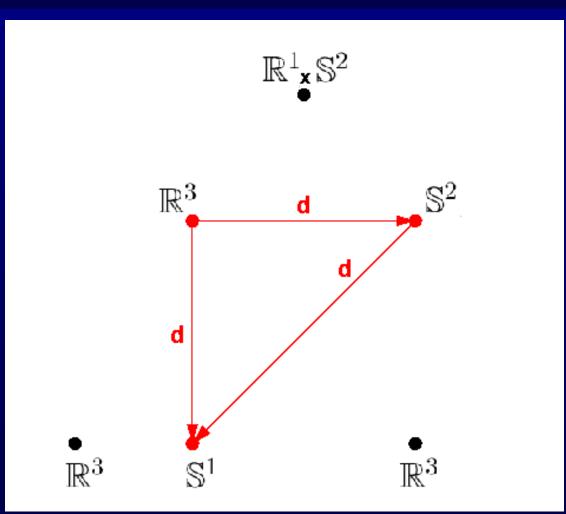
Adding distance constraint 1



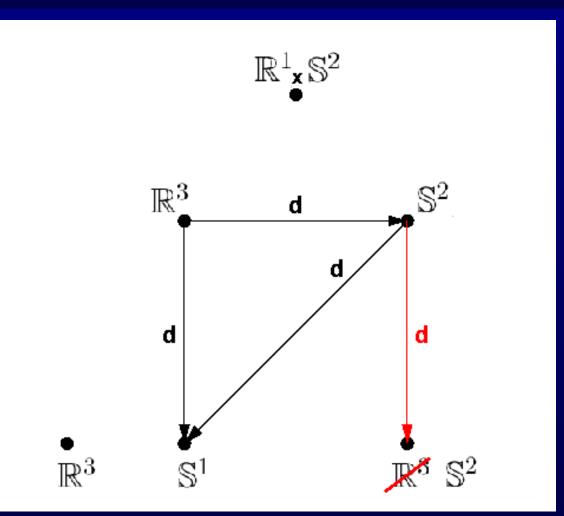
Adding distance constraint 2



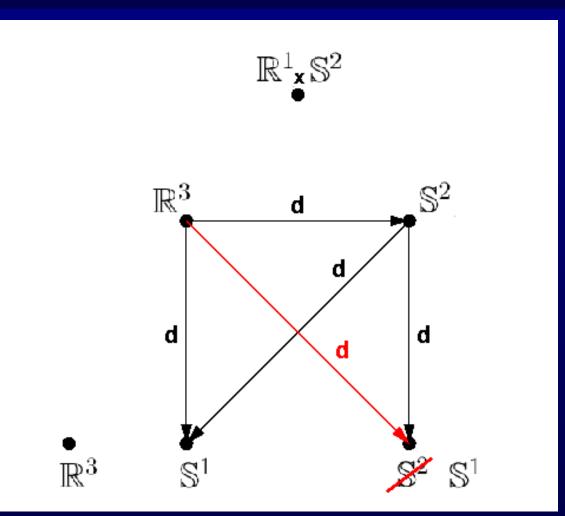
Adding distance constraint 3



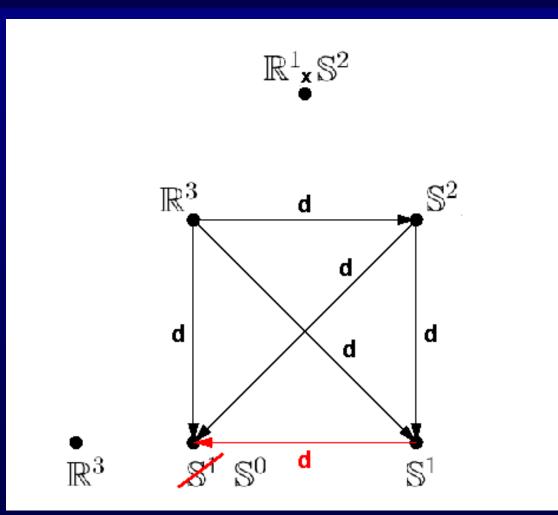
Solvable sub-system 1 \rightarrow unique modulo rotations and translations



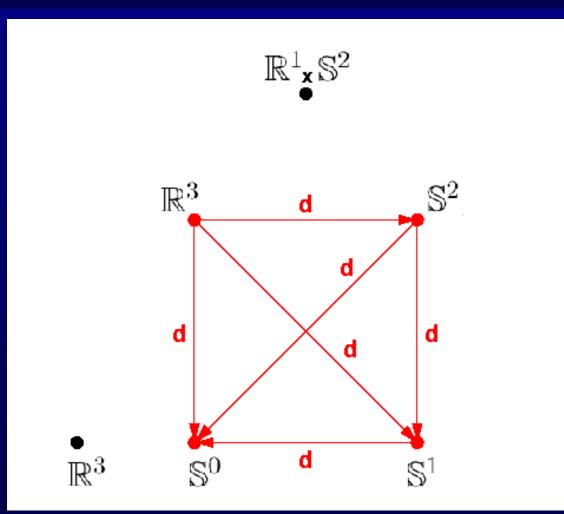
Adding distance constraint 4



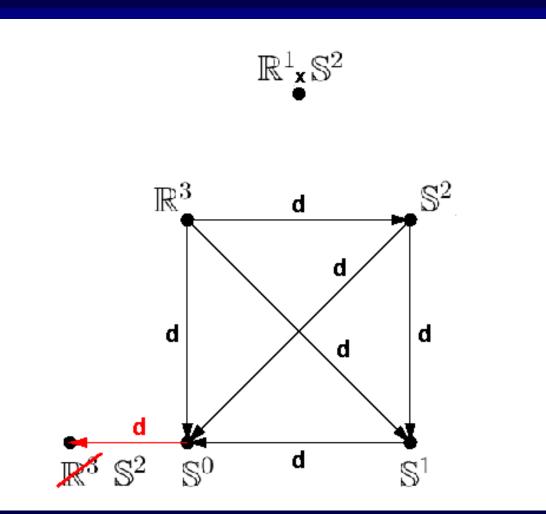
Adding distance constraint 5



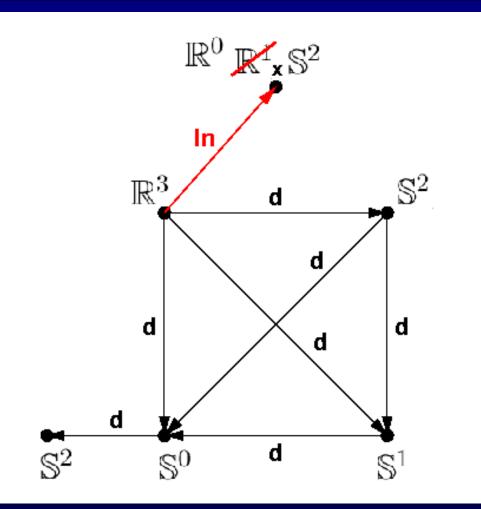
Adding distance constraint 6



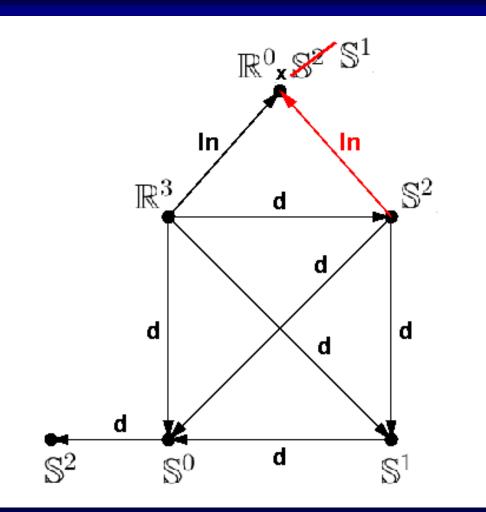
Solvable sub-system 2



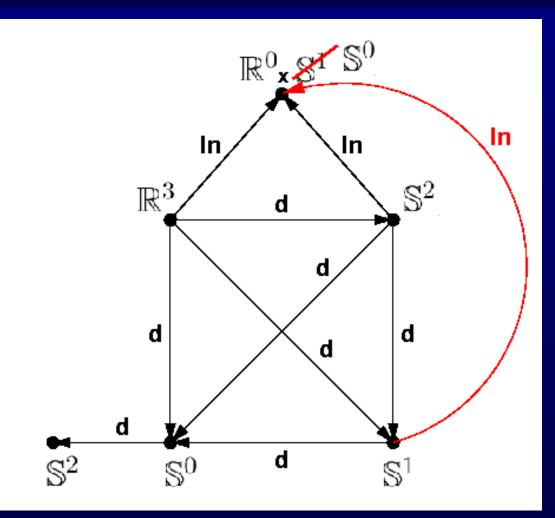
Adding distance constraint 7



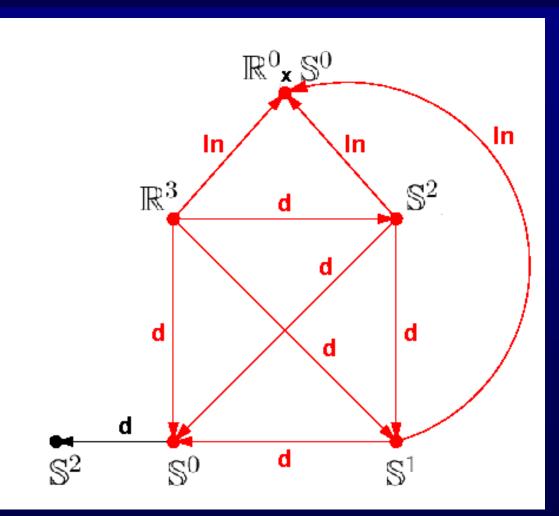
Adding vertex on plane constraint 1



Adding vertex on plane constraint 2



Adding vertex on plane constraint 3



Solvable sub-system 3

Solvability

 An assignment of values f is consistent if it fulfills all constraints:

 $\forall o \in O \quad f(o) \in t(o) \quad \land \\ \forall ((o_1, \dots, o_n), c) \in C \quad (f(o_1), \dots, f(o_n)) \in c$

- A constraint system is
 - \star consistent, if there exists at least one consistent f
 - \star solvable, if the set of consistent f modulo rotations and translations is discrete

(locally unique solutions)

★ has a solution, if it is solvable and consistent

Adding Constraints

- Adding a constraint (o, c) reduces allowed values by intersecting them with c
- Generic case:
 - ★ Original set of allowed values represented as:

 $M_1 \times \cdots \times M_n$

- * Constraint reduces the dimension of one or more M_l as indicated by c and its different interpretations s
- Non-generic case:
 - ★ Hidden constraints create a special relation
 - ★ Dimension reduction is higher or lower than indicated by the s.

Adding Constraints Example

• Example: point \mathbb{R}^3 in intersection of two spheres

- ★ Generic case:
 - * Point on circle \mathbb{S}^1
- ★ Special cases:
 - * Point on sphere \mathbb{S}^2
 - Hidden constraint: centres are equal
 - * Equal to point \mathbb{S}^0
 - Hidden constraint: centres and point on a line
- Inconsistent/over-constrained case:
 - * Intersection empty \emptyset

Contradiction to other constraint(s) present

Solvable Sub-Systems

- Our constraints do not fix a position or direction
- Objects are at most determined uniquely modulo rotations and translations
- Generically a system is solvable if R³ (translations) and S² × S¹ (rotations) are the only non-discrete manifolds (special cases of lower-dimensional objects embedded in R³ exist)
- Any sub-system for which this is true is a solvable subsystem
- Any other sub-system has to be higher-dimensional
- Detecting and preserving solvability of sub-systems is essential and has to be studied in more detail

Summary

- Presented approach to choosing consistent constraints from automatically generated, inconsistent regularities
- Constraint selection based on priorities
- Constraint solver and solvability test based on dimensions of manifolds / sub-manifolds:
 - ★ Relates equations to constraint graph
 - Algorithm similar to successful dense algorithm [Hoffmann, Lomonosov, Sitharam]
 - Can handle generically inconsistent constraints
 - May be possible to identify non-generic cases
- However, current approach not yet complete and clean:
 - Constraint properties and solvability criteria