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Geometric Constraint Systems

Geometric Constraint System (G, O, t, C):

G Finite set of sets representing types of geo-
metric objects
(set of all planes, set of all vertices, . . . )

O Finite set of geometric objects
(variables in the constraint system)

t : O → G Function assigning a type to each element
of O (type constraints)

C Finite set of geometric constraints;
c ∈ C is a subset of the product space
Πo∈Ot(o)
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Geometric Constraint Problems

• Function assigning a value to each object in O:

f : O →
⋃
o∈O

t(o) s.t. f(o) ∈ t(o)

• f is a solution iff

(f(o1), . . . , f(on)) ∈ S =
⋂
c∈C

c

• Geometric Constraint Problems:
? Solvability: at least one solution, cardinality of S

? Solutions: find solutions symbolically or numerically
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Different Interpretations

• Different ways to interpret geometric constraints:

? Algebraic interpretation:
All sets (c ∈ C, etc.) are described by equations of
some type

? Geometric rule-based interpretation
Constraints are represented as a set of rules and
predicates

? Topological interpretation
Consider the topological structure of the involved sets
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Algebraic Interpretation

• Geometric constraint system as equation system

H(x) =

 h1(x)
...

hn(x)

 = 0, where H : Rm → Rn

• Numerical solver:
? Polynomial equation system solver (e.g. Newton-

Raphson, Homotopy)
? Optimisation methods (e.g. Quasi-Newton methods,

evolutionary methods)
→ Yields numerical solution without exploiting geomet-

ric nature of the constraints, also no further informa-
tion about constraint system structure is obtained
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Symbolic Solver

• Symbolic Solver: Gröbner Bases / Polynomial Ideals
• Ideal of F where K[x1, . . . , xn] is ring of n-variable poly-

nomials over coefficient field K:

I〈F 〉 = {h1f1 + · · ·+ hnfn : hl ∈ K[x1, . . . , xn]}

• F is a basis for its ideal I〈F 〉, each basis has the same
roots

• Transform original system into special Gröbner basis in
its ideal to find roots, etc.
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Geometric Rule-Based Interpretation

• Constraints are represented as a set of rules and pred-
icates

• Employ rewrite rules to transform original representa-
tion into a construction sequence to find solution

• Rewrite rules represent the geometric knowledge of
the solver

• Predicates describing constraints are transformed into
predicates describing position, etc. of geometric ob-
jects
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Topological Interpretation

• Consider the topology of the involved sets
• Assumptions:

? All geometry type spaces g ∈ G are smooth, path-
wise connected, compact manifolds

? The geometric constraints c ∈ C are smooth, path-
wise connected, compact sub-manifolds of the geom-
etry product space Πo∈Ot(o)
(only involved o have to be considered in product)

• S is created by intersecting these sub-manifolds
• Exploit local (dimension) and global structure of the

manifolds to gather information about S
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Geometric Types

• G is a set of manifolds whose elements are geometric
objects of a single type:
? Set of all vertices: R3 (position)
? Set of all planes: R1 × P2 (distance & direction)
? Set of all lines: 4-dim. manifold (see later)

. . .
• t assigns a type to each object o ∈ O:

? Type constraint requiring that f(o) ∈ t(o)
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Vertex Distance Constraint

• Geometric objects: o1, o2 ∈ O

• Geometric types: t(o1) = t(o2) = R3

(f(o1), f(o2)) ∈ R3 × R3

• Constraint: constant distance λ between vertices o1, o2

(f(o1), f(o2)) ∈ {(x1, x2) : ‖x1 − x2‖ = λ} =: c

? c is a sub-manifold of R3 × R3

? c is homeomorphic to
(1) R3 × S2: Choose first vertex freely, then the 2nd

vertex is determined by a direction
(2) S2 × R3: Analogously, o1 ↔ o2

→ Two options to interpret (distribute) c as sub-manifold
of R3 × R3
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Vertex on Plane Constraint

• Geometric objects: vertex v ∈ O, plane p ∈ O

(f(v), f(p)) ∈ R3 × (R1 × S2)
• Constraint: vertex v in plane p

(f(v), f(p)) ∈ {(x1, (x2, x3)) : xt
3x1 = x2} =: c

? c as sub-manifold of R3 × (R1 × S2) is homeomorphic
to

(1) R2 × (R1 × S2)
◦ Choose an arbitrary plane
◦ Choose a point on the plane

(2) R3 × (R0 × S2)
◦ Choose an arbitrary point
◦ Choose a normal for the plane through the point
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Multiple Constraints

• In order to enforce multiple constraint the sub-
manifolds have to be intersected

• Intersection of two “point on sphere”:
empty set, point, circle , sphere

• Intersection of two “planes through point”:
planes through line , planes through point

• Intersection of “point in plane” and “point on sphere”:
empty, point, circle

• Need some algebra to determine exact case, but
generic case exists
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Degrees-of-Freedom Analysis

• Assume that intersections are always generic (no
equations have to be solved)

• Only consider topological dimension of manifolds and
sub-manifolds (locally homeomorphic manifolds)

• Constraints reduce dimension of manifolds depending
on which distribution option has been chosen (local
structure only)

• Find way to distribute constraints to determine struc-
ture (solvable sub-systems) of constraint system

• However, global structure of manifolds and non-generic
cases are ignored
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Constraint Graph

• The constraint system defines a (hyper-)graph:
? Geometric objects O are the vertices
? Types t(o) are vertex labels
? Geometric objects involved in constraint are an edge
? Constraints c are edge labels

• Graph for three distances between three vertices:
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Constraint System Example

Simple example with 5 vertices, 1 plane

F. C. Langbein, Geometric Constraint Systems 14



Constraint System Example

Adding distance constraint 1
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Constraint System Example

Adding distance constraint 2
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Constraint System Example

Adding distance constraint 3

F. C. Langbein, Geometric Constraint Systems 14



Constraint System Example

Solvable sub-system 1
→ unique modulo rotations and translations
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Constraint System Example

Adding distance constraint 4
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Constraint System Example

Adding distance constraint 5
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Constraint System Example

Adding distance constraint 6
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Constraint System Example

Solvable sub-system 2
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Constraint System Example

Adding distance constraint 7
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Constraint System Example

Adding vertex on plane constraint 1
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Constraint System Example

Adding vertex on plane constraint 2
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Constraint System Example

Adding vertex on plane constraint 3
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Constraint System Example

Solvable sub-system 3
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Factoring P(E3)

• Geometric constraint systems usually do not specify
absolute location or orientation of the shape

• Shapes (structures in E3 described by a geometric con-
straint system) which can be mapped onto each other
by rotations and translations (or other transformation
groups) are usually considered to be equivalent

• We are actually interested in the space of all shapes
P(E3) factored by rotations and translations
(details omitted here for simplicity)
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Problems of DOF Analysis

• Algebraic issues:
? Always assumes that intersections are generic
? Notion of solvable sub-system / rigid sub-structure in

terms of dense sub-graphs
• Topological issues:

? Global structure of manifolds is ignored
? Sub-manifold intersections are handled only locally
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Parallel Directions Constraint

• Geometric objects: directions o1, o2 ∈ O

(f(o1), f(o2)) ∈ S2 × S2

• Constraint: o1, o2 parallel
(f(o1), f(o2)) ∈ {(x1, x2) : xt

1x2 = 1} =: c

? c is homeomorphic to
(1) S2 × S0: Choose first direction, 2nd is the same
(2) S0 × S2: Analogously
? But c is only locally homeomorphic to
(3) S1 × S1: both objects determine part of the di-

rection
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Lines in E3

• We can describe a line by a position p and a direction
d

• The moment vector l = p× d is independent of p

• The pair (d, l) represents normalised Plücker coordi-
nates of a line and each six tuple fulfilling the equations
below describes a line

• Manifold of all lines is 4-dimensional sub-manifold

{(d, l) ∈ R6 : ‖d‖ = 1, dtl = 0}

• This is only locally homeomorphic to R2 × P2 (to split
positional and directional degrees of freedom of lines)

F. C. Langbein, Geometric Constraint Systems 18



Knots

• Two topological spaces are homotopic if they can be
continuously transformed into each other, e.g. a loop
contracted to a point

• Consider all loops through a point x0 on a manifold and
identify homotopic loops

• This gives the fundamental group of the manifold
(independent of x0 on pathwise connected manifolds)

• Generating loops and examples (sphere, torus)

→ Gives the “knot structure” of the space and distin-
guishes between spaces of same dimension
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Twisted Products

• Line space: {(d, l) ∈ R6 : ‖d‖ = 1, dtl = 0}
• d is a point on a sphere with all orthogonal vectors l

• For each point on the sphere we have a plane (fibre)
• The line space is a twisted product over a sphere

whose fibre is a plane

→ Twisted products behave locally like a product space,
but may have a different global structure
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