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Abstract— Propagation of information encoded in spin de-
grees of freedom through networks of coupled spins enables
important applications in spintronics and quantum information
processing. We study control of information propagation in
networks of spin- 1

2 particles with uniform nearest neighbour
couplings forming a ring with a single excitation in the network
as simple prototype of a router for spin-based information.
Specifically optimising spatially distributed potentials, which
remain constant during information transfer, simplifies the
implementation of the routing scheme. However, the limited
degrees of freedom makes finding a control that maximises
the transfer probability in a short time difficult. We show
that the structure of the eigenvalues and eigenvectors must
fulfill a specific condition to be able to maximise the transfer
fidelity, and demonstrate that a specific choice among the
many potential structures that fulfill this condition significantly
improves the solutions found by optimal control.

I. INTRODUCTION
Encoding information spin degrees of freedom has the

potential to revolutionize information technology via the
development of novel spintronic devices and possible future
quantum information processors [1], [2]. Utilizing informa-
tion encoded in spin degrees of freedom, however, requires
efficient, controlled on-chip transfer of spin-based informa-
tion. In some types of spintronic devices, spin degrees of
freedom are used in addition to motional degrees of freedom
of electrons, and information encoded in the spin degrees
of freedom can be transferred using conventional currents.
In principle, however, information stored in spin states can
propagate through a network of coupled spins without charge
transport. As propagation of spin-based information is gov-
erned by quantum-mechanics and the Schrödinger equation,
however, excitations in a spin network propagate, disperse
and refocus in a wave-like manner, and controlling informa-
tion transport is thus a quantum control problem. Without any
means to control the propagation of spin-based information
in such networks information transport can be slow and
inefficient. Control can be utilized to optimize transport in
terms of maximizing transfer efficiency and speed [3], [4].
Here, we consider how to control information propagation
in a network of spins by optimizing spatially distributed
potentials, which remain constant during the evolution, in
contrast to dynamic control schemes, which require dynamic
modulation or fast switching of the control potentials.
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II. THEORY AND METHODS

A. Networks of coupled spins

We restrict ourselves to spin- 1
2 particles with two spin

states labelled |0〉 and |1〉 as a simple prototype device for
routing spin-based information. The energies of the spin
states of spin n differ by small amounts ∆n. Nearby spins can
interact, e.g., by exchange coupling. This leads to a model
Hamiltonian for a network of coupled spins of the form

Hfull =
N

∑
n=1

∆nZn + ∑
m 6=n

Jmn[XmXn +YmYn +κZmZn], (1)

where κ is a parameter depending on the type of coupling,
e.g., κ = 1 for isotropic Heisenberg coupling and κ = 0 for
pure XX coupling. Xn, Yn and Zn are operators acting on the
2N dimensional Hilbert space of the N-spin network. Xn is
a tensor product of N−1 identity operators with a single X
operator in the nth position, and similarly for Yn and Zn. X ,
Y and Z are the Pauli spin operators

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2)

For networks with uniform coupling all non-zero couplings
have the same strength J and we can set J = 1 by choosing
the frequencies in units of J and time in units of J−1.

It can be easily verified that a Hamiltonian of the form (1)
commutes with the total excitation operator ∑n Zn. The
Hilbert space of the system therefore decomposes into excita-
tion subspaces [6]. If we assume that only a single excitation
(or bit of information) propagates through the network at any
given time, then the Hamiltonian can be reduced to the single
excitation subspace Hamiltonian

H = ∆n|n〉〈n|+ Jmn|m〉〈n|, (3)

where |m〉〈n| can be thought of as a matrix which is zero
except for a 1 in the (m,n) position. Which Jmn are non-zero
depends on the network topology. For a chain with nearest-
neighbour coupling we have Jmn = 0 unless m = n±1, and
similarly for a ring arrangement, except that for the latter
we also have JN,1 = J1,N 6= 0. While a linear chain can be
thought of as a type of quantum wire, a ring can be regarded
as a basic routing element to distribute spin states, e.g., to
chains attached to various nodes of the ring (see Fig. 1).

B. Dynamic vs static control

Dynamic control involves dynamically altering certain
couplings Jmn or potentials ∆n. This is a powerful tool and
has been explored in previous work [5]. However, it typically
requires the ability to rapidly modulate or switch fields.



Fig. 1. Spin network ring extended with chains (left) and potential
landscape created by local biases optimized for information transfer from
node 1 to 3 in a 6 ring (right).

Furthermore, for networks with a high degree of symme-
try such as rings with uniform coupling controllability is
generally limited by dynamic symmetries [6]. An alternative
to this dynamic control is to shape the potential landscape
to facilitate the flow of information from an initial state
(input node) to a target state (output node). For example,
information encoded in electron or nuclear spins in quantum
dots whose potential can be controlled by varying voltages
applied to surface control electrodes, creating a potential
landscape as shown in Fig. 1.

Fixing the network topology defined by the couplings
Jmn and applying potentials ∆n that are constant in time,
gives the constant Hamiltonian H∆ = H0 +diag(∆n) and the
information transfer is governed by the Schrödinger equation

ih̄U̇(t) = H∆U(t), U(0) = I, (4)

where U(t) is a unitary propagation operator, initially equal
to the identity operator I. The probability of transmission of
information from the input node |in〉 to the output node |out〉
in time t is then given by

p(t) = |〈out|e−itH∆ |in〉|2. (5)

Assuming the energies ∆n are controllable, we have a vector
of control parameters ∆ = (∆n) and the objective is to find a
∆ such that

p(t) = max
∆

|〈out|e−itH∆ |in〉|2 (6)

at some time t. We can fix the time t = t f , require that t ≤ tmax
where tmax is an upper bound, or attempt to accomplish the
transfer with maximum fidelity in minimum time. These
problems can in principle be solved in a straightforward
manner using standard optimization tools although the op-
timization landscape is challenging, in particular when the
goal is to find a control that achieves the highest possible
fidelity in the shortest time possible as this effectively creates
two objectives for the optimisation.

C. Eigenstructure optimization

We can reformulate the control problem by diagonalizing
the Hamiltonian, H∆ =V ΛV †, where V is a unitary matrix of
the eigenvectors and Λ a diagonal matrix of the eigenvalues

of H∆. Then U = e−itH∆ =V EV † with E = diag(e−iλnt) and
our control objective is to ensure

V †|out〉= eiφ EV †|in〉, (7)

where φ is a global phase factor, which we introduce to
cancel the the global phase of the output state.

For a network with ring topology, we can take the input
state to be |1〉= (1,0, . . .)T due to translation invariance, and
the output state to be |k〉, k≤ dN/2e. Then Eq. (7) becomes

v∗n,k = e−i(tλn−φ)v∗n,1, ∀n = 1, . . . ,N. (8)

Thus, the optimization problem is equivalent to finding the
a control vector ∆ and phase φ that minimize

∑
n
|vk,n− ei(tλn−φ)v1,n|2 (9)

Note that only the 1st and kth component of the eigenvectors
(or 1st and kth rows of V ) and eigenvalues λn matter.

The upper bound on the fidelity of the transmission given
no time constraints, referred to as Information Transfer
Fidelity [8], [9], is given by

√
ITF =

N

∑
n=1
|〈in|vn〉〈vn|out〉|=

N

∑
n=1

sn〈in|vn〉〈vn|out〉, (10)

where sn = sign(〈in|vn〉〈vn|out〉). Since it is a probability,
ITF≤ 1. Here we use some eigenstructure assignment con-
cept [7] to show that, given |in〉 and |out〉, there always
exists an orthonormal reference frame {vn : n = 1, ...,N}
such that the upper bound ITF ≤ 1 is achieved. The issue
as to whether this reference frame can be achieved by an
optimal biasing strategy ∆ = (∆n)

N
n=1 is open, but numerical

exploration seems to indicate that the optimal biases in the
sense of Sec. III reproduce this frame with high accuracy.

Instead of deriving the position of the reference frame
{vk : k = 1, ...,N} relative to the input and output states, we
reformulate the problem as the one of finding the position of
the input and output states relative to a given (orthonormal)
reference frame {vn : n = 1, ...,N}. Let 〈vn|in〉, 〈vn|out〉, n =
1, ...,N, be the coordinates of the input and output states,
resp., in the reference frame {vk : k = 1, ...,N}. The problem
is to maximize Eq. (10) subject to the constraints

〈out|in〉= 0, 〈in|in〉= 1, 〈out|out〉= 1.

Define the Lagrange multipliers λ , µ , κ and the augmented
functional

N

∑
n=1

sn〈vn|in〉∗〈vn|out〉+λ 〈out|in〉+ κ

2 〈in|in〉+
µ

2 〈out|out〉

The classical first order condition for optimality yields(
λ + sn µ

κ λ + sn

)(
〈vn|in〉
〈vn|out〉

)
= 0, n = 1, ...,N. (11)

Existence of a solution yields

λ = (±)
√

κµ− sn.

The crucial issue is to observe that λ should be independent
of n. At optimality, not all sn’s could be of the same sign



Fig. 2. Results of optimising the information propagation from spin 1 to 2 (top left), 3 (top right), 4 (bottom left) and 5 (bottom right for a ring of 9
spins using a quasi-Newton L-BFGS optimisation with exact gradient on static biases for fixed times f f from 1 to 30 with step size 0.2. Each data point
represents the infidelity 1− p(t) achieved for the corresponding time, indicating that the optimisation gets trapped often, even if many repeats can still find
good solutions for certain times.

(otherwise ITF = |〈out|in〉|2 = 0). This implies that sn = (±)
and
√

κµ = 1. From there on, solving (11), and after some
manipulation, it is found that

〈vn|in〉=±〈vn|out〉, n = 1, . . . ,N.

As already said, the optimal biases ∆n’s appear to repro-
duce this result. The above eigenvector assignment is non-
unique and dimension dependent. When N = 2, the solu-
tion is already far from unique. Up to permutation, either
{|in〉, |out〉} is in span{v1,v2} and offset at a 45◦ angle or
|in〉= (1/

√
4)(1,1,1,1) and |out〉= 1/

√
4(1,−1,1,−1).

III. RESULTS

A. General optimization results

Solving the optimization problem given by Eq. (6) di-
rectly for a fixed target time t f is challenging even without
constraints on the biases ∆ as the landscape is extremely
complicated with many local extrema, resulting in trapping
of local optimization approaches such as quasi-Newton meth-
ods. Fig. 2 shows the results of various runs for fixed times
for a ring of 9 spins, with the objective being to propagate
the excitation from spin 1 to spin 2, 3, 4 and 5, respectively.
Fixed time values t f from 1 to 30 with steps of 0.2 were
set and a quasi-Newton optimiser with random initial values
for the biases repeated 100 times for each t f . Each point in

this plot represents one run for the respective time t f and
the achieved infidelity value 1− p(t). There are many points
for which the error is large (i.e., the transmission fidelity is
low), indicating that the optimisation for this run converged
to a local extremum, making finding a good solution very
expensive. We also tested some global search algorithms that
appeared successful for hard optimization problems such as
a variant of differential evolution used in [10], but these
proved to be much slower and produced generally worse
results than the best solutions found by repeating a quasi-
Newton optimization algorithm for a relatively large number
of initial states. The results in Fig. 2 also indicate that there
are only certain times for which we can expect to find a high
information transfer fidelity.

Instead of fixing the time we can also add the time as
additional parameter to optimise over and start for random
initial biases and times. The results of this are shown in Fig. 3
for the propagation from spin 1 to 5 in a ring of 13 spins.
We report the solution with the highest fidelity overall and
the fastest solution with a fidelity larger than 0.99. Typically
the highest fidelity solutions are found at longer times but
good solutions for short times are also achieved. However,
many restarts of the optimisation are required, and many runs
fail with fidelities smaller than 0.9. Inspection of the good
solutions found showed that many of these involved biases



Fig. 3. Results for optimising the information transfer probability from spin
1 to 5 for a ring of 13 spins over the spatial biases and times starting from
random initial biases and times. Left-bottom shows the biases giving the
best fidelity at time T ≈ 56.19 yielding the p(t) shown in the left-top image
(in blue vs. the natural evolution in green). The two graphs in the middle
show the fastest solution found with a fidelity greater than 0.99 at time
T ≈ 8.63. Right-top shows the overall found solutions by the optimisation
plotting the time vs. the logarithm of the infidelity. Right-bottom plots a
histogram of the logarithm of the infidelity.

that were highly mirror symmetric w.r.t. the symmetry axis
between the input and output spin on the ring.

B. Finding good initial values

In principle the information transfer fidelity depends on all
eigenvectors and eigenvalues of the Hamiltonian. However,
the results in Section II-C show that the structure of the
eigenvalues and eigenvectors must fulfill a specific condition
to be able to maximise the transfer fidelity. While there
are many potential structures that fulfill the condition, we
can choose a specific one to provide a guide for good
initial values or a restricted domain for the population. This
significantly improved the solutions found by the optimal
control algorithms.

The basic idea for imposing a specific eigenstructure is
to quench the ring of N spins into a chain from the initial
spin to the target spin. Our previous work showed that this
can be easily achieved by applying a very strong potential
in the middle between the initial and target spin [3]. If we
can control the potentials of all spins then we can generalise
this to quench the ring just before the initial and after the
target node, giving two options for a chain connecting the
two nodes where either could provide a solution. As it turns
out, this gives rise to a general eigenstructure induced by
applying mirror symmetric potentials across the axis going
through the middle between initial and target state in the
ring. We consequently choose such symmetric potentials in
combination with the approximate times where the maximum
fidelity is achieved in the related chains as initial values for
the optimal control algorithm. This significantly improves the
results and efficiently finds controls for maximum informa-

Fig. 4. Results for optimising the information transfer probability from
spin 1 to 5 for a ring of 13 spins over the spatial biases and times starting
from random initial biases and times, where the biases are constrained to
be symmetric across the axis going through the middle between initial and
target state. Left-bottom shows the biases giving the best fidelity at time
T ≈ 113.09 yielding the p(t) shown in the left-top image (in blue vs. the
natural evolution in green). The two graphs in the middle show the fastest
solution found with a fidelity greater than 0.99 at time T ≈ 8.63. Right-
top shows the overall found solutions by the optimisation plotting the time
vs. the logarithm of the infidelity. Right-bottom plots a histogram of the
logarithm of the infidelity.

tion transfer in minimum time for any initial and target spin.
This approach is also further justified by the results found
using random initial values.

The symmetry constraint can be easily applied by reducing
the number of biases to be found to dN/2e, symmetric
across the symmetry axis between initial and target state.
Fig. 4 shows the results with this constraint similar to the
results in Fig. 3 without the symmetry constraint. Similar
shortest time solutions are found, while the best solution is
at a different time. This is not surprising considering that
the solution found strongly depends on initial values. More
importantly, there are slightly fewer failed runs. Convergence
of the optimisation can be further improved by selecting
constants, peaks or troughs as biases between initial and
target spin on both sides of the ring randomly.

Fig. 6 compares the information transfer probabilities
from spin 1 to k in an N ring with a constant bias on
the spins k to N with the information transfer probabilities
between the end nodes of a chain of length k. From this
example and theory [3] it is obvious that the maxima coincide
and the stronger the bias the more similar the information
transfer probabilities between the quenched ring and the
chain. Hence, it seems likely that we can obtain better results
if the initial times are taken from the largest peaks, say
those over 0.8, of the chain transition, which can easily be
approximated by evaluating the probabilities for the chain at
a regular sampling.

Fig. 5 shows the results for the 1 to 5 transition of the 13
ring for random, unconstrained initial biases and the initial



Fig. 5. Results for information transfer from spin 1 to 5 in a ring of 13
spins, optimizing both spatial biases and transfer times, starting with initial
times corresponding to peaks in the chain transition and random biases. Left-
bottom shows the biases giving the best fidelity at time T ≈ 16.28 yielding
the p(t) in left-top graph (in blue vs. the natural evolution in green). The
graphs in the middle show the fastest solution found with a fidelity greater
than 0.99 at time T ≈ 5.22. Top-right plot shows the time-error distribution
of the solutions found over 100 runs and bottom right graphs shows a
histogram of the logarithmic infidelity.

Fig. 6. Information transfer probabilities for 1 to k = 2,3,4,5,6,7 in 13-
ring (blue) with a bias of 10 on the spins from k+1 to 13 vs. end-to-end
natural transfer in k chain (red).

times taken from the peaks of the corresponding 1 to 5
transition in a 5 chain. This resulted in a faster time being
found, but still quite a few failed runs. Combining this with
the symmetry constraint gives the results shown in Fig. 7,
resulting in the same short time and fewer failed runs.

We can further add a constraint to limit the strength of the
biases. Fig. 8 shows the results. To achieve the same effect
of quenching the ring to a chain, all potentials are moved
towards the maximum instead of pushing the two potentials
at the two end spins to very high values.

Overall, results for other rings and transitions are similar

Fig. 7. Results for information transfer from spin 1 to 5 for a ring of
13 spins, optimizing both transfer times and spatial biases, starting with
initial times derived from the peaks of the corresponding chain transition
and biases that are random but subject to symmetry constraints. Left-bottom
shows the biases giving the best fidelity at time T ≈ 94.23 yielding the p(t)
shown in the left-top image (in blue vs. the natural evolution in green).
Middle graphs show the fastest solution found with a fidelity greater than
0.99 at time T ≈ 5.22. Right-top shows the overall found solutions by the
optimisation plotting the time vs. the logarithm of the infidelity. Right-
bottom plot shows histogram of logarithmic infidelity.

to the results presented for the 1 to 5 transition for a ring
of size N = 13. Fig 9 shows the shortest times achieved
for transition fidelities greater than 0.99. This indicates that
the shortest transition times depend largely on the distance
between the spins and not the size of the ring, consistent with
quenching the ring into a chain. Although we have no proof
that there is no shorter transition time, the results seem to
indicate that the shortest time in the ring is closely related to
the time of the natural evolution to the corresponding chain,
in case of static bias controls.

In special cases we can further derive values for the ex-
pected minimum transfer time and the corresponding biases.
If the distance between the initial and target spin is 1 then
quenching the ring as described reduces the network to a
two-spin system with direct coupling and an effective Hamil-

tonian of the form H =

(
c1 1
1 c2

)
which undergoes Rabi

oscillations with the Rabi frequency Ω =
√
(c2− c1)2 +4.

It can easily be shown that p12(t) = ( 1
2 Ω)−2 sin2( 1

2 Ωt). The
maximum p12 = 1 is assumed for t = π

2 , if and only if Ω= 2,
or c1 = c2. Indeed the numerical optimization results in Fig. 2
for transfer from 1 to 2 (top left) in a ring of size 9 show
that the first minimum is close to 0 and occurs for t ≈ π/2.

Similarly, if the distance is 2 the ring is reduced to a three-
spin chain. In this case we can easily show that, assuming
zero-bias, ∆ = (0,0,0), p13 = sin4( 1

2

√
2t) and thus p14 = 1,



Fig. 8. Results for information transfer from spin 1 to 5 in a ring of 13
spins, optimizing both spatial biases and transfer times, starting with initial
times corresponding to peaks in the chain transition and biases that are
random but subject to symmetry and amplitude constraints 0 ≤ ∆n ≤ 100.
Left-bottom shows biases giving the best fidelity at time T ≈ 94.23 yielding
p(t) shown in the left-top image (in blue vs. natural evolution in green). The
graphs in the middle show the fastest solution found with a fidelity > 0.99
at time T ≈ 5.22. Top-right plot shows the time-error distribution of the
solutions found over 100 runs and bottom right graphs shows a histogram
of the logarithmic infidelity.

i.e., we have perfect state transfer, for t = π

2

√
2. Fig. 2 (top-

right) shows that the numerical results are indeed consistent
with this solution with the first minimum for the 1 → 3
transfer occurring for t ≈ π

2

√
2.

More generally, if the distance between the input and
output nodes is k−1 and the biases satisfy ck+1−n = cn then
H commutes with the permutation σ = [k,k−1, . . . ,1]. If P=
P† is the corresponding permutation matrix then PHP = H
and thus V ΛV † = PV ΛV †P or V = PV . In particular, this
means that the first and last row of V are the same and
Eq. (9) becomes

∑
n
|v1,n|2|1− ei(tλn−φ)|2 = 4∑

n
|v1,n|2 sin2( 1

2 (tλn−φ)) (12)

This expression vanishes if tλn−φ is a multiple of 2π for
n = 1, . . . ,k. In the previous example, for a chain of length 3
with no bias, λ1 =−λ3 =

√
2 and λ2 = 0, hence we achieve

perfect state transfer for t = 2π/λ1 =
1
2

√
2π setting φ = 0.

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated how static controls can be used
to control the information flow in 1

2 -spin rings. Compared
to dynamic control, finding static controls is a considerably
harder optimization problem due to the complexity of the
optimization landscape. Careful selection of initial values
and enforcement of the constraints derived from eigenstruc-
ture analysis substantially improve the performance of the

Fig. 9. Shortest times achieved for transition fidelities greater than 0.99
for rings of size N = 5, . . . ,15 and transitions from 1 to k = 2, . . . ,dN/2e.

algorithm. For rings, the constraints enforce symmetries that
make the rings more similar to chains, and the timing of
transmission peaks for corresponding chains give a good
indication of the shortest possible times that can be achieved.
Better understanding of the symmetry constraints, their re-
lation to the reachability of target states and the design
of global optimisation algorithms that utilise the specific
structure of the problem may yield even better solutions.
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