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Abstract—Information encoded in networks of stationary,
interacting spin-1/2 particles is central for many applications
ranging from quantum spintronics to quantum information pro-
cessing. Without control, however, information transfer through
such networks is generally inefficient. Currently available control
methods to maximize the transfer fidelities and speeds mainly rely
on dynamic control using time-varying fields and often assume
instantaneous readout. We present an alternative approach to
achieving efficient, high-fidelity transfer of excitations by shaping
the energy landscape via the design of time-invariant feedback
control laws without recourse to dynamic control. Both instan-
taneous readout and the more realistic case of finite readout
windows are considered. The technique can also be used to
freeze information by designing energy landscapes that achieve
Anderson localization. Perfect state or super-optimal transfer
and localization are enabled by conditions on the eigenstructure
of the system and signature properties for the eigenvectors.
Given the eigenstructure enabled by super-optimality, it is shown
that feedback controllers that achieve perfect state transfer are,
surprisingly, also the most robust with regard to uncertainties in
the system and control parameters.

I. INTRODUCTION: SPINTRONICS DEVICES

ENCODING information in spin degrees of freedom has
the potential to revolutionize information technology

through the development of novel devices utilizing electron
spin. Information encoded in spin degrees of freedom can be
transferred via spin-polarized currents. Information stored in
spin states can also propagate through a network of coupled
spins without charge transport, mediated directly by quantum-
mechanical interactions. This is of particular interest as devices
that do not rely on charge transport are not limited by
heat dissipation due to resistance—potentially enabling higher
component densities and greater energy efficiency [1], [2].

The realization of novel spintronic devices presents many
technological challenges in device design and fabrication.
Utilizing information encoded in spin degrees of freedom
especially requires efficient, controlled on-chip transfer of
excitations in spin networks. In quantum mechanical language,
this transfer or transport of an excitation from one site to
another requires steering the system from one quantum state
to another, a problem akin to the well known unit step
response of linear Single Degree of Freedom (SDoF) tracking
controllers—with the significant difference of the presence
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Council for Wales through the Sêr Cymru National Research Network in
Advanced Engineering and Materials (NRN082).

†Supported by ARO MURI.
SGS is with the College of Science (Physics), Swansea University, Swansea,

SA2 8PP, UK, sgs29@swan.ac.uk.
EJ is with the Dept. of Electrical Engineering, Univ. of Southern California,

Los Angeles, CA 90089, USA, jonckhee@usc.edu.
FCL is with the School of Computer Science & Informatics, Cardiff

University, Cardiff, CF24 3AA, UK, LangbeinFC@cardiff.ac.uk.

of a global phase factor in the tracking error. As propaga-
tion of spin-based information is fundamentally governed by
quantum-mechanics and the Schrödinger equation, however,
excitations in a spin network propagate, disperse and refocus
in a wave-like manner. Controlling information transport in
such networks is thus a highly non-classical control problem.
Previous work has shown that natural transmission of infor-
mation does occur, but without active control the propagation
of spin-based information in such networks can be slow and
inefficient [3].

In this paper we consider how we can optimize transport
in terms of transfer efficiency, speed and robustness using
control. This requires an approach quite different from modern
robust control, where time-domain specifications are substi-
tuted for conventional singular value Bode plots. The need for
state-selective transfer makes the architecture depart from the
SDoF configuration and precludes control designs that ensure
asymptotic stability of the target state. Instead, we rely on the
concept of Anderson localization [4], [5], which is utilized to
hold the system at or around the desired target state for future
use.

We explore how information transfer or localization in spin
networks can be controlled simply by shaping the energy
landscape of the system. We show how the latter problem
can be viewed in terms of feedback control laws, and that
feedback control designs that achieve the best performance
w.r.t. transfer fidelity also achieve the best robustness. This is
unlike the traditional limitations observed for SDoF classical
control and demonstrates the advantages of two degrees-of-
freedom controllers [6], [7] and is the setup adopted here.
The deeper message of this paper is that quantum transport
presents many challenges and opportunities for control and a
rich source of new problems and paradigms relating to the
foundation of classical control theory.

In Section II relevant theory of quantum spin networks and
control paradigms are reviewed. The control objectives, con-
ditions for perfect state transfer and speed limits for excitation
transfer are discussed in Section III, followed by eigenstructure
analysis of the dynamic generators and signature properties for
the eigenvectors to establish general conditions for optimality
in Section IV. In Section V the sensitivity of the design
to uncertainty in the dynamical generators of the system is
analyzed, and the result of vanishing sensitivity for super-
optimal controllers is proven. Numerical optimization and
sensitivity results are presented in Section VI. We conclude
with a discussion of classical vs quantum robust control in
Section VII and general conclusions and directions for future
work in Section VIII.
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II. THEORY AND DEFINITIONS

A. Networks of Coupled Spins

Let X , Y and Z be the Pauli spin operators

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (1)

and let Xk (Yk, Zk) be a tensor product of N operators, all of
which are the identity I, except for a single X (Y , Z) operator
in the kth position. With this notation, the Hamiltonian of a
system of N spin- 1

2 particles with onsite potentials Dk and
two-body interactions between pairs of spins (k, `) is

Hfull =
N

∑
k=1

DkZk + ∑
6̀=k

Jk`(XkX`+YkY`+κZkZ`), (2)

where Jk` = J`k for all k, ` due to the symmetry of the
interaction. The constants Dk and Jk` are measured in units
of frequency. κ is a parameter that depends on the coupling
type: isotropic Heisenberg coupling (κ = 1) or XX coupling
(κ = 0). The coupling constants Jk` are determined by the
topology of the network. For a chain with nearest-neighbor
coupling we have Jk` = 0 unless k = `± 1 and similarly for
a ring, except that JN,1 = J1,N 6= 0. A chain can be thought
of as a type of quantum wire and a ring as a basic routing
element to distribute information encoded in the network,
e.g., via chains attached to nodes of the ring. A network is
uniform or homogeneous if all non-zero couplings have a fixed
strength J. Spin networks of this type are widely applicable
to modeling nuclear spin systems, electron spins in quantum
dots and pseudo-spin systems consisting of trapped ions or
atoms and even superconducting qubits. Systems coming very
close to reproducing the ideal dynamics of a one-dimensional
Heisenberg chain have been realized [1], [8]–[11].

Using the Dirac notation, a (pure) state |Ψ〉 of a system of
N spin- 1

2 particles is a linear combination of the product states
of the single spin eigenstates, which are eigenstates of the Z
operator denoted by | ↑〉, | ↓〉:

Z| ↑〉=+| ↑〉, Z| ↓〉=−| ↓〉. (3)

The operator Zk applied to a product state | ↓ · · · ↑ · · · ↓〉
thus returns +1 if the kth spin is | ↑〉, and −1 if it is | ↓〉.
Hence, S = 1

2 ∑
N
k=1(I + Zk) effectively counts the number of

spins that are in the excited state | ↑〉. The Hamiltonian (2)
commutes with the total excitation operator, [Hfull,S] = 0.
As commuting operators are simultaneously diagonalizable,
it can easily be shown that the Hilbert space of the system
decomposes into excitation subspaces [12] that are invariant
under the dynamics. If we assume that only a single excitation
(or bit of information) propagates through the network at any
given time, then the Hamiltonian can be reduced to the single
excitation subspace Hamiltonian

Hsingle =
N

∑
k=1

(Dk +κJk)|k〉〈k|+ ∑
`>k

Jk`(|k〉〈`|+ |`〉〈k|), (4)

where the Jk form the diagonal for the single excitation
subspace of ∑k 6=` Jk`ZkZ`, which can be absorbed into the Dk.
|k〉 can be thought of as a column vector with zero entries
except for a 1 in the kth position, 〈`| can be thought of as a

row vector with zero entries except for a 1 in the `th position
and |k〉〈`| can be thought of as a matrix that is zero except for
a 1 in the (k, `) position. |k〉 denotes a single excitation state
with the excitation localized at the kth spin.

The Hamiltonian H = Hsingle of the system determines the
time evolution of pure states |Ψ0〉 via |Ψ(t)〉 = U(t)|Ψ0〉,
where U(t) is a one-parameter group of unitary operators
governed by the Schrödinger equation

ih̄ d
dt U(t) = HU(t), U(0) = I, (5)

where I is the identity operator and h̄ is the reduced Planck
constant (see, e.g., [34, Eq. (1)]). By choosing time in units
of J−1 and energy in units of J×1.05457173×10−34J ·s, we
get h̄ = J = 1 and can drop h̄ in the following.

B. Actuators for Spin Networks & Control Paradigms

Formally, an actuator for a quantum system is a device that
interacts with the system, thereby altering its Hamiltonian—
replacing H by HS +HC. HS is the original system Hamilto-
nian, describing the intrinsic dynamics of the network, such as
Eq. (4) for the single excitation subspace. HC is a perturbation
to the system Hamiltonian induced by the actuators, which can
be constant or time-dependent. In the usual dynamic control
framework for quantum systems, HC consists of one or more
fixed interaction Hamiltonians Hm with interaction strengths
um(t) that can be dynamically varied as

HC =
M

∑
m=1

um(t)Hm. (6)

This results in a bilinear control problem for the controls
um(t). A considerable amount of work on quantum control
has focused on this paradigm of time-dependent bilinear
control [30], [32]. This has proven to be a powerful tool and
has been applied to controlling spin networks by dynamically
varying all or some of the couplings Jk` or potentials Dk [13].

Usually finding suitable controls um(t) is regarded as an
open-loop control problem, but it can also be formulated in
terms of finding a Feedback Control Law (FCL),

um(t) = um(U(t)). (7)

It is worth noting the differences between a FCL as de-
fined above and Measurement-based Feedback Control (MFC)
or Coherent Feedback Control (CFC) for quantum systems.
FCLs such as Eq.(7) are sometimes referred to as model-
based feedback as the feedback is dependent on the evolution
operator U(t) of the system, which cannot be measured
directly. Moreover, any measurement to obtain information
about the evolution or current state of the system has a
backaction that disturbs the system and thus acts as a co-
actuator. In MFC, the state of the system is therefore usually
replaced by an estimated state, which represents our state of
knowledge about the system. It is obtained by state estimation
based on continuous weak measurements. Incorporation of
the measurement backaction and the probabilistic nature of
quantum measurements further leads to stochastic differential
equations and non-unitary evolution. CFC is another paradigm
for quantum feedback based on coherent interaction between



3

Fig. 1. Schematic of direct feedback loop for a quantum network (left) and
conventional operational amplifier (right)

system and controller. This implicitly assumes that both,
the system to be controlled and the controller, are quantum
systems. See [14], [29], [31] for good introductions to quantum
control from a control engineering perspective.

All of these control paradigms play important roles in quan-
tum control and are necessary to solve different problems [15].
MFC, for instance, is an important tool for deterministic
state reduction and initial state preparation [16]. CFC can be
used to stabilize quantum networks against noise and external
perturbations [17]. Dynamic open-loop control has found
many applications from the preparation of quantum states of
special interest, such as entangled states, and implementation
of quantum gates for quantum information processing, to
the control of spin dynamics in nuclear magnetic resonance
(NMR), electron spin resonance (ESR), magnetic resonance
imaging (MRI), and electronic, vibrational and rotational states
of atoms and molecules [18]. All of these paradigms, however,
also have limitations and drawbacks. Dynamic control, for
example, requires the ability to temporally modulate interac-
tions, often at significant speed and time resolution. Besides,
for networks with a high degree of symmetry such as rings
with uniform coupling, controllability is often limited by
dynamic symmetries, which imposes restrictions on what can
be achieved, especially with local actuators [12].

Here we focus on the paradigm of finding constant interac-
tion strengths as an alternative to dynamic control. Specifically,
we wish to design simple FCL’s,

u(U(t)) =−iHCU(t) (8)

with time-invariant HC, giving rise to a linear control system
d
dt U(t) = (−iHS)U(t)+ Iu(U(t)), (9)

where I is the identity matrix. HS and U(t) are complex
operators but we could transform the system into a real system.
Decomposing the Schrödinger equation (5) as (8)-(9) and
interpreting the control term as a feedback control law is not
only conceptually but practically useful as it brings control
insights to the problem. The addition of the control term
creates a no-measurement “direct feedback loop,” a concept
reminiscent of the seminal work of Bode [37], where even
though feedback exists no measurements are needed. Fig. 1
attempts to illustrate the quantum control-feedback amplifier
metaphor.

Dynamic control problems have been formulated in terms
of model-based feedback and techniques such as Lyapunov

control have been successfully applied to these problems,
e.g., [19], [20], and even dynamic open-loop control schemes
can be reformulated as time-varying FCLs. However, our aim
here is to find constant FCLs for certain tasks, while at the
same time restricting the Hamiltonian to have a simple form.
Restricting the control of a bilinear system such as Eqs. (5)-
(6) to be time-invariant reduces the design to a linear, but
unconventional, control design [33].

III. DESIGN OF OPTIMAL FEEDBACK CONTROL LAWS FOR
EXCITATION TRANSPORT

A. Control Objectives

Our main control objective is to transfer an initial state
|in〉= |m〉, corresponding to the initial excitation of the system
on spin m, to a desired target state |out〉= |n〉, corresponding
to the excitation on spin n, for any given pair (m,n) of initial
and target spins. Mathematically, we formulate the problem of
arbitrary state transfer (not limited to single excitation states)
as finding an input-output map given by a unitary operator
U(T ) that maximizes the (squared) fidelity or probability of
successful transfer from |in〉 to |out〉 in an amount of time T :

p(|out〉� |in〉,T ) = |〈out|U(T )|in〉|2 ≤ 1. (10)

In practice, readout of information is generally not instanta-
neous but takes place over a finite time window. In this case it
is more advantageous to maximize the average transfer fidelity
for a given readout time window 2δT ,

p̄(|out〉� |in〉,T ;δT )=
1

2δT

∫ T+δT

T−δT
|〈out|U(t)|in〉|2 dt. (11)

Setting |out〉= |in〉 and choosing a large readout time window
2δT we can suppress transport from time 0 to T and localize
or freeze excitations at a particular node for later use by
maximizing p̄(|in〉� |in〉, 1

2 T ; 1
2 T ).

Unitarity of U(T ) ensures selectivity of the transfer as
‖U(T )(|in〉 − |in′〉)‖ = ‖|in〉 − |in′〉‖, i.e., if U(T ) maps the
input state to the target state then no other state can be mapped
to the target state. Quantitatively, an initial preparation error
maps to a terminal error of the same magnitude as that of
the initial error. The flipside of this selectivity requirement
is that we cannot hope to engineer a process that renders the
target state asymptotically stable but can only expect Lyapunov
stability or Anderson localization [4], [5].

We are interested in control of information transfer by
shaping the potential energy landscape of the system (see
Fig. 2). The extent to which the energy landscape can be
controlled in an actual device is subject to constraints, the
precise nature of which depends on the physical realization.
However, there is generally some freedom to shape the energy
landscape. For example, there are proposals for semiconductor
architectures consisting of quantum dots with surface gates
that control the energy levels via the Stark shift. In other
architectures, magnetic fields (Zeeman shift) can be used to
locally or globally control the energy landscape. In atom traps,
control of the energy landscape can be achieved by deforming
the optical lattice [9]. As this paper is mainly concerned
with the development of a theoretical framework, details of
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Fig. 2. Spin ring with energy landscape created by localized potentials.

experimental realizations and constraints are beyond the scope
of the current work and are left for future work.

Controlling the energy landscape means we wish to find
a FCL u(U(t)) = −iD̂U(t) with D̂ = diag(D) and D =
(D1, . . . ,DN) that maximizes the probability of information
transfer given by Eq. (10) or (11). For a network with fixed
topology defined by the couplings Jk`, this corresponds to
applying local potentials Dk that are constant in time, resulting
in a constant Hamiltonian HD = HS + D̂ and an input-output
map UD(t) that is the solution of the Schrödinger Eq. (5) with
H = HD. The objective is to find a control parameter vector
D∗ that maximizes the instantaneous transfer fidelity

pD∗(|out〉� |in〉,T ) = max
D

pD(|out〉� |in〉,T ) (12)

or the average transfer fidelity

p̄D∗(|out〉� |in〉,T ;δT ) = max
D

p̄(|out〉� |in〉,T ;δT ) (13)

at some time T . We can fix T , require T ≤ Tmax with an upper
bound Tmax, or aim to achieve the transfer with maximum
fidelity in minimum time. We also wish to consider the
sensitivity of the transfer with regard to uncertainties in system
parameters such as coupling strengths Jk` and local potentials
Dk as well as disturbances such as environmental noise.

For practical applications, it is often preferable to modify the
objective slightly and aim to find a FCL that achieves a desired
transfer in minimum time with a certain margin of error, as
we do not necessarily require perfect state transfer but only
that the final state be sufficiently close, up to a global phase
factor, to the desired target state. Finding FCLs for information
transfer in spin networks thus reduces to an optimization
problem, which can be solved using standard optimization
tools. However, the optimization landscape is very challenging,
in particular when the goal is to find a control that achieves the
highest possible fidelity in the shortest time possible, possibly
subject to various other constraints.

B. Perfect State Transfer & Speed Limits

There are many open questions regarding the existence
of FCLs that achieve perfect state transfer, in finite time
or asymptotically, and the control resources required. Perfect
state transfer from state |in〉 to state |out〉 at time T requires
realization of a U(T ) such that |〈out|U(T )|in〉|= 1. For perfect

state transfer we have |out〉= eiφU(T )|in〉 with a global phase
factor φ . Hence, if the fidelity reaches its upper bound, we
need not have |out〉=U(T )|in〉, but only [|out〉] = [U(T )|in〉],
where [.] denotes the equivalence class of a unit vector of CN

in the complex projective space CPN−1 ∼= S2N−1/S1.
It is easy to see that perfect state transfer is always possible

between any pair of states in time T for any T > 0 if there
are no constraints on the control Hamiltonian HC, as we can
simply set HC = −HS +

π

2T i(|n〉〈m| − |m〉〈n|). However, the
existence of FCLs that achieve perfect state transfer when the
actuators are constrained is not obvious. Furthermore, even
if such FCLs exist, information transfer is usually subject
to speed limits. While it is nontrivial to derive speed limits
for arbitrary quantum networks, we can derive lower bounds
on the transfer time in certain cases, which can be used as
performance indicators for the optimization.

If the distance between initial and target spin is 1, we can
reduce the network to a two-spin system with direct coupling
by applying large biases to sites other than the input and output
spins, yielding an effective two-spin Hamiltonian

HD =

(
D1 1
1 D2

)
. (14)

This system undergoes Rabi oscillations with the Rabi fre-
quency Ω =

√
(D2−D1)2 +4 and it can easily be shown that

p(|2〉� |1〉,T ) =
( 1

2 Ω
)−2

sin2 ( 1
2 ΩT

)
. (15)

The maximum of 1 is achieved for T = π

2 , if and only if Ω= 2,
or D1 = D2.

Similarly, if the distance between input and output spin is 2,
the network can be reduced to a three-spin chain by quenching
it and assuming zero-bias on the three remaining spins. In this
case we can easily show that

p(|3〉� |1〉,T ) = sin4
(

1
2

√
2T
)
. (16)

Here we have perfect state transfer for T = π

2

√
2.

More generally, we can derive speed limits by quenching
rings to chains from the eigenstructure symmetries. If the
distance between input and output spin in a ring with N spins
with uniform nearest neighbor couplings is n−1 and the biases
satisfy Dn+1−k = Dk, then HD commutes with the permutation
σ = [n,n− 1, . . . ,1] with corresponding permutation matrix
P = P†, i.e. PHDP = HD. Let V ΛV † be an eigendecompo-
sition of HD with eigenvectors vk and eigenvalues λk. Then
V ΛV † = PV ΛV †P or V = PV , i.e., the first and last row of V
are the same, and the tracking error ‖|n〉− eiφU(T )|1〉‖ with
global phase factor φ becomes

∑
k
|(vk)1|2

∣∣∣1− e−i(tλk−φ)
∣∣∣2 = 4∑

k
|(vk)1|2 sin2 ( 1

2 (tλk−φ)
)
.

(see Eq. (21) derived in Section IV). This expression vanishes
if tλk−φ is an integer multiple of 2π . For a chain of length
three with no bias, λ1 =−λ3 =

√
2 and λ2 = 0, and we achieve

perfect state transfer for T = 2π/λ1 =
1
2

√
2π , setting φ = 0.
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IV. EIGENSTRUCTURE AND SYMMETRY

The observations about the role of symmetries and the
Hamiltonian eigenstructure motivate a careful analysis of the
role the latter play in the design of FCLs for information
transfer in spin networks.

A. Eigenstructure

Consider the eigendecomposition of the Hamiltonian

HS +HC = HD =
Ne

∑
k=1

λkΠk, (17)

where Πk is the projector on the kth eigenspace associated with
the eigenvalue λk and Ne is the number of distinct eigenspaces.
The eigenvalues λk are real as the Hamiltonian is Hermitian.
Furthermore, as in our case HD is a real symmetric matrix, the
projectors Πk are also real symmetric. The associated input-
output map is UD(T ) = ∑

Ne
k=1 e−iT λk Πk. For the objective of

maximizing the transfer fidelity at time T , we have√
pD(|n〉� |m〉,T ) =

∣∣∣∣∣ Ne

∑
k=1

e−iT λk〈n|Πk|m〉

∣∣∣∣∣
=

∣∣∣∣∣ ∑
k∈K

e−i(T λk−φ)〈n|Πk|m〉

∣∣∣∣∣
≤ ∑

k∈K

∣∣∣e−i(T λk−φ)〈n|Πk|m〉
∣∣∣

= ∑
k∈K
|〈n|Πk|m〉| ,

(18)

where K is the subset of the eigenspaces that have non-zero
overlap with the input and output state, 〈n|Πk|m〉 6= 0, and φ

is a global phase factor that does not affect the norm. This
means the maximum is achieved if (but not only if)
(i) the phases of the exponentials cancel the phases of the

projections 〈n|Πk|m〉, up to a global phase factor eiφ that
is absorbed by the absolute value, and

(ii) ∑k∈K |〈n|Πk|m〉| is maximized simultaneously as the
phase assignment.

The transfer is perfect if the upper bound ∑k∈K |〈n|Πk|m〉|= 1
is attained, in which case we call the controller superoptimal.

To prove that the preceding conditions are not only sufficient
but necessary, we observe the following:

‖|n〉− eiφUD(T )|m〉‖2 = 2−2Re
(
〈n|eiφUD(T )|m〉

)
(19)

= 2

(
1− ∑

k∈K
〈n|Πk|m〉cos(T λk−φ)

)
.

This yields

Theorem 1. Necessary and sufficient conditions for superop-
timality are

(i) the eigenprojections of H satisfy ∑k |〈n|Πk|m〉|= 1;
(ii) the eigenvalues are such that the T λk−φ ’s are even or

odd multiples of π depending on whether the 〈n|Πk|m〉’s
are positive or negative, resp.

Corollary 1. For any D̂-controller and any |m〉 6= |n〉 it is
impossible for all 〈n|Πk|m〉, k ∈K , to have the same sign.

Proof. As {Πk} is a resolution of identity and |m〉 ⊥ |n〉,

∑
k∈K
〈n|Πk|m〉= 〈n|

Ne

∑
k=1

Πk|m〉= 〈n|m〉= 0. (20)

In the special case of K containing two elements, e.g.,
K = {1,2}, Eq. (20) yields 〈n|Π1|m〉 = −〈n|Π2|m〉 for
any controller D̂ with the remaining states being dark, i.e.,
〈n|Πk|m〉 = 0, k 6∈ K . The resulting freedom could be
used to secure the phase condition along with |〈n|Π1|m〉| =
|〈n|Π2|m〉|= 1

2 , which yields pD(|n〉� |m〉,T ) = 1, i.e., perfect
state transfer.

B. Signature Property in the Case of Distinct Eigenvalues

In the generic case when HD has N distinct eigenvalues, we
have Πk = |vk〉〈vk|, where {vk : k = 1, . . . ,N} is the (real) or-
thonormal frame of eigenvectors of HD. Taking (vk)m = 〈vk|m〉
and (vk)n = 〈vk|n〉 to be the projections of the (real) input and
output states onto the kth eigenvector of HD, the tracking error
becomes

‖|n〉− eiφUD(T )|m〉‖2 = ∑
k
|(vk)n− e−i(tλk−φ)(vk)m|2. (21)

It assumes its global minimum of 0 if and only if

|(vk)n| = |(vk)m|,
skn = sgn

(
e−i(tλk−φ)

)
skm,

∀k = 1, . . . ,N, (22)

where skn := sgn((vk)n) and e−i(T λk−φ) is real at optimality.
Noting ie±iπ/2 =±1, the previous condition is equivalent to

|(vk)n| = |(vk)m|,
tλk−φ = π

2 (skn− skm) mod 2π,
∀k = 1, . . . ,N.

(23)
Setting sk := sgn((vk)n(vk)m) = sgn(〈n|Πk|m〉), we get

(vk)n = sk(vk)m. (24)

Even though only the mth and nth components of the eigen-
vectors matter in perfect state transfer, the signature property
extends to other components related by symmetry.

C. Symmetries & Full Signature Property of Eigenvectors

The key to finding good feedback control laws by optimiza-
tion lies in understanding the symmetries of the system and
using the biases to enforce or annul certain symmetries. For
this we constrain the controls to ensure that the first condition,
|(vk)n| = |(vk)m| is satisfied for all k ∈ K and for all ad-
missible controls. Let HD =V ΛV † be an eigendecomposition
of HD. If there is a unitary operator R that commutes with
HD, RHD =HDR, then HD =RHDR† =RV ΛV †R† =RV Λ(RV )†

implies that if vk is a unit eigenvector with eigenvalue λk then
so is Rvk. If the eigenvalues λk of HD are distinct, then both
vectors can only differ by a phase, Rvk = eiφ vk; in particular

|〈n|vk〉|= |〈n|Rvk〉|= |〈R†n|vk〉|, ∀k ∈K . (25)

Hence, we need to find a unitary operator R that commutes
with HD and satisfies R†|n〉= |m〉.
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Example 1. For a chain of length N with uniform coupling
we have inversion symmetry, i.e., the system Hamiltonian HS
commutes with the permutation operator P, HSP=PHS, where
P|n〉= |N+1−n〉 for n = 1, . . . ,N. If the control Hamiltonian
HC = D̂ also commutes with P, then |(vk)m |= |(vk)n | for all
k whenever the input and output node satisfy m = N +1−n.

Example 2. For a ring of N spins with uniform coupling, we
have translation invariance in addition to inversion symmetry.
Therefore, we can always choose biases such that |(vk)m | =
|(vk)n | for all k.

For a ring with uniform coupling we can show that Eq. (24)
not only holds for the (m,n) input-output components, but also
for those components related by the permutation σ(m+ j) =
n− j. Motivated by the cyclic symmetry of the ring requiring
modulo N operations, we relabel the indices of the spins,
starting at 0 rather than 1 and the indices are taken modulo N
without indicating this explicitly to keep the notation simple.
By convention, the labeling of the vertices is clockwise around
the ring.

Theorem 2. For a ring of N spins with uniform coupling
between adjacent spins only, the eigenvectors are signature
symmetric as

(vk)m+` = sk (vk)n−` , m+ `,n− ` ∈ {0,1, . . . ,N−1} (26)

under the symmetry of the biases

Dm+` = Dn−`, m+ `,n− ` ∈ {0,1, . . . ,N−1}. (27)

Furthermore, if |m−n| is even then (vk)m+`=n−` = 0.

The proof is given in Appendix A.

V. SENSITIVITY TO UNCERTAINTIES

A. General Sensitivity

We analyze the sensitivity of the (squared) fidelity or
probability of successful transfer |〈n|U(T )|m〉|2 relative to
uncertainties in the couplings Jk` or other parameters. Let

H̃ = HS +HC +∑
µ

δµ Sµ (28)

be the total Hamiltonian of the perturbed system, where HS
is the ideal system Hamiltonian, HC is the control Hamilto-
nian, here assumed to be time-invariant, and the δµ Sµ for
µ = 1,2, . . . are perturbations. Sµ reflects the structure of
the perturbation and δµ its amplitude. For uncertainty in the
coupling Jk`, we take Sµ = |k〉〈`|+ |`〉〈k|. The transfer operator
of the perturbed system is

Ũ(T ) = e−i(HS+HC+∑µ δµ Sµ )T . (29)

The design sensitivity is determined by the partial derivative

∂ |〈n|Ũ(T )|m〉|2

∂δµ

= 2Re

(
〈n|∂Ũ(T )

∂δµ

|m〉〈m|Ũ†(T )|n〉

)
. (30)

As HS+HC generally does not commute with the perturbation
Sµ , we use the general formula to evaluate the partial derivative

∂Ũ(T )
∂δµ

=−i
∫ 1

0
e−iH̃T (1−s)(Sµ T )e−iH̃T s ds, (31)

which remains valid around δµ 6= 0 (see [21], [22]). From
the eigendecomposition of the perturbed Hamiltonian H̃, H̃ =

∑
Ñe
k=1 λ̃kΠ̃k, where Π̃k is the projector onto the eigenspace

associated with the eigenvalue λ̃k, it is readily found that

〈m|Ũ(T )†|n〉= ∑
j
〈m|Π̃ j|n〉eiT λ̃ j .

Evaluation of the integral gives

∂Ũ(T )
∂δµ

=−iT ∑
k,`

Π̃kSµ Π̃`

∫ 1

0
e−iT λ̃k(1−s)e−iT λ̃`s ds

=−iT ∑
k,`

Π̃kSµ Π̃`
e−iT λ̃` − e−iT λ̃k

iT
(

λ̃k− λ̃`

) . (32)

Inserting this into Eq. (30) gives

∂ |〈n|Ũ(T )|m〉|2

∂δµ

= 2T ∑
j,k,`
〈m|Π̃ j|n〉〈n|Π̃kSµ Π̃`|m〉

×
cos
(

T
(

λ̃k− λ̃ j

))
− cos

(
T
(

λ̃`− λ̃ j

))
T
(

λ̃k− λ̃`

) (33)

=−2T ∑
j,k,`
〈m|Π̃ j|n〉〈n|Π̃kSµ Π̃`|m〉

×
sin
(

1
2 T
(

λ̃k− λ̃`

))
1
2 T
(

λ̃k− λ̃`

) sin
(

1
2 T
(

λ̃k + λ̃`−2λ̃ j

))
,

where we used cos(a)− cos(b) = −2sin( 1
2 (a− b))sin( 1

2 (a+
b)). Finally, defining ω̃k` = λ̃k − λ̃` and sin(x)/x = sinc(x),
gives

∂ |〈n|Ũ(T )|m〉|2

∂δµ

=−2T ∑
k,`
〈n|Π̃kSµ Π̃`|m〉sinc

( 1
2 T ω̃k`

)
×∑

j
〈m|Π̃ j|n〉sin

( 1
2 T (ω̃k j + ω̃` j)

)
.

(34)

B. Sensitivity at δµ = 0

Up to now, the sensitivity could have been evaluated at any
δµ . From here on, we restrict the discussion to δµ = 0. One of
the implications of Theorem 1, saying that at superoptimality
T λk is a multiple of π modulo the global phase factor φ , is
that for k = ` the argument of the sine in Eq. (34) is a multiple
of π (the global phase factors in 1

2 T (λk+λ`−2λ j) cancel) and
thus the sine vanishes. Therefore, the sum over k, ` in Eq. (34)
can be restricted to k 6= `. Next, observe that

sin
( 1

2 T (λk +λ`−2λ j)
)
= s j sin

( 1
2 T (λk +λ`)

)
.

This allows us to isolate the sum over j, which takes the value
1 at superoptimality:

∑
j

s j〈m|Π j|m〉= ∑
j
|〈m|Π j|n〉|= 1.
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Finally, observe that sinc
( 1

2 T (λk−λ`)
)

vanishes when T (λk−
λ`) is a multiple of 2π . Putting everything together, the
sensitivity formula becomes

∂ |〈n|Ũ(T )|m〉|2

∂δµ

=−2T ∑
sks`=−1

〈n|Π̃kSµ Π̃`|m〉sinc
( 1

2 T ω̃k`
)

× sin
( 1

2 T (λk +λ`)
)
, (35)

where sks` = −1 indicates that the sum is restricted to those
k, ` such that T (λk−λ`) is an odd multiple of π .

C. Vanishing Sensitivity to Symmetric Perturbations at Opti-
mality

We prove that the sensitivity of the fidelity relative to a real
perturbation structured as Sµ = S†

µ vanishes. This includes a
perturbation of the µ-(µ + 1) coupling, in which case Sµ =
|µ〉〈µ + 1|+ |µ + 1〉〈µ|, and the case where the perturbation
is on the Dµ control bias, in which case Sµ = |µ〉〈µ|. The
vanishing of the latter sensitivity is quite trivial; indeed, if the
controller is differentiably optimal, the first order conditions
require that the directional derivative of the fidelity along any
control direction, in particular |µ〉〈µ|, must vanish.

By a real Gram-Schmidt orthonormalization process, we
write Πk = |vk〉〈vk|, so that Eq. (35) can be rewritten,

∂ |〈n|Ũ(T )|m〉|2

∂δµ

=−2T ∑
sks`=−1

〈n|vk〉〈v`|m〉〈vk|Sµ |v`〉 (36)

× sinc( 1
2 T (λk−λ`)sin( 1

2 T (λk +λ`)).

Observe that sinc( 1
2 T (λk−λ`))sin( 1

2 T (λk +λ`)) is symmetric
relative to the indices k, `. That is,

sinc( 1
2 T (λk−λ`))sin( 1

2 T (λk +λ`))

= sinc( 1
2 T (λ`−λk))sin( 1

2 T (λ`+λk)).

Likewise, 〈vk|Sµ |v`〉 is symmetric relative to the indices k, `,
〈vk|Sµ |v`〉= 〈v`|Sµ |vk〉, because Sµ is a real symmetric matrix
and the eigenvectors were taken to be real.

If on the right-hand side of Eq. (36) we add the same right-
hand side with interchanged indices k and `, we obtain twice
the partial derivative of the squared fidelity relative to δµ .
Thus,

2
∂ |〈n|Ũ(T )|m〉|2

∂δµ

=−2T ∑
sks`=−1

〈vk|Sµ |v`〉(〈n|vk〉〈v`|m〉+ 〈n|v`〉〈vk|m〉)

× sinc( 1
2 T (λk−λ`))sin( 1

2 T (λk +λ`)).
(37)

Next, we use the signature property to derive the following:

〈n|vk〉〈v`|m〉+ 〈n|v`〉〈vk|m〉
= sk〈m|vk〉〈v`|m〉+ s`〈m|v`〉〈vk|m〉
= sk(〈m|vk〉〈v`|m〉+ s`sk〈m|v`〉〈vk|m〉)
= sk(〈m|vk〉〈v`|m〉−〈m|v`〉〈vk|m〉)
= 0.

Therefore, the right-hand side of Eq. (37) vanishes and the
sensitivity vanishes.

Theorem 3. Consider a spin ring in its single excitation
subspace with biases D = (D1, . . . ,DN) which differentiably
maximize the fidelity. At optimality the sensitivity of the fidelity
relative to any real, symmetric perturbation Sµ vanishes.

VI. OPTIMIZATION IN A CHALLENGING LANDSCAPE

We present numerical optimization results for instantaneous
and average information transfer and localization as well
as the corresponding sensitivities of the controllers versus
their performance. Initial results on controlling instantaneous
information flow in spin networks are available in [23], which
are summarized and expanded here. The results here are
computed for uniform rings of N spins with XX couplings.
All results for N from 3 to 20 are available in a separate data
set [24].

Solving the optimization problem in Eq. (12) directly for a
fixed target time T is challenging even without constraints on
the biases D as the landscape is extremely complicated with
many local extrema, resulting in trapping of local optimization
approaches such as quasi-Newton methods. Fig. 3 shows the
results of various runs for fixed times for a ring of 9 spins,
with the objective being to propagate the excitation from spin
1 to spin 2 and 3, respectively. While good solutions are found
for certain times, including the minimum times given by the
quantum speed limits (see Section III-B), the optimization
clearly gets trapped frequently, making finding good solutions
very expensive.

Instead of fixing the transfer time we add the time as ad-
ditional parameter to optimize over. The results in Section IV
show that the structure of the eigenvalues and eigenvectors
must fulfill a specific condition to be able to maximize the
transfer fidelity. While there are many potential structures that
fulfill the condition, we can choose a specific one to provide
a guide for good initial values and a restricted domain for the
search. The idea is to quench the ring of N spins into a chain
from the initial spin to the target spin. Previous work showed
that this can be easily achieved by applying a very strong
potential in the middle between initial and target spin [3]. If we
can control the potentials of all spins then we can generalize
this to quench the ring just before the initial and after the
target spin, giving two options for a chain connecting the two
nodes where either could provide a solution.

Furthermore, applying mirror symmetric potentials across
the axis through the middle between initial and target state
in the ring gives rise to an eigenstructure satisfying the opti-
mality conditions. Consequently, we choose such symmetric
potentials in combination with the approximate times where
the maximum fidelity is achieved in the related chains as
initial values for the optimization. This significantly improves
the efficiency of finding controls for maximum information
transfer in minimum time, as already observed in [23]. The
symmetry constraint can be easily applied to the optimization
by reducing the number of biases to be found to dN/2e,
symmetric across the symmetry axis between initial and target
spin. Convergence of the optimization can be further improved
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Fig. 3. Results of optimizing the information propagation from spin 1 to 2 (left) and 1 to 3 (right) for an XX-ring of 9 spins using L-BFGS optimization with
exact gradients over spatial biases for fixed times T from 1 to 30 with step size 0.2. Each data point represents the infidelity 1− p(|out〉� |in〉,T ) achieved
for the corresponding time by a single optimization run across different initial values with 100 restarts for each time T . The optimization gets trapped often
but it can still find good solutions for certain times. In particular, good solutions were found for the speed limit tmin for both transfers.

Fig. 4. Optimization results for the information transfer probability from spin
1 to 3 for an XX-ring of 7 spins over spatial biases and time. The left column
shows the biases and evolution (in blue vs. the natural evolution in red) giving
the best fidelity at time T ≈ 21.65 with an error of 9.09×10−11. The middle
column shows the fastest solution found with a fidelity greater than 0.999 at
T ≈ 2.22. The right column shows the overall solutions found by repeated
optimization, plotting time vs logarithm of the infidelity and a histogram of
the logarithm of the infidelity. The bottom row shows the eigenstructure of
the best and the fastest solution and their symmetries, with eigenvectors being
the columns of the matrices (in cyan; green and red rows indicate |in〉 and
|out〉 states resp.) and corresponding eigenvalues at the bottom (in purple).

by selecting constants, peaks or troughs as biases between
initial and target spin on both sides of the rings randomly as
initial values, and selecting initial times from the transition
times required for a spin chain of length corresponding to the
distance between |in〉 and |out〉.

Figs. 4, 5 show the optimization results for a ring of size
7 and 11 for the transition from spin 1 to 3. We report
the solution with the highest fidelity and the fastest solution
with a fidelity larger than 0.999. Typically the highest fidelity
solutions are found at longer times, but good solutions for

short times are also achieved. However, many restarts of the
optimization are required, and many runs fail with fidelities
smaller than 0.9. Observe the eigenstructure symmetries for
the solutions consistent with Section IV. Shortest time solu-
tions are found, while the best solution is at a different time.

We also report results for optimizing the average transfer
fidelity, Eq. (13): see Fig. 6 for a 11-ring for the transition
from spin 1 to 6 and Fig. 7 for a 13 ring from spin 1 to 3.
We show the solution with the highest fidelity and the fastest
solution with a fidelity larger than 0.99, lower than in the
instantaneous case as the average fidelities are smaller as well.

Figs. 8 and 9 show the shortest times achieved for in-
stantaneous fidelities greater than 0.999 and average fidelities
greater than 0.99 for rings of size N = 3 to 20 in summary.
Due to the symmetry in the connections only transitions from
|1〉 to |dNe/2〉 are reported. For target spins |2〉 and |3〉, the
fastest times are generally consistent with the speed limits
in Section III-B, but the shortest times could not always
be achieved. All individual results can be accessed in a
separately data set [24]. The cases where no minimum time
solution satisfying the minimum fidelity requirements was
found further show the difficulty of finding good controllers.
Improved optimization strategies will be explored in future
work.

Optimizing the average information transfer fidelity per
Eq. (11) can also be used to localize the excitation at a
particular spin by maximizing p̄(|in〉� |in〉, 1

2 T ; 1
2 T ) as noted

in Section III-A. Numerical results for rings of size 14 and 19
are shown in Figs. 10 and 11 for a holding time of T = 1,000.

Theorem 3 indicates that at superoptimality the sensitivity
vanishes, which is further explored numerically here. Re-
sults for instantaneous transfer, time-window average transfer
shown in Figs. 12, 13, 14 indicate a positive correlation
between the sensitivity of the controllers and the infidelity. The
specific sensitivity measure used here is the norm of the vector
of sensitivities w.r.t. uncertainties in the Jk` couplings. Among
2,000 controllers indexed in decreasing order of fidelity, where
we only show those with fidelities greater than 0.1, the very
best controllers nearly achieving the upper bound on the
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Fig. 5. Results for optimizing the information transfer probability from spin
1 to 3 for a ring of 11 spins similar to Fig. 4 (without eigenstructures).

Fig. 6. Results for optimizing the average information transfer probability
from spin 1 to 6 for a ring of 11 spins with δT = 0.05 similar to Fig. 4 with
the only difference that the fastest solutions with a fidelity of greater than
0.99, due to the averaging, has been selected.

fidelity (achieving near vanishing tracking error) have nearly
vanishing sensitivity; furthermore, with the deterioration of the
fidelity the sensitivity increases.

VII. CLASSICAL VERSUS QUANTUM ROBUST CONTROL

Given a loop matrix L, a classical result is that the sen-
sitivity S = (I + L)−1 mapping from the reference to the
tracking error and the logarithmic sensitivity of the sensitivity,
T = L(I + L)−1, derived from S−1(dS) = −(dL)L−1T , are
in conflict since S + T = I. Horowitz [25, Chap. Six] was
probably first to point out that the limitation imposed by
the SISO single degree-of-freedom configuration could be
overcome by means of a two-degrees-of-freedom configura-
tion. Ever since this fundamental observation, many MIMO
two-degrees-of-freedom architectures have been proposed [6],
[7]. The controller −iD̂(|n〉, |m〉)|Ψ〉 is, in a certain sense,
a two-degrees-of-freedom controller as it depends on both,
the current state |Ψ(t)〉 and the target state |n〉, and does not
explicitly depend on the tracking error. However, as already
alluded to in Sec. III-B, the information transfer controller
does not have a tracking error in the classical sense, but a
projective tracking error.

To proceed towards classical Laplace domain control, con-
sider the quantum mechanical projective tracking error

E(t) = |n〉1(t)−eiφ(t)|Ψ(t)〉=
(
|n〉− eiφ(t)e−i(HS+D̂)t |m〉

)
1(t),

Fig. 7. Results for optimizing the average information transfer probability
from spin 1 to 3 for a ring of 13 spins with δT = 0.05 similar to Fig. 4 with
the only difference that the fastest solutions with a fidelity of greater than
0.99, due to the averaging, has been selected.

Fig. 8. Shortest times achieved for instantaneous transition fidelities greater
than 0.999 for rings of size N = 3, . . . ,20 and transitions from 1 to k =
2, . . . ,dN/2e. Note that for the transitions for N = 13 from |1〉 to |8〉, N = 16
from |1〉 to |9〉 and N = 19 from |1〉 to |10〉 no solution with fidelity greater
than 0.999 were found, so no fastest results are reported. The color of the
bars indicate the infidelity of the fastest solution.

Fig. 9. Shortest times achieved for average transition fidelities greater than
0.99 for rings of size N = 3, . . . ,20 and transitions from 1 to k = 2, . . . ,dN/2e
for δT = 0.05. Note that for the transition for N = 19 from |1〉 to |8〉 no
solution with fidelity greater than 0.99 were found, so no fastest results are
reported. The color of the bars indicate the infidelity of the fastest solution.
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Fig. 10. Optimization results for localizing spin 1 in a 14-ring over the spatial
biases. The left column shows the biases and evolution (in blue vs. the natural
evolution in red) giving the best fidelity for a localization time of 1,000 with
an error of 4.28×10−6.

Fig. 11. Optimization results for localizing spin 1 in a 19-ring similar to
Fig. 10.

where 1(t) denotes the unit step. The phase factor eiφ(t) is a
generalization of the phase factor of Section III-B securing

‖E(t)‖2 = 2−2|〈n|Ψ(t)〉|, (38)

that is, minimization of ‖E(t)‖ is equivalent to maximization
of |〈n|Ψ(t)〉|. It is easily seen that the phase factor to secure
the above equality is φ(t) = − 〈n|Ψ(t)〉. This creates an
unconventional (adaptive) feedback from Ψ to φ . Instead of
minimizing ‖E(t)‖2 or maximizing |〈n|Ψ(t)〉| over (t,D) at
a specific time, we could optimize in a time-average sense,
opening the road to Laplace transform techniques.

The Laplace transform of the error reads

L [E(t)](s) =
(

1
s

I−L
[
eiφ(t)

]
∗
(

sI + i
(

HS + D̂
))−1

P
)

︸ ︷︷ ︸
=:S (s)

|n〉,

where P is a permutation matrix such that |m〉 = P|n〉 and ∗
denotes the Laplace domain convolution. Since S (s) is the
mapping from the unit step reference to the error, it can be
interpreted as a sensitivity matrix, but it differs significantly
from the classical sensitivity matrix. In particular, selectivity
implies that only the nth column of S (s) matters.

Since the system lacks asymptotic stability, the classical
final value theorem does not hold. However, generalized

Fig. 12. Logarithm of infidelity 1− p (red) and logarithm of sensitivity (blue),
ordered by increasing infidelity from left to right, of the instantaneous 1→ 3
controllers of a 7-ring (left) and a 11-ring (right).

Fig. 13. Logarithm of infidelity 1− p̄ (red) and logarithm of sensitivity
(blue), ordered by increasing infidelity from left to right, of the average 1→ 6
controllers of a 11-ring (left) and 1→ 3 controllers of an 11-ring (right).

version of the Laplace final value theorem [26], [27] allows
us to compute the average error

lim
T→∞

1
T

∫ T

0
E(t) dt = lim

s→0
sS (s)|n〉 (39)

=

(
I− lim

s→0
s
(

L
[
eiφ(t)

]
∗
(

sI + i
(

HS + D̂
))−1

P
))
|n〉.

To get a better feeling for the Laplace convolution, assume,
for simplicity, that perfect state transfer is achieved, i.e,
|〈n|Ψ(t)〉| = 1, in which case eiφ(t) = 〈n|Ψ(t)〉∗. Then the
convolution becomes

L
[
eiφ(t)

]
∗
(

sI + i
(

HS + D̂
))−1

P

= 〈m|
(

sI− i
(

HS + D̂
))−1

|n〉 ∗
(

sI + i
(

HS + D̂
))−1

P
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Fig. 14. Logarithm of infidelity 1− p̄ (red) and logarithm of sensitivity (blue),
ordered by increasing infidelity from left to right, of the localization controllers
of a 14-ring (left) and 19-ring (right).

=
1

2πi

∫ c+i∞

c−i∞
〈m|
(

zI− i
(

HS + D̂
))−1

|n〉(
(s− z)I + i

(
HS + D̂

))−1
P dz,

where the path of integration is in the domain of convergence
of (sI + i(HS + D̂))−1, i.e., Re(c) > 0. Therefore, lims→0
should be interpreted as the limit as s goes to zero, from the
Right Half Plane. The convolution is manageable via residue
calculations, from which it follows that it has a pole at s = 0,

so that lims→0 s
(

L
[
eiφ(t)

]
∗
(

sI + i
(

HS + D̂
))−1

|m〉
)

is not

trivially zero.

VIII. CONCLUSIONS AND FUTURE WORK

We have shown that information transfer and localization in
spin networks can be controlled by shaping the energy land-
scape using static potentials. This can be interpreted in terms
of feedback control. However, it differs from measurement-
based quantum feedback control in that the feedback is model-
based and fully coherent. An advantage of this type of control
is the relative simplicity, as neither measurements and state es-
timation nor rapidly modulated dynamic controls are required.
Furthermore, optimal feedback controllers are also the most
robust, with superoptimal controllers simultaneously achieving
perfect state transfer and vanishing sensitivity with respect to
unavoidable uncertainties in the system.

In addition to exact-time transfer, additional gains in robust-
ness can be obtained by optimizing the transfer to maximize
the fidelity over a time window. This is especially important
for practical applications as instantaneous readout requires
effectively infinite bandwidth, which is usually unavailable.
If the input and output states are identical, extending the
time window yields solutions that achieve Anderson localiza-
tion [4], [28], the closest equivalent to asymptotic closed-loop
stability for Hamiltonian quantum networks. Sensitivity prop-
erties of time-windowed optimized controllers are analyzed
from the statistical point of view of concordance between error

and sensitivity as shown in Fig. 13 in [35]. Robustness under
larger, combined initial preparation error and coupling error is
available in [36].

Compared to dynamic control, finding optimal feedback
control laws is considerably harder due to the complex op-
timization landscape. Analysis of the optimality conditions
shows that the eigenstructure of the dynamic generators must
satisfy certain symmetry conditions. Enforcing these condi-
tions and careful choice of the initial values significantly im-
prove the success rate of local optimization algorithms. Thus,
enforcing constraints in this case improves performance of
local optimization algorithms by simplifying the optimization
landscape. For spin rings in particular, the constraints make
them more similar to chains and the timing of the transmission
peaks in the corresponding chains give good indications for the
shortest possible transfer times in ring-based quantum routers.

From a control point of view, maximizing the transfer
fidelity |〈out|UD(T )|in〉| = 1 is equivalent to canceling the
tracking error ||out〉 − eiφUD(T )|in〉|, but the global phase
factor means that we must think of the tracking error as
an element of the complex projective space CPN−1. Another
difference to its classical counterpart is that our quantum
feedback control scheme is not only |out〉-selective, but |in〉-
selective as well, while classical controllers are |out〉-selective
as the target is specified by the reference signal, but the initial
state is an equilibrium state.

There are many open questions for this control paradigm,
ranging from the optimization landscape to global optimization
algorithms that utilize the specific structure of the problem
to find the best control laws. Furthermore, unlike dynamic
control, for which explicit conditions for controllability in
terms of the Lie algebra of the control operators are known,
there are many theoretical questions in terms of attainability of
the bounds and speed limits for selective information transfer.
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APPENDIX A
PROOF OF FULL SIGNATURE PROPERTY FOR RINGS WITH

SYMMETRIC BIASES

The argument of the proof is based on the symmetry of
the biases in Eq. (27). To keep the notation simple, we write
the eigenequation as (H−λ I)x = 0. Due to circular nearest-
neighbor coupling for rings, it reads

x`−1 mod N +(D`−λ )x` mod N + x`+1 mod N = 0, ∀`.

We shall sometimes drop mod N to simplify the notation. The
key point is to rewrite the components of the eigenequation in
symmetric pairs:

xm+`−1 +(Dm+`−λ )xm+`+ xm+`+1 = 0,
xn−`−1 +(Dn−`−λ )xn−`+ xn−`+1 = 0.

(40)

Adding the equations and using the symmetry of the biases
yields

(xm+`−1 + xn−`+1)+(Dm+`−λ )(xm+`+ xn−`)

+(xm+`+1 + xn−`−1) = 0.
(41)
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We must show that the sums of pairs of symmetrically
related components vanish. This is achieved by writing the
Eqs. (40), (41) for all `’s together with the “boundary con-
ditions” allowing the equation to be solved by backsubstitu-
tion. By “boundary conditions,” we mean Eq. (41) involving
xm + xn = 0 together with Eq. (40) for some ` such that
{m+ `−1,m+ `,m+ `+1}∩{n− `−1,n− `,n− `+1} 6= /0.

How the two sets intersect and how to set up the corre-
sponding boundary conditions depend on whether |m− n| is
even or odd. By symmetry we assume m < n.
Case 1: If n−m is odd, then the recursion on the pairs of
Eqs. (40) terminates at ` with (n− `) = (m+ `)+ 1 mod N,
and

`=
n−m−1 mod N

2
.

Observe that if N is even the mod N freedom yields two such
`’s, defining two ring edges (m+ `)(n− `) in antipodal oppo-
sition. To simplify the notation, define m := m+ `, n := n− `,
and let Xm−` to be the sum of the m− ` component and its
twin σ(m− `) = n+ `, viz, Xm−` = xm−`+ xn+`. Writing the
pair of Eqs. (40) for `= ` and adding them in the combined
Eq. (41) yields

Xm−1 +(Dm−λ +1)Xm = 0.

Defining the polynomial pm−1(λ ) :=−(Dm−λ +1) yields

Xm−1 = pm−1(λ )Xm.

Next, writing Eqs. (40), (41) for `= `−1 yields

Xm−2 +(Dm−1−λ )Xm−1 +Xm = 0.

Writing Xm−1 in its polynomial formulation yields Xm−2 =
pm−2(λ )Xm, where pm−2(λ ) = ((Dm−1−λ )(Dm−λ +1)−1).
The general equation should now be obvious:

Xm−` = pm−`Xm

and the recursion on the polynomials is

pm−` =−(Dm−`+1−λ )pm−`+1−1.

Finally, we reach the situation where Xm = pm(λ )Xm. Since
Xm = xm + xn = 0, and if pm(λ ) 6= 0, we get Xm = 0, from
where by backsubstitution Xm−` = 0 and the full symmetry is
proved.
Case 2: If n−m is even, then as ` increases, Eqs. (40), (41)
terminate at ̂̀= n−m mod N

2
,

with m̂ := m+ ̂̀= n− ̂̀=: n̂. Observe that if N is even the
mod N freedom yields two such m̂ = n̂ at anti-podal points in

the ring. The beginning of the recursion is a bit different from
the one of the odd case. We start with

xm̂−1 +(Dm̂−λ )xm̂ + xn̂+1 = 0

and rewrite it as Xm̂−1 +(Dm̂−λ )xm̂ = 0. Defining the poly-
nomial pm̂−1 =−(Dm̂−λ ) yields

Xm̂−1 = pm̂−1(λ )xm̂.

From here on the recursion is very much like the one of the
odd case:

Xm̂−` = pm̂−`(λ )xn̂,

together with the polynomial recursion

pm̂−` = (Dm̂−`+1−λ )pm̂−`+1−2.

As ` increases, the recursion terminates as Xm = pm(λ )xn̂.
Since Xm = xn + xm = 0, and if pm(λ ) 6= 0, we get xn̂ = 0
from where by backsubstitution Xm̂−` = 0 and the theorem is
proved.
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