
Monte Carlo Simulations of Spin Transport in
Nanoscale InGaAs Field Effect Transistors

B. Thorpe,1, ∗ K. Kalna,2, † F. C. Langbein,3, ‡ and S. Schirmer1, §

1Department of Physics, College of Science, Swansea University,
Singleton Park, Swansea, SA2 8PP, United Kingdom

2Electronic Systems Design Centre, College of Engineering, Swansea University,
Bay Campus, Fabian Way, Swansea, SA1 8EN, United Kingdom
3School of Computer Science & Informatics, Cardiff University,

5 The Parade, Cardiff, CF24 3AA, United Kingdom
(Dated: October 14, 2016)

By augmenting an in-house developed, experimentally verified Monte Carlo device simulator with
a Bloch equation model with a spin-orbit interaction Hamiltonian accounting for Dresselhaus and
Rashba couplings, we simulate electron spin transport in a 25 nm gate length InGaAs MOSFET.
We observe non-uniform decay of the net magnetization between the source and gate electrodes and
an interesting magnetization recovery effect due to spin refocusing induced by high electric field
between the gate and drain electrodes. We demonstrate coherent control of the polarization vector
of the drain current via the source-drain and gate voltages, and show that the magnetization of
the drain current is sensitive to strain in the channel, suggesting that the device could act as a
room-temperature nanoscale strain sensor.
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I. INTRODUCTION

Spin is one of the most intriguing quantum properties
carried by elementary particles. Incorporating electron
spin into the operation of semiconductor devices enables
novel electronic devices [1, 2]. Among the most promising
spin-based semiconductor devices are the spin field effect
transistor (spinFET), considered a future candidate for
high performance digital computing and memory with
ultra low energy needs, and novel nanoscale quantum-
enhanced sensor technology [3–6].

To realise spinFETs and similar devices exploiting spin
degrees of freedom requires a thorough understanding of
how electron spins interact in real semiconductor mate-
rials as well as the ability to control spin [7], which is
essential to build devices with novel functionality and/or
operation [8]. Although drift-diffusion models of spin
transport have been very useful as a basis for simula-
tions of spintronic devices [9], to understand how spin
behaves in real nanoscale devices under realistic working
conditions, one has to go beyond simple drift-diffusion
models of electron spin transport by incorporating the
electron spin degrees of freedom into self-consistent semi-
classical or quantum transport device simulations. To
this end, we apply finite-element quantum-corrected en-
semble Monte Carlo simulations [10, 11] with electron
spin to a nanoscale III-V field effect transistor to investi-
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gate spin transport within a realistically operating semi-
conductor device. The device we study is similar to the
Datta-Das spin-FET [3], except that only the source elec-
trode is ferromagnetic.

The simulation results suggest that the polarization
of the electrons initially decays as they traverse the de-
vice as expected, but partially recovers as the electrons
approach the drain. It appears that the electron spins
are initially dephased but then partially refocused by the
electric field of the gate electrode. As the drain electrode
was deliberately chosen to be non-magnetic, the recovery
of the magnetization cannot be attributed to existing po-
larized carriers inside the drain. It must be assumed to
be due to partial rephasing of electron spins resulting in a
net magnetization. Moreover, the decay and recovery de-
pend on the gate voltage and can therefore be controlled.
Our simulator also enables us to study the effect of strain
on the spin transport. In particular, the Dresselhaus and
Rashba effects depend on the direction and strength of
the strain in the device, resulting in a change in electron
polarization at the drain of the device. This could form
the basis for nanoscale strain sensors in materials. Fig. 1
shows a 3D representation of our InGaAs MOSFET de-
vice and the spin polarization along the channel with and
without strain.

This paper is organized as follows. In Section II, we
briefly describe the simulations and the underlying the-
ory. In Section III, we present and discuss the results of
spin transport simulations for an unstrained In0.3Ga0.7As
MOSFET device including steady-state magnetization
across the channel and the effect of the source-drain and
gate voltages, respectively. In Section IV, the effect of mi-

croscopic strain is investigated based on ~k ·~p calculations
to determine the strain dependence of the spin-orbit cou-
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FIG. 1. 3D model of the studied In0.3Ga0.7As MOSFET showing spin polarization of electrons along n-channel with 4% strain
in the [001] direction (Red) and unstrained (Purple).

plings and its effect on spin transport and the observed
magnetization of the drain current.

II. THEORY AND METHODS

The main simulation technique used in this work
to model non-equilibrium many-body electron trans-
port in realistic semiconductor devices is the ensem-
ble Monte Carlo (MC) technique [12], which is self-
consistently coupled with solutions of the Poisson equa-
tion (accounting for long-range electron-electron interac-
tions) and quantum corrections using the effective quan-
tum potential [13], all assembled in an in-house de-
veloped 2D finite element heterostructure MC device
simulation tool [10, 14]. This device simulation tool
was experimentally verified against numerous experimen-
tal results, including measured I-V characteristics of a
120 nm gate length In0.2Ga0.8As pseudomorphic [15], lat-
tice matched metamorphic HEMT [16], and a 50 mn gate
length In0.7Ga0.3As/InP HEMT [17].

The MC engine considers three anisotropic valleys
(Γ, L and X) with non-parabolic dispersion. The
simulations consider the electron scattering with po-
lar optical phonons, inter-valley and intra-valley optical
phonons, non-polar optical phonons, acoustic phonons,
interface roughness, interface phonons at the dielec-
tric/semiconductor interface, and ionized impurity scat-
tering using static screening. Furthermore, the alloy scat-
tering as well as strain effects on bandgap, electron ef-
fective mass, optical phonon deformation potential, and
energy are included in the device channel [14]. Details of
the MC simulation tool can be found in [10, 17, 18]. This
tool was adapted to include electron spin as a separate
degree of freedom of the electrons using the spin density
matrix ρ0(t) [19].

The spin state of a spin- 1
2 particle such as an electron

can be described by the density matrix

ρ0(t) =

(
ρ↑↑(t) ρ↑↓(t)
ρ↓↑(t) ρ↓↓(t)

)
, (1)

where ρ↓↑(t) = ρ↑↓(t)
∗ and ρ↑↑(t) + ρ↓↓(t) = 1. ρ↑↑ and

ρ↓↓ represent the probability of finding the electron in

either a spin up or spin down state and ρ↑↓ / ρ↓↑ represent
the coherence.

The evolution of the spin states of individual electrons
is governed by ρ(t) = U(t)ρ0U(t)† where U(t) is unitary
propagator satisfying the Schrödinger equation

ih̄
d

dt
U(t) = HU(t), U(0) = I. (2)

Here h̄ is the reduced Planck constant and H is the
Hamiltonian operator of the system, which we take to be
a spin-orbit interaction Hamiltonian consisting mainly
of two terms: (i) the simplified Dresselhaus Hamilto-
nian [19]

HD = β〈k2
y〉(kzσz − kxσx), k2

x, k
2
z � 〈k2

y〉, (3)

which accounts for spin-orbit coupling as a result of bulk
inversion asymmetry of the crystal, and (ii) the Rashba
Hamiltonian

HR = η(kzσx − kxσz), (4)

which accounts for spin-orbit coupling due to structural
inversion asymmetry of the quantum well. Here x is
taken to be the transport direction along the device chan-
nel and y the growth direction of the quantum well. Dis-
cretizing the equations, we obtain the update rule for the
density matrix,

ρ(t+ τ) = e−i(HR+HD)τ/h̄ρ(t)ei(HR+HD)τ/h̄. (5)

Using basic matrix algebra it can easily be shown that

e−i(HR+HD)τ/h̄ =

(
cos (|α|τ) i α|α| sin (|α|τ)

iα
∗

|α| sin (|α|τ) cos (|α|τ)

)
(6)

with

α = h̄−1[(ηkz − β〈k2
y〉kx) + i(ηkx − β〈k2

y〉kz)]. (7)

This shows that the evolution of the spin polarization
vector is equivalent to a rotation determined by the direc-
tion of the electron momentum. Our model neglects spin
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FIG. 2. Cross section of the 25 nm gate length, n-channel
In0.3Ga0.7As MOSFET.

FIG. 3. Id−Vg characteristic of the 25 mn gate length InGaAs
MOSFET.

flips due to impurity or phonon scattering, the Elliott-
Yafet mechanism, and spin relaxation caused by hyper-
fine coupling, based on the observation that Dyakonov-
Perel mechanism is the dominant source of spin relax-
ation in GaAs [8], although such effects could easily be
incorporated into the simulator.

The spin polarization vector ~s = (sx, sy, sz)
T is ob-

tained from sζ(t) = Tr(σζρ(t)), where σζ for ζ = x, y, z
are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (8)

The components of the spin polarizsation vector of the
current Sζ = 〈sζ(r, t)〉 are obtained by averaging the
components sζ(r, t) of the spin polarization vectors of all
electrons in a thin slice through the device channel (along
the direction of transport) located at position x = r at
time t. The magnitude ‖~s(r, t)‖ ≤ 1 defines the amount
of polarization, 1 being defined as 100% spin polarization
in the direction of ~s(r, t).

FIG. 4. Diagram showing the azimuthal (θ) and elevation (φ)
angles used for the rotational analysis. The injection direction
is mapped to the x′ axis.

III. SPIN TRANSPORT IN NANOSCALE
In0.3Ga0.7As MOSFET

We simulate spin transport in an In0.3Ga0.7As MOS-
FET with a gate length of 25 nm and a spacer of 26 nm
at room temperature (T = 300 K) as shown in Fig. 2.
This device consists of a 400 nm GaAs substrate, a
7 nm thick In0.3Ga0.7As channel, a 4.6 nm layer of high-
κ Ga2O3/(GdxGa1−x)2O3 (GGO, κ = 20) separating
the channel from a metal gate with a work function of
4.05 eV. The structure has a background uniform p-
type doping of 1× 1018 cm−3 and n-type peak doping
of 2× 1019 cm−3 in the S/D contacts. The Id − Vg char-
acteristics of the In0.3Ga0.7As MOSFET are shown in
Fig. 3 for comparison.

The source of the device was assumed to be ferromag-
netic such that electrons injected from the source into
the channel would be spin polarized. This process was
assumed to be 100% efficient for the sake of simplicity.
The electrons inside the channel were initialised such that
there was no net magnetization across the channel. The
simulation was then run with 100 000 super-particles with
gate voltages of 0.5 V to 0.9 V and source-drain voltages
of 0.5 V to 0.9 V, respectively in time steps of 1 fs for
a total time of 10 ps. For each time step, the average
polarization vector was calculated for the electrons con-
tained in 100 evenly spaced slices across the channel.
This entire process was repeated for three different in-
jected polarizsations. This was achieved by setting the
spin-polarization vector to be parallel to the x, y or z-axis
upon injection into the channel from the source reservoir.

To better understand the coherent rotation of the mag-
netization vector, we map the Bloch vector for each in-
jection case onto a common set of axes (denoted as x′,
y′ and z′) as shown in Fig. 4 and use spherical polar co-
ordinates. The injection direction is mapped to the x′

axis in all three cases and the two orthogonal directions
define the azimuthal (θ) and elevation (φ) angles. This
allows us to compare the rotation of the magnetization
vector at the drain relative to its initial state for various
injection directions and drain and gate voltages.
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(a) x component of magnetization (b) y component of magnetization (c) z component of magnetization

FIG. 5. Spatiotemporal evolution of the components of the magnetization vector for injection of Sx-polarized spins with applied
gate and source-drain voltages of 0.9 V each. x is the position along the channel with x = 0 being set at the end of the gate.

(a) Injection Sx-polarized. (b) Injection Sy-polarized. (c) Injection Sz-polarized.

FIG. 6. Components of magnetization vector vs position along the channel (averaged over 10 runs) taken at t = 8 ps, i.e., after
a steady state was reached, for different injection polarizations at the same gate (Vg) and source-drain voltage (Vd) of 0.9 V.

A. Steady-State Magnetization along Channel

Fig. 5 shows that the components of the magnetization
vector very quickly approach a steady state. Fig. 6 shows
the evolution of components of the magnetization vector
along the channel after a steady-state been reached for
three different injection polarizations. In all three cases,
the decay is not simply exponential, as might be expected
based on simple drift-diffusion model simulations. In
particular, we observe a magnetization recovery as we
approach the channel region at the drain side, which is
most pronounced when the injection polarization is in
the Sy-direction, i.e., in the growth direction.

For x-polarized injection (Fig. 6a) we see a high
Sx-polarization at the source-channel boundary (x =
−52 nm, which decreases non-uniformly as we cross the
channel from the source to the drain before recovering
slightly between the right edge of the gate (x = 0 nm)
and the drain, leading to a net magnetization at the left
edge of the drain (x = 26 nm) of ~s = (0.36, 0.25, 0.08).
Fig. 6b shows that the magnetization recovery is most
prominent for the Sy injection case where the magneti-
zation rises from a minimum of Sy = 0.01 at the right
gate edge to Sy = 0.28 at the left drain edge.

The component resolved plots also show that the po-

larization vector of the current undergoes a coherent ro-
tation as we move along the channel. For instance, in
Fig. 6a, the initial fall in the Sx-magnetization is accom-
panied by an increase in the Sy-component, and later an
increase in the Sz-component. As no external magnetic
fields are applied, to directly rotate the spin polarization
while the electrons are moving through the channel, this
effect must be attributed to spin-orbit coupling.

Indeed, scatter plots of the x and z components of the
Rasha and Dresselhaus spin-orbit coupling Hamiltonians

~H
(n)
R = (Tr(HRσx),Tr(HRσy),Tr(HRσz))

= 2η(kz, 0,−kx),

~H
(n)
D = (Tr(HDσx),Tr(HDσy),Tr(HDσz))

= 2β〈k2
y〉(−kx, 0, kz)

show that there is less scattering for the particles in the
gate region for the nth particle versus the x-position in
the channel in Figs. 7a and 7c, for one run of the Monte
Carlo simulator with Vg = 0.9 V and Vd = 0.5 V and
100, 000 particles. Furthermore, vector plots of the re-
spective single-electron Rashba and Dresselhaus Hamil-
tonian vectors averaged over all particles in thin slices
along the channel (Figs. 7b and 7d) shows that the aver-
age Hamiltonians are small away from the gate, but large
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(a) Rashba Field ~HR Scatter Plot (b) Rashba Field ~HD Vector Plot

(c) Dresselhaus Field ~HD Scatter Plot (d) Dresselhaus Field ~HD Vector Plot

FIG. 7. Scatter plot of x and z components of single electron Rashba and Dresselhaus Hamiltonians ~HR and ~HD vs position
of electron in the channel for a single Monte Carlo run (Vg = 0.9 V, Vd = 0.5 V) showing magnitude and distribution (left),
and corresponding Hamiltonian vectors averaged over all particles in thin slices along the channel direction x (right). Shading
indicates the position of the electrodes.

in the gate region. This suggests that the spin-orbit cou-
pling away from the gate mostly imparts random kicks to
the electron spins resulting in dephasing. However, in the
gate region, the strong electric field of the gate causes the
spin-orbit coupling to act more like a coherent rotation
of the electron spins.

B. Gate Voltage Dependence

Fig. 8 shows the total magnetization after a steady-
state has been reached for different gate voltages. It
suggests that lower gate voltages initially lead to faster

magnetization decay. The effect is most pronounced for
Sx-polarized injection (see Fig. 8a). A possible explana-
tion for this effect is that larger gate voltages induce a
high fringing electric field resulting in the electrons ex-
periencing more acceleration. Electrons thus reach the
gate faster and under fewer scattering events. However,
the situation is more complicated for the final magnetiza-
tion at the drain edge due to the magnetization recovery
between the gate and drain. This recovery is more pro-
nounced for lower gate voltages, possibly due to slower
moving electrons experiencing less deceleration as they
move toward the drain, giving the magnetization more
time to recover.
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(a) Injection x-polarized. (b) Injection y-polarized. (c) Injection z-polarized.

FIG. 8. Total magnetization versus position along the channel after steady-state has been reached at different gate voltages
(Vg) and a fixed source-drain voltage (Vd) of 0.9 V.

(a) Injection x-polarized. (b) Injection y-polarized. (c) Injection z-polarized.

FIG. 9. Polar plot of total magnetization vector at left drain edge (x = 25 nm) for varying gate voltages from 0.5 V to 0.9 V
and fixed source drain voltage 0.9 V. Filled shapes indicate azimuthal angle θ and open shapes the elevation angle φ.

(a) Total Magnetization (b) θ angle (c) φ angle

FIG. 10. Magnetization at left drain edge (x = 25 nm) as a function of gate voltage for fixed source drain voltage of 0.9 Vwith
linear regression fits to elucidate general trends.

Fig. 9 shows the azimuthal and elevation angles of the
magnetization vector at the drain edge, relative to the in-
jection polarization for different gate voltages. Fig. 10a
shows that the total magnetization at the drain edge is
linearly decreasing with the gate voltage for Sy and Sz-
polarized injection, while for Sx-injection there is a slight
net increase with increasing gate voltage. Fig. 10b fur-
ther shows that the azimuthal angle θ, indicating a ro-
tation in the Sx-Sy plane, increases linearly with the ap-

plied gate voltage for both Sx and Sy-injection while it
decreases for Sz-injection. For Sz-injection the azimuthal
rotation angle is greater but less sensitive to the gate
voltage. Fig. 10c shows that the elevation angle φ is al-
most constant as a function of gate voltage for Sx and
Sy-injection, but decreases linearly for z-injection.

The differences in the observed coherent rotation of the
magnetization as a function of the applied voltages can be
partially explained by changes in the strength of the spin-
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FIG. 11. Dependence of Rashba and Dresselhaus coupling on
source-drain and gate voltage.

orbit coupling. Fig. 11 shows that the Rashba coupling
constant increases with the applied voltages, while the
Dresselhaus constant is independent of the voltages.

C. Source-Drain Voltage Dependence

Fig. 12 shows the total magnetization after a steady-
state has been reached for different source-drain volt-
ages and fixed gate voltage of 0.9 V. The latter value
was chosen as the conventional 25 nm gate length MOS-
FET for digital applications would have to operate at
Vd = Vg − Vth = 0.9 V. It suggests that varying the
source-drain voltage for a fixed gate voltage does not
change the initial rate of magnetization decay between
the source and the gate but affects the magnetization
recovery between the gate and the drain.

Fig. 13 shows the azimuthal and elevation angles of the
magnetization vector at the drain edge, relative to the
injection polarization for different source-drain voltages
in a polar plot. Fig. 14a shows the total magnetization
and as well as its relative orientation at the left drain
edge, again after a steady-state has been reached, as a
function of the source-drain voltage. Both figures sug-
gest a moderate decrease in the total magnetization at
the drain edge with increasing source-drain voltage when
the gate voltage is kept fixed at 0.9 V, especially for Sx
and Sy injection. The total magnetization at the drain
edge is much lower for Sz-injection than for Sx or Sy
injection and effectively independent of the source-drain
voltage. Fig. 14b further suggests a linear decrease in
the azimuthal rotation angle for Sx and Sy, while for the
Sz-injection the values scatter around 21.5◦. Fig. 14c
suggests that the elevation angle φ is almost indepen-
dent of the source-drain voltage for a fixed gate voltage
of Vg = 0.9 V for Sz-injection, but shows a linear decrease

for the Sx and Sy injections.
Although the amount of variation in the observed ro-

tation of the magnetization vector as a function of the
source-drain and gate voltages is not huge, the simula-
tion results suggest that a certain amount of coherent
control of the magnetization vector is possible by adjust-
ing the gate and source-drain voltages alone, without any
need for external magnetic fields. The sensitivity to volt-
age changes also exhibits a dependence on the injection
polarization.

IV. EFFECT OF STRAIN ON SPIN
TRANSPORT

Mechanical strain alters the amount of Dresselhaus
coupling by changing the symmetry of the bulk crystal
and the quantum well. Thus, application of strain could
theoretically be a way to control the amount of spin-orbit
coupling and the magnetization at the drain. Alterna-
tively, measuring the magnetization of the drain current
could enable us to indirectly measure mechanical strain
in the device and form the basis for a nanoscale mechan-
ical strain sensor. To gain a better understanding of the
effects of mechanical strain on the values of η and β, we
calculate the electronic bandstructures of our device as
a function of mechanical strain. To this end we use the
~k · ~p method as it provides a good trade-off between ef-
ficiency and accuracy for bandstructure calculations for
bulk semiconductors and heterostructures [20–22].

A. The k · p Method

The method consists of calculating the band structure
in the vicinity of a given point in reciprocal-space for
which the band structure is known using the perturba-
tion theory. The use of this technique was first proposed
by Kane in 1957 [22] and included the lowest conduction
band (Γ6c) alongside the light hole, heavy hole (Γ8v) and
split off (Γ7v) valence bands. This has since been ex-
tended to include up to as many as 40 bands and can be
easily adapted to include the effects of spin-orbit coupling
and strain [21]. In our case we only need to consider 7
bands (14 with the inclusion of a spin), which is achieved
by including the next two conduction bands (the doublet
Γ7c and quadruplet Γ8c bands).

The Hamiltonian for this system is constructed follow-
ing the procedure used by Pfeffer and Zawadzki [23, 24].
We start with the general Schrödinger equation for an

electron wave function ψk with a wavevector ~k,

[H + V (r)]ψk(r) = E(k)ψk(r),

H =
p2

2m0
+

h̄

4m2
0c

2
(σ ×∇V ) · ~p,

(9)

where σ represents the vector of Pauli matrices and V (r)
is a periodic potential. We look for solutions to Eq. (9)
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(a) Injection Sx-polarized. (b) Injection Sy-polarized. (c) Injection Sz-polarized.

FIG. 12. Total magnetization versus position along the channel after steady state has been reached at different source-drain
voltages and a fixed gate voltage of 0.9 V.

(a) Injection Sx-polarized. (b) Injection Sy-polarized. (c) Injection Sz-polarized.

FIG. 13. Polar plot of total magnetization vector at left drain edge (x = 25 nm) for varying source drain voltages from 0.5 V
to 0.9 V and fixed gate voltage 0.9 V. Filled shapes indicate azimuthal angle θ and open shapes the elevation angle φ.

(a) Total Magnetization (b) θ angle (c) φ angle

FIG. 14. Magnetization at the left drain edge (x = 25 nm) as a function of source-drain voltage for a fixed gate voltage of 0.9 V
with linear regression fits to elucidate general trends in the data.

of Luttinger-Kohn form [25],

ψmk (r) = eik·r
∑
l

cml ul(r), (10)

where the summation is over all bands and the index m
indicates the band of interest. The L-K periodic ampli-
tudes satisfy Eq. (9) at a band’s extremity (k = 0 in our
case) and are orthonormal such that

(
1
Ω

)
〈ui′ |ul〉 = δl′l

where Ω is the unit cell over which the integration is tak-
ing place. Thus, by substituting Eq. (10) into Eq. (9),
multiplying the left hand side by

(
1
Ω

)
u(r)∗ and integrat-

ing over the unit cell, we obtain

∑
l

[
(E(l) +

h̄2k2

2m0
− E)δl′l +

h̄

m0
k · pl′l +Hs.o

l′l

]
cml = 0,

(11)
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(a) Unstrained case. (b) 4% strain in direction [001].

(c) 4% strain in direction [110]. (d) 4% strain in direction [111].

FIG. 15. Band structures for In0.3Ga0.7As calculated using ~k · ~p method with different mechanical strain.

where the index l′ runs over all the bands, E(l) is the
band energy and pl′l represents the inter-band matrix
elements.

Finally, we must account for the effects of the interac-
tions with far-level bands. This is achieved by using the
method developed by Lowdin [26, 27], which uses a com-
bination of perturbation theory for the quasi-degenerate
levels and the far-levels. Several additional Hamiltonian
parameters are required to account for this. We use the
procedure outlined in Pfeffer and Zawadzki [24], which in-
cludes the diagonal contributions to the conduction Γ6c

band, the contributions to the Luttinger valence γl pa-
rameters, and the linear k terms, while all other far-level
terms are neglected for simplicity. We use γi to represent

the modified Luttinger parameters, where the ~k · ~p inter-
action of the Γ8v level with the Γ6c, Γ8c and Γ7c levels
are subtracted, since they are included explicitly in the
matrix.

With this in mind, we construct the Hamiltonian for
the system by careful selection of basis functions for each
band of interest, defined in Table I. These basis functions
are chosen deliberately to exploit orbital symmetries as
for III-V semiconductors the Γ6c conduction band con-
sists of electrons from s-type orbitals while the valence
bands Γ8v and Γ7v and the two remaining conduction
bands Γ8c and Γ7c consist of electrons from p-type or-
bitals and only inter-band interactions of opposite parity
will produce non-zero results. Thus we greatly reduce
the number of parameters needed to calculate the band
structure such that the only non-zero momentum matrix
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Band Basis function Energy
Γ6c |S ↑〉 0

|S ↓〉 0
Γ8v − 1

2
|(X + iY ) ↑〉 −E0

1
2
|(X + iY ) ↓〉 −E0√

2
3
|Z ↑〉 − 1√

6
|(X + iY ) ↓〉 −E0√

2
3
|Z ↓〉+ 1√

6
|(X + iY ) ↑〉 −E0

Γ7v − 1√
3
|Z ↑〉 − 1√

3
|(X + iY ) ↓〉 −(E0 + ∆0)

1√
3
|Z ↓〉 − 1√

3
|(X + iY ) ↑〉 −(E0 + ∆0)

Γ8c − 1
2
|(X ′ + iY ′) ↑〉 E′0 − E0 + ∆0

1
2
|(X ′ + iY ′) ↓〉 E′0 − E0 + ∆0√

2
3
|Z′ ↑〉 − 1√

6
|(X ′ + iY ′) ↓〉 E′0 − E0 + ∆0√

2
3
|Z′ ↓〉+ 1√

6
|(X ′ + iY ′) ↑〉 E′0 − E0 + ∆0

Γ7c − 1√
3
|Z′ ↑〉 − 1√

3
|(X ′ + iY ′) ↓〉 E′0 − E0

1√
3
|Z′ ↓〉 − 1√

3
|(X ′ + iY ′) ↑〉 E′0 − E0

TABLE I. Basis functions and energies for 14-band ~k ·~p model
[8].

elements are given by

P0 = h′ 〈Sσ| px |Xσ〉 = h′ 〈Sσ| px |Y σ〉
= h′ 〈Sσ| px |Zσ〉 ,

P1 = ih′ 〈X ′| px |S〉 = ih′ 〈Y ′| py |S〉 = ih′ 〈Z ′| kz |S〉 ,
Q = h′ 〈X| py |Z ′〉 = −h′ 〈X| py |Z ′〉 ,

∆− = − 3h′

4m∗
〈X| [(∇V0)× p]y |Z ′〉

= 3h′

4m∗
〈Z| [(∇V0)× p]y |X ′〉

with h′ = h̄/m0 and m∗ = m0c
2. These elements can be

taken as phenomenological parameters that can be de-
termined experimentally. From these values, the Hamil-
tonian for the system can be constructed as a 14 × 14
matrix, which is given explicitly in Appendix A.

To adapt this Hamiltonian to account for the effects
of mechanical strain on the system, we follow Pikus and
Bir [27]. The method consists of adding an extra term
to each element of the unstrained Hamiltonian created
by replacing kxky (and it’s circular permutations) with
the component of the strain tensor εxy and the Luttinger
parameters with deformation potentials. Thus, the to-
tal system Hamiltonian is given by H = H0 + Hε. Hε

is given explicitly in Appendix B. As the influence of
strain on the p-type conduction bands (Γ7c and Γ8c) is
currently unknown, the p-type conduction band hydro-
static deformation potential (aΓ7c

and aΓ8c
) and p-type

CB shear deformation potential (bΓ7c
and bΓ8c

) are ne-
glected. The results of our bandstructure calculations for
different levels and types of strain are shown Fig. 15.

Finally, with the parameters gained from these calcula-
tions, we estimate the Dresselhaus and Rashba constants

based on Eqs. (13) and (14),

β =
4P0P1Q

3

[
1

E0G0
− 1

(E0 + ∆0)(G0 + ∆′0)

]
− 4P 2

0Q∆−

9E0(E0 + ∆0)

[
2

G0
+

1

G0 + ∆′0

]
− 4P 2

1Q∆−

9G0(G0 + ∆′0)

[
1

E0
+

2

E0 + ∆0

]
,

(13)

η =
1

3

[
P 2

0

(E0 + ∆0)2
− P 2

0

E2
0

+
P 2

1

G2
0

− P 2
1

(G0 + ∆′0)2

]
dVext

dy

−2P1P0∆−

9

[
1

E0(G0 + ∆′0)2
− 1

E2
0(G0 + ∆′0)

− 2

G0(E0 + ∆0)2
+

2

G2
0(E0 + ∆0)

]
dVext

dy
(14)

and by extension the change in spin-orbit coupling with
respect to mechanical strain.

B. Spin-Orbit Coupling of Strained Device

We integrate the method presented in the previous sec-
tion with our simulation techniques to include the effects

of mechanical strain by first conducting ~k · ~p calculations
for compressive strain in the [001], [110] and [111] crystal-
lographic directions. This is achieved by taking a small
change in the lattice spacing as of between 0 and 4 per-
cent of the unstrained lattice constant a0. With this we
have calculated the strain in the direction of the applied
force as e‖ = as

a0
− 1 and the strain in the perpendic-

ular direction as e⊥ = −D[hkl]e‖ where h, k and l are
the Miller indices for the direction of the strain. The
direction of the strain has been then accounted for by
modifying the strain tensor ehkl as follows

e001 =

e1 0 0
0 e1 0
0 0 e1

 , (15)

e111 =

e2 e3 e3

e3 e2 e3

e3 e3 e2

 , (16)

e110 =

e4 e5 0
e5 e4 0
0 0 e1

 , (17)

where

e1 = e‖, (18a)

e2 = 1
3 (e⊥ + 2e‖), (18b)

e3 = 1
3 (e⊥ − e‖), (18c)

e4 = 1
2 (e⊥ + e‖), (18d)

e5 = 1
2 (e⊥ + e‖) (18e)
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(a) Strain in direction [001]. (b) Strain in direction [110]. (c) Strain in direction [111].

FIG. 16. Spin-orbit coupling constants η and β as a function of strain ranging from 0% to 4% for three different strain directions.
η has been calculated for Vg = 0.9 V corresponding to an average electric field of 3.6× 108 V/m.

(a) Strain in direction [001]. (b) Strain in direction [110]. (c) Strain in direction [111].

FIG. 17. Magnetization along the device channel vs. strain ranging from 0% to 4% for three different strain directions, taken
after a steady state was reached at t = 8 ps for a gate and source-drain voltage of 0.9 V for x-injection for indicated Dresselhaus
(β) and Rashba (η) spin-orbit coupling constants.

(a) Total magnetization at drain (b) Azimuthal angle at drain (c) Elevation angle at drain

FIG. 18. Steady state magnetization at drain as a function of strain along different axis (x-injection, VD = VG = 0.9 V) with
nonlinear spline fits to serve as a guide to the eye in elucidating trends in the data.

and the coefficients D[hkl] are given by

D[001] =
2C12

C11
, (19a)

D[110] =
C11 + 3C12 − 2C44

C11 + C12 + 2C44
, (19b)

D[111] =
2C11 + 4C12 − 4C44

C11 + 2C12 + 4C44
. (19c)

From this, we extract the new inter-band energies for the
strained system E′0 and E′1 (by extension G′0 and G′1)
and use these to calculate the change in spin-orbit cou-
pling parameters β and η via Eqs. (13) and (14). Finally,
these new constants are inserted into our Monte Carlo
simulation to investigate the effects of strain on the spin
transport across the device.
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C. Effect of Strain on Magnetization

Fig. 16 shows the results for the Dresselhaus and
Rashba spin-orbit coupling constants. Both increase non-
linearly with strain due to the change in energy gap
between the Γ6c and Γ7v bands at the Gamma point
E0. The results of using these constants with the overall
Monte Carlo simulations for the MOSFET device intro-
duced in Section III are shown in Fig. 17. We see that the
direction and strength of the strain has a direct impact
on the amount of decay and recovery seen at the drain.

For strain in the [001] direction with Sx injection
(Fig. 17a), a steady decrease in magnetization occurs
when moving from the source to the drain, although at
lower rates for stronger strain, with a recovery of mag-
netization at the drain. With increasing strain the mag-
netization at the drain increases from a value of 0.36 in
the unstrained case to 0.64 for 4.0% strain. It should be
noted, however, that the rate of spin recovery appears
to decrease with increasing strain. The unstrained case
gives rise to an increase in magnetization of 0.13 from the
lowest value whilst 4.0% strain gives rise to a recovery of
only 0.02 from the lowest value. The increased magne-
tization at the drain is likely due to the decrease in the
overall decay.

Fig. 17b shows similar results for strain in the [110]
direction. An increase in strain leads to a decrease in the
amount of magnetization decay across the channel and an
increase at the drain. Again, much like the previous case,
the rate of recovery decreases with increasing strain, with
the unstrained case yielding a recovery of 0.13 whilst the
4.0% case only yields a recovery of 0.07.

The result is notably different for increasing strain in
the [111] direction, shown in Fig. 17c. The increased
spin-orbit coupling in this case has little effect on the
total magnetization at the drain edge as the differences
between the curves fall within the variance of the sim-
ulations. The magnetization still recovers at the drain,
roughly by the same amount of 0.13.

Fig. 18a shows the total magnetization at the drain as
a function of strain for different strain directions, show-
ing a non-linear increase for strain in the [001] and [110]
directions, but no significant variation for strain in the
[111] direction. Fig. 18c, showing small fluctuations of
the elevation angle φ around 1◦ for all three strain di-
rections, suggests that the elevation angle φ is not sig-
nificantly affected by strain. Fig. 18b, however, shows
a non-linear increase of the azimuthal rotation angle θ
with strain for all strain directions, including the [111]
direction, which shows no significant change in the total
drain magnetization for increasing strain. This suggests
that the azimuthal rotation angle of the magnetization
vector may be the best measure of overall strain.

V. CONCLUSIONS

Ensemble Monte Carlo device simulations of electron-
spin transport across a realistic structure of a 25 nm gate
length In0.3Ga0.7As MOSFET show that the total mag-
netization and orientation of the magnetization (repre-
sented by the length and direction of the Bloch vector
associated with the spin degrees of freedom) can be con-
trolled via the gate voltage. We also observe a spin recov-
ery between the gate and the drain, which may be due
to a spin refocusing effect induced by the high electric
fringing field at the gate [14]. If experimentally verified,
this recovery could be exploited in devices to counter the
spin decay that such devices would otherwise suffer.

We also investigated the effects of mechanical strain
on the evolution of the magnetization showing that the
spin transport is sensitive to strain; larger strain leads
to reduced magnetization decay when moving across the
channel, dependent on the strain direction. The magneti-
zation vector also undergoes a coherent rotation between
the source and the drain due to spin-orbit coupling. Sig-
nificantly, the azimuthal rotation angle exhibits a non-
linear increase with the amount of strain for all strain
directions. This effect has the potential for use in an elec-
tronic molecular-strain sensor as, in principle, injecting
polarized spins into the channel and monitoring magneti-
zation at the drain provides an indirect measure of strain
acting on the device channel.
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Appendix A: Hamiltonian for Extended Kane Model

The Hamiltonian H0 for the 7-band system described
in Section IV A is given by the matrix [24, 28]

H0 =

 Hc Hcv Hcc′

Hvc Hv Hvc′

Hc′c Hc′v Hc′

 . (A1)

Setting Ev = V (r) − E0, Ec′ = V (r) + E′0 and k± =
kx ± iky, Hcc′ and Hc′v are obtained by the transposi-
tion of Hc′c and Hvc′ , respectively, with the following
substitutions: k± → k∓, P1 → −P1, Q → −Q and
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∆− → −∆−, where

D = h̄2γ1
2m0

(k2
x + k2

y + k2
z), (A2a)

G = h̄2γ2
2m0

(k2
x + k2

y − 2k2
z), (A2b)

S = h̄2γ3
m0

√
3(kx − iky)kz, (A2c)

R = h̄2

2m0

[
−
√

3γ2(k2
x − k2

y) + i2
√

3γ3kxky

]
. (A2d)

The elements of Eq. (A1) are

Hc =

(
h̄2k2

2m0
+ V (r) 0

0 h̄2k2

2m0
+ V (r)

)
, (A3a)

Hvc =
1√
6


−
√

3P0k− 0
2P0kz −P0k−
P0k+ 2P0kz

0
√

3P0k+

−
√

2P0kz −
√

2P0k−
7−
√

2P0k+

√
2P0kz

 , (A3b)

Hcv =

− 1√
2
P0k+

√
2
3P0kz

1√
6
P0k− 0 − 1√

3
P0kz − 1√

3
P0k−

0 − 1√
6
P0k+

√
2
3P0kz

1√
2
P0k− − 1√

3
P0k+ − 1√

3
P0kz

 , (A3c)

Hcc′ =

− i√
2
P1k+ i

√
2
3P1kz

i√
6
P1k− 0 − i√

3
P1kz − i√

3
P1k−

0 − i√
6
P1k+ i

√
2
3P1kz

i√
2
P1k− − i√

3
P1k+

i√
3
P1kz

 , (A3d)

Hv =



(D +G) + Ev 0 −S R − S√
2

√
2R

0 (D +G) + Ev R+ S+ −
√

2R+ −S
+
√

2

−S+ R (D −G) + Ev S −
√

2G
√

3
2S

R+ S S+ (D −G) + Ev

√
3
2S

+
√

2G

−S+
√

2
−
√

2R −
√

2G+
√

3
2S D + Ev −∆0 0

√
2R −S√

2

√
3
2S

+
√

2G+ 0 D + Ev −∆0


, (A3e)

Hvc′ =



i
3∆− i√

3
Qk+

i√
3
Qkz 0 − i√

6
Qk+ −i

√
2
3Qkz

− i√
3
Qk−

i
3∆− 0 i√

3
Qkz 0 i√

2
Qk+

− i√
3
Qkz 0 i

3∆− − i√
3
Qk+ − i√

2
Qk− 0

0 − i√
3
Qkz

i√
3
Qk−

i
3∆− −i

√
2
3Qkz

i√
6
Qk−

i√
6
Qk− 0 i√

2
Qk+ i

√
2
3Qkz − 2i

3 ∆− 0

i
√

2
3Qkz −

i√
2
Qk− 0 − i√

6
Qk+ 0 − 2i

3 ∆−


, (A3f)

H ′c =



h̄2k2

2m0
+ Ec′ + ∆′0 0 0 0 0 0

0 h̄2k2

2m0
+ Ec′ + ∆′0 0 0 0 0

0 0 h̄2k2

2m0
+ Ec′ + ∆′0 0 0 0

0 0 0 h̄2k2

2m0
+ Ec′ + ∆′0 0 0

0 0 0 0 h̄2k2

2m0
+ Ec′ 0

0 0 0 0 0 h̄2k2

2m0
+ Ec′


. (A3g)
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The γi represent modified Luttinger parameters from

which the ~k·~p interaction of the Γ8v level with the Γ6c, Γ8c

and Γ7c levels has been subtracted since the interaction
is included explicitly in the matrix. The γi are given by

γ1 = γL1 +
Ep0
3E0
− EQ

3(E′0−E0) −
EQ

3(E′0−E0+∆′0) , (A4a)

γ2 = γL2 +
Ep0

6E−0 −
EQ

6(E′0−E0) , (A4b)

γ3 = γL3 +
Ep0

6E−0 −
EQ

6(E′0−E0) . (A4c)

Appendix B: Bir and Pikus Strain Hamiltonian

The strain Hamiltonian Hε for the seven band system
described in Section IV A is given by [27, 28]

Hε =

 Hc Hcv 02×6

Hvc Hv 06×6

06×2 06×6 06×6

 (B1)

where Hvc = H†cv. Setting Aε = ac(εxx + εyy + εzz),

v = P0√
6

∑
j(εxj − iεyj) and u = P0√

3

∑
j εzj we have

Hc =

(
Aε 0
0 Aε

)
,

Hcv =

(√
3v† −

√
2u −v 0 −u −

√
2v

0 v† −
√

2u −
√

3v
√

2v† u

)
and setting

Dε = −av(εxx + εyy + εzz),

Gε = −b(εxx + εyy − 2εzz)/2,

Sε = −d(εxz − iεyz),

Rε =
√

3
2 b(εxx − εyy)− idεxy

we have

Hv =



(Dε +Gε) 0 −Sε Rε − Sε√
2

√
2Rε

0 (Dε +Gε) R†ε S†ε −
√

2R†ε − S†ε√
2

−S†ε Rε (Dε −Gε) Sε −
√

2Gε

√
3
2Sε

R†ε Sε S†ε (Dε −Gε)
√

3
2S
†
ε

√
2Gε

−S†ε√
2

−
√

2Rε −
√

2G†ε

√
3
2Sε Dε −∆0 0

√
2Rε

−Sε√
2

√
3
2S
†
ε

√
2G†ε 0 Dε −∆0


.
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