
Abstract

We augmented an ensemble Monte-Carlo semiconductor device simulator [3] to incorporate electron spin degrees of
freedom using a Bloch equation model to investigate the feasibility of spintronic devices. Results are presented for the
steady state polarization and polarization decay due to scattering and spin orbit coupling for a III-V MOSFET device as a
function of gate voltages, injection polarization and strain.

1. Theory

Following [4] we augmented a conventional Monte Carlo simulation of a InAlAs/InGaAs HEMT to incorporate electron
spin.

Spin states described by the spin density matrix ρ0(t) given by ρ0(t) =

(
ρ↑↑(t) ρ↑↓(t)
ρ↓↑(t) ρ↓↓(t)

)
Where ρ↑↑ and ρ↓↓ are the probabilities of finding an electron in a spin up or spin down state and the diagonal elements
ρ↑↓ and ρ↓↑ represent the coherence.
ρ can be parametrised by a spin polarisation vector ~Sr = (sx, sy, sz) = Tr(σrρ(t)) where r = x, y, z and σr represents the
Pauli matrices.
Spin polarisation vector of the current ~Sr = 〈 ~Sr(r, t)〉 was obtained by averaging the components of the spin polarisation
vectors of all electrons in a thin slice through the device channel located at position x = R at time t.
The magnitude |~S(R, t)| ≤ 1 defines the amount of polarisation, with 1 being defined as 100% spin polarisation in the
direction of ~S(R, t).
Spin-orbit Coupling. Dyakonov-Perel-type spin dephasing was modelled using interaction Hamiltonians. For a structure
grown in the [0,0,1] direction, where x is the transport direction along the channel, z is the growth direction orthogonal to
the quantum well and αbr and Γ are material dependant constants:

• Dresselhaus: spin coupling to an electric field due to bulk asymmetry in the crystal

HD = Γ〈k2
y〉(kzσy − kxσx) (1)

• Rashba: asymmetry in the potential due to the presence of a quantum well

HR = αbr(kzσx − kxσz) (2)

Evolution of spin polarization vector. Rotation determined by the direction of the electron momentum

ρ(t + τ ) = e−i(HR+HD)τ/h̄ρ(t)ei(HR+HD)τ/h̄. (3)

This exponential operator can then be written as a 2× 2 scattering matrices

e−i(HR+HD)τ/h̄ =

(
cos (|α|τ ) i α|α| sin (|α|τ )

iα
∗

|α| sin (|α|τ ) cos (|α|τ )

)
(4)

where: α = h̄−1[(ηkz − β〈ky〉kx) + i(ηkx − β〈ky〉kz)]
Our model neglects spin flips due to impurity or phonon scattering, the Elliott-Yafet mechanism, and spin relaxation
caused by hyperfine coupling, based on the observation that Dyakonov-Perel mechanism is the dominant source of spin
relaxation in Ga As[2] although such effects could easily be incorporated into the simulator.

2. Method

The spin-augmented device simulator was used to simulate spin transport in an In0.3Ga0.7As MOSFET similar to those
used in [3] (see Figs 1(a) and 1(b)). The spin orbit coupling constants β = 2.681eV nm3 and η = 0.768eV nm for the
unstrained case were obtained from the ~k · ~p calculations detailed in Section 4.
The electrons were initially randomly polarised with the Bloch vectors evenly distributed across a sphere in real space
such that there was initially no net magnetisation in the device. We then injected x, y and z polarised spins at the source
and measured the average temporal and spatial distributions of the components of the Bloch vector across the device.
This was done at a temperature of 300K for gate voltages varying between threshold and saturation for each device.
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Figure 1: (a) 3D model of In0.3Ga0.7As MOSFET device showing spin polarisation of electrons along n-channel with
4% strain in the [001] direction (Red) and unstrained (Purple). (b) Cross section of the 25-nm gate length, n-channel
In0.3Ga0.7As MOSFET

3. Spin Transport Simulation Results

( a ) I-V characteristic
( b ) confinement potential

Figure 2: Plots of the I-V characteristic and confinement potential obtained from the III-V MOSFET simulation.
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Figure 3: Magnetisation |S| at the drain edge (x = 26nm see Figure 1(b)) and azimuth angle θ (rotation in the x-y plane)
as a function of gate voltage.

( a ) Magnetization Vs Gate voltage ( b ) Magnetization Vs Source-Drain Voltage

Figure 4: Magnetization vs position along the channel for varying Gate and Source-Drain voltages for x-polarised spin
injection taken at t = 8ps, i.e. after a steady state was reached.

Figure 5: Rashba and Dresselhaus mean field vectors HR and HD , obtained by averaging over all particles in thin slices
across the channel for a single Monte Carlo run (VG = 0.9V , VD = 0.5V ). The z-axis is in plane perpendicular to the
channel but for the vector plots the axes have been rotated so that Hz is in the vertical direction for visual clarity.

4. Strain effects

The effects of mechanical strain on the spin were investigated by means of ~k · ~p band-structure calculations.
~k · ~p method: Efficient and accurate method for calculating band structures of many different semiconductor materials
for both bulk and heterostructures.
This method involves using Lodwin perturbation theory to solve the Schrdinger equation about a point of high symmetry
for a finite number of bands, accounting for the contribution from band interactions using physical parameters called Kane
parameters and far band contributions with Luttinger parameters obtained from experimental data.
Adaptation for strain: Following Bir, Pirkus and Bahder [1]. An extra term is added to each element of the unstrained
Hamiltonian created by replacing kxky (and it’s circular permutations) with the component of the strain tensor εxy and the
Luttinger parameters with deformation potentials.
Spin-Orbit Coupling: After calculating the band energies as a function of applied strain, The Dresselhaus and Rashba
constants can be approximated using the inter-band energies at the Γ point along with 3 Kane parameters [2].
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Figure 6: Magnetisation |S| at the drain edge (x = 26nm see Figure 1(b)) and azimuth angle θ (rotation in the x-y plane)
as a function of applied uniaxial strain in the [001], [110] and [111] directions.

We investigated the effects of strain by calculating the change in spin orbit coupling for applied strain in three crystal-
lographic directions [001], [110] and [111] corresponding to a lattice difference of between 0 and 4% of the unstrained
lattice, the results from this are plotted in Figure 6.

5. Conclusion and Outlook

We have demonstrated the successful inclusion of electron spin into a realistic model of a transistor.
Figure 4 shows that the average magnetisation starts off at a high value at the source which rapidly decays as the elec-
trons pass through the channel, followed by a partial magnetization recovery due to spin refocusing as the electrons slow
down to enter the drain.
From Figure 4(a) we see the magnetisation is sensitive to changes in gate voltages and to a lesser extent source-drain
voltage this gives us a potential handle for control as the amount of magnetisation detected at the drain can be controlled
by varying the gate voltage .
Mechanical strain also has large effect on the spin as increasing the strain changes the symmetries of both the lattice and
quantum well increasing the amount of spin orbit coupling. This strain sensitivity has the potential to be used in a sensor
whereby measuring the spin at the drain gives an indirect measure of the amount of molecular strain in the channel.
Future work is now under way to investigate spin-transport in different materials such as Si and the effects of low tem-
peratures on the magnetisation decay and recovery.
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