Modelling, Optimization & QA for Magnetic Resonance Spectroscopy

Chris Jenkins¹, Max Chandler², Frank Langbein², Sophie Shermer¹

¹College of science, Swansea university, Swansea, SA2 8PP ²School of computer science & informatics, Cardiff university, Cardiff, CF24 3AA

Swansea University Prifysgol Abertawe

College of Science Coleg Gwyddoniaeth

Motivation

In-vivo magnetic resonance spectroscopy (MRS), can potentially give information on the chemical level – allowing quantification of relative concentrations of chemical biomarkers of disease. However, using standard single voxel spectroscopy sequences such as PRESS (Fig1) we find in-vivo spectra to be a convolution of many constituent signals (Fig2), and separating them into their components is not always possible.

Editing - MEGA-PRESS

MEshcher-GArwood Point RESolved Spectroscopy (MEGA-PRESS) is a J-difference editing technique for MRS.

- > Exploits structure of targets to allows detection of previously obscured peaks
- Limited applicability This technique can't be applied to all situations

Tissue mimicking phantoms

Fig6 -Spherical spectroscopy phantom (left) and plain agar phantom for calibration (right)

- We want phantoms to have:
- Same spectroscopic features as real tissue.
- > In-vivo ranges of $T_1 \& T_2$ values.
- ≻Long shelf lives to enable to repeat measurements on the same phantom.
- ≻Characterised and consistent properties that allow calibration of sequences

Signal of individual metabolites is obscured by overlapping signals of other molecules.

2D Spectroscopy

- Enables resolution of overlapping peaks and **J-coupling** by acquiring several spectra, varying a single parameter as shown in (Fig3).
- > Many individual acquisitions add up to a long scan time - generally too slow for in vivo use.
- Difficult to interpret Variation in parameter space could have many causes - coupling, relaxation, etc.

Fig4 - MEGA-PRESS for a range of metabolite phantoms.

Optimised pulses

Optimisation enables us to find pulses that can exploit minor differences in chemical shifts and couplings of molecules to discriminate.

- Flexible Many potential applications in MR
- Fast No need for multiple acquisitions
- Requires experimental verification

Fig5 - Spectra resulting from 90 pulse (left), and optimised pulse (right). Notice separation of features.

Calibration and testing

Experimental verification of these controls requires careful calibration and testing. We need to test in tissue mimicking phantoms.

- \succ Essential for validation of pulses.
- ≻Known tissue composition Allows verification of pulses. This is not possible invivo!

Fig7 - Relaxometry fits TR (left) & TE (right), for characterisation of relaxation properties

Modelling

The controls produced by optimisation are only as good as the models used for simulation!

Experimental GABA spectra below show that *peaks are shifted* by 0.12 ppm compared to standard NMR models used e.g. by TARQUIN.

Fig8 - Simulated GABA spectrum (red), fitted over experimental data. Uncoupled model of 6 Hydrogens shown in image.

Future work

 \succ Modelling of tissue mimicking phantoms.

 \succ Generation of new pulses from these models.

≻ Reproducibility – The results need to be reproducible!

>Also allows optimisation of existing protocols

 \succ Experimental verification of pulses.

► Identification of new targets. Have a target in mind? We would like to collaborate!

References & acknowledgements

Solvent suppression using selective echo dephasing. Mescher M, Tannus A, O'Neil Johnson M, Garwood M. J Magn Reson A 1996 > Proton NMR chemical shifts and coupling constants for brain metabolites. Govindaraju V, Young K, Maudsley AA NMR Biomed. 2000 > Design and Characterization of Tissue-Mimicking Gel Phantoms for Diffusion Kurtosis Imaging. Portakal Z G, Shermer S, Spezi E, Perrett T, Tuncel N , Phillips J

Scans performed at Swansea Clinical imaging facility

Bwrdd Iechyd Prifysgol Abertawe Bro Morgannwg University Health Board

Research Council

Engineering and Physical Sciences

CARDIFF UNIVERSITY

