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In-vivo magnetic resonance spectroscopy MEshcher-GArwood Point RESolved Spherical
(MRS), can potentially give information on the Spectroscopy (MEGA-PRESS) is a J-difference srl)lecttroscapgt |
chemical level - allowing quantification of editing technique for MRS. . ) bnd plain agar
relative concentrations of chemical biomarkers A% phantom for
of disease. However, using standard single > Exploits structure of targets to allows fggﬁ?mn
voxel spectroscopy sequences such as PRESS detection of previously obscured peaks
(Figl) we find in-vivo spectra to be a Wi ¢ ohant ‘o h
convolution of many constituent signals (Fig2), > Limited applicability - This technique can't € wall phantoms to have:
and separating them into their components is be applied to all situations . _ .
not always possible. Same spectroscopic features as real tissue.
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5 8000 Myt | Optimised pulses of relaxation properties
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2 ool Lactate i exploit minor differences in chemical shifts
T U and couplings of molecules to discriminate. The controls produced by optimisation are only
2000 GLX . _ o , as good as the models used for simulation!
> Flexible - Many potential applications in MR
45 4 35 fiequer@ (ppmz’) 1.5 1 05 . , o Experimental GABA spectra below show that
Fast - No need for multiple acquisitions peaks are shifted by 0.12 ppm compared to
. o o , , . , standard NMR models used e.g. by TARQUIN.
Signal of individual metabolites is obscured by > Requires experimental verification
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. .. c ey Figb - Spectra resulting from 90 pulse (left), and optimised pulse

scan time - generally too slow for in vivo use.
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» Difficult to interpret - Variation in parameter s " gl
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space could have many causes - coupling, Experimental verification of these controls Frequency (ppm) Frequency (ppm) Frequency (ppm)
relaxation, etc. requires careful calibration and testing. We Fig8 - Simulated GABA spectrum (red), fitted over experimental
Xﬂé need to test in tissue mlmlckmg phantoms. data. Uncoupled model of 6 Hydrogens shown in image.
2 »Essential for validation of pulses. Future work
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S . . .
8 > Known tissue Composjtjon - Allows >Mode111ng of tissue mlmlckmg phantoms.
T 21 ..fgm. verification of pulses. This is not possible in-
B vivo! » Generation of new pulses from these models.
0.
300 A : : :
. » Reproducibility - The results need to be » Experimental verification of pulses.
= s reproducible!
T (ms) 0 ' » Identification of new targets. Have a target in
£ v (ppm) > Also allows optimisation of existing protocols mind? We would like to collaborate!

Fig3 - T_series for QA spectroscopy phantom.
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» Scans performed at Swansea Clinical imaging facility

CARDIFF

E PSRC G

PRIFYSGOL
Engineering and Physical Science CAERDY@

=~
£
[

Swansea University
Prifysgol Abertawe

Q G IG Bwrdd lechyd Prifysgol

0L7° Abertawe Bro Morgannwg
University Health Board

[l THE ROYAL
@ISR SOCIETY

L3




	Slide 1

