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Spintronics
Semiconductor electronics has revolu-

tionised technology. Exploiting electron

spin in metals and especially semicon-

ductors may give rise to a technological

revolution on a similar scale with appli-

cations from spin transistors to quantum

sensors and quantum computing:

• Novel and interesting physical phenomena,

• Many immediate applications (spin diodes, spinFET, etc),

• Promising longer term applications including novel sensors

(e.g. nanoscale strain sensors), information processing and

quantum simulation,

• Bridge between quantum 2.0 and semiconductor technology,

• Potential quantum technology operating at room tempera-

ture.

The realisation of spintronic applications relies heavily on mag-

netic semiconductor materials with suitable properties. In

particular, dilute magnetic semiconductors, such as Mn doped

GaN,show great promise of high Curie temperatures (220K-

370K), exceeding room temperature, and a large concentration

of holes.

Simulating Spin Transport in a FET
A realistic device simulator to explore spin transport in a com-

pound semiconductor transistor with magnetic gates shows:

• Non-uniform decay of magnetisation between source and

drain,

• Magnetisation recovery effect due to spin refocusing,

• Magnetisation of the drain current is strain-sensitive,

• Coherent control of the spin polarisation of the drain current via

source-drain and gate voltages.

In0.3Ga0.7As MOSFET

Electron spin polarisation with (red) and without (purple) strain and cross

section.

A Monte Carlo simulation of an InAlAs/InGaAs HEMT was aug-

mented to incorporate electron spin:

• Dyakonov-Perel-type spin orbit coupling (dominant in GaAs)

spin dephasing was modelled using interaction Hamiltonians.

• Dresselhaus effect: spin coupling to an electric field due to bulk

asymmetry in the crystal.

• Rashba effect: asymmetry in the potential due to the presence

of a quantum well.

Simulation Results

Magnetisation Refocusing

All Electrical Coherent Control

Strain Dependence of Magnetisation

Promising simulation results have prompted exploration of mag-

netic materials at room temperatures to realise such devices.

Spin-Polarised Carriers
Spintronics requires spin-polarised carriers (electrons), typically

present in ferromagnetic materials such as

• some pure metals (Ni,Co, Fe) or

• rare-earth alloys (e.g. Nd2Fe14B).

Semiconductors (Si, GaAs, GaN) are normally diamagnetic but can

become

• paramagnetic when doped with paramagnetic atoms, under the

right conditions;

• ferromagnetic, maintaining magnetisation (spin polarisation)

in the absence of an external B-field below Curie temperature

TC.

Compound semiconductors, such as GaAs and GaN, doped with Ni,

Co, Mn or Cr become magnetic:

• The literature suggests high TC ferromagnetism.

• Doping is possible by thermal annealing.

Dilute Magnetic Semiconductors: Mn:GaN
A feasibility study explores doping of GaN with Mn, funded by the

Compound Semiconductor Manufacturing Hub.

Fabrication

• Removal of top AlGaN epi-layer to expose

UID GaN layer: Cl-based dry-etch using ICP

etching system to remove ∼ 100 nm.

• Sputter deposition of 100 nm of Mn on small

corner pieces.

• Thermal annealing.

Samples Created

Sample 1: annealed at 800 ◦C for 6 h under

10 sccm flow of N2 at 0.23mbar.

Sample 2: as Sample 1, but annealed under N2 flow at 1 bar.

Sample 3: annealed at 800 ◦C for 6 h, HCL wash

Sample 4: annealed at 1000 ◦C for 6 h

Experimental Characterisation
Structure:

• high resolution Scanning Electron Microscopy (SEM) images

(surface, cross-section).

Composition: chemical composition, electronic states.

• X-Ray Photoelectron Spectroscopy (XPS);

quantitative, detection limit: 1/1000.

• Energy-Dispersive X-Ray Spectroscopy (EDX).

Magnetic properties:

• DC-SQUID magnetometry.

• Anomalous Hall Effect measurements.

• Susceptibility-based MRI.

Magnetic domains:

• magnetic Atomic Force Microscopy (AFM).

Signatures of Ferromagnetism

• Spontaneous magnetisation below Curie temperature TC.

• Remanent magnetisation Mr, coercivity and hysteresis.

DC SQUID magnetometry

• Hysteresis curves M(B).

• Remanent magnetisation Mr (vibration at B = 0).

• Determination of TC by measuring Mr(T ).

Problems with DC SQUID Magnetometry

Utility of DC superconducting quantum interference device

(SQUID) data has been questioned, e.g. Liu 2005: Eventually

if ZnO and GaN based DMS advances to the point where reliable

Hall measurements can be made, the anomalous Hall effect would

be a reliable means of determining whether the material is ferro-

magnetic and what the Curie temperature is.

• DC magnetometry hysteresis curves might result from clusters

of ferromagnetic atoms (magnetic impurities).

• It does not require spin-polarised carriers.

⇒ Transport measurements are needed.

Anomalous Hall Effect (AHE)

Several authors have argued that the AHE would be a reliable

signature of true ferromagnetism and spin-polarised carriers.

AlGaN/GaN Heterstructure SEM X-Section

Susceptibility-Based MRI

• Standard MRI relies on magnetic response of hydrogen nuclei.

• Larmor precession frequency of protons ωp ∝ B.

• Magnetisation of sample near water probe disturbs B0 field.

• Change in the Larmor frequency can be measured with high

precision to produce susceptibility maps (unlike DC-SQUID or

AHE measurement) but has low spatial resolution.

MRI Field Map for FeO Samples

Correlate data with DC SQUID measurements.

XPS Depth Profiling (5keV Ar+)

• Mixing between Mn (MnO) and GaN layers

• Sample 1,2: MnO surface layer, negligible diffusion

MRI results suggest negligible magnetic susceptibility.

• Sample 3: Mn below detection limit

• Sample 4: diffusion of Mn into GaN but damage to GaN layer,

diffusion of AlGaN accommodation layers?

Contact Fabrication
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