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Abstract— In this paper, we explore the effect of the purely
quantum mechanical global phase factor on the problem of
controlling a ring-shaped quantum router to transfer its exci-
tation from an initial spin to a specified target spin. “Quantum
routing” on coherent spin networks is achieved by shaping the
energy landscape with static bias control fields, which already
results in the nonclassical feature of purely oscillatory closed-
loop poles. However, more to the point, it is shown that the
global phase factor requires a projective re-interpretation of
the traditional tracking error where the wave function state
is considered modulo its global phase factor. This results in a
relaxation of the conflict between small tracking error and small
sensitivity of the tracking error to structured uncertainties.
While fundamentally quantum routing is achieved at a specific
final time and hence calls for time-domain techniques, we also
explore the s-domain limitations to better connect with the
traditional limitations.

I. INTRODUCTION

We consider a spintronic network of N XX-coupled spins
in its single excitation subspace. The latter means that one
spin and one spin only is excited, “up,” while all others
are “down.” In this subspace, we choose a basis such that
the wave function |Ψ〉 = en, where {en}Nn=1 is the natural
basis of CN over C, denotes the quantum state where the
sole excitation is on spin #n. The spins and couplings of
such network are abstracted as vertices and edges, resp.,
of a graph G = (V, E). In the chosen basis, for XX-
couplings, the Hamiltonian H is the adjacency matrix of
the graph G weighted by the coupling strengths with zeros
on the diagonal. A simple example is given by the XX-
ring structure, where the Hamiltonian has tridiagonal-like
structure,

H =



0 J1,2 0 . . . 0 J1,N
J2,1 0 J2,3 0 0

0 J3,2 0 0 0
...

. . . . . . . . .
...

0 0 0 0 JN−1,N
JN,1 0 0 . . . JN,N−1 0


.

(1)
In the above, Jm,n = Jn,m to make the Hamiltonian
Hermitian. We operate in a system of units where h̄ = 1
and the network has uniform couplings with strengths Jmn,
m 6= n, normalized to 1.
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The “open-loop” Schrödinger equation reads
∣∣∣Ψ̇(t)

〉
=

−H |Ψ(t)〉, subject to some initial condition |Ψ(0)〉 =
|IN〉, where |IN〉 = ei denotes the quantum state with the
excitation on some “input” spin i. The control objective
is to transfer the |IN〉 state to some |OUT〉 = eo state
where the excitation is on some “output” spin o. This is
to be accomplished in a short amount of time tf and
with maximum fidelity1, F(tf ) := |〈OUT|Ψ(tf )〉|. This is
achieved by i-o selectively modifying the energy landscape
with static bias fields {Dn}Nn=1 applied to the respective
spins, resulting in the Hamiltonian HD = H + D, where
D = diag{Dn}Nn=1. The controlled Schrödinger equation
becomes∣∣∣Ψ̇(t)

〉
= −(H +D) |Ψ(t)〉 , |Ψ(0)〉 = |IN〉 ,

= −H |Ψ(t)〉+ u(t), u(t) = −D |Ψ(t)〉 . (2)

It is observed that the right-hand side is split, somewhat
artificially, into an open-loop term −H |Ψ(t)〉 and a “con-
trol” term u(t). Despite the appearance of this control as a
classical measurement-mediated feedback, it does not need
measurement of the state (and does not create back-action
of the measurements); indeed, the feedback is field-mediated
by the physical interaction between the spins and the bias
fields. Nevertheless, u(t) has the mathematical structure of
a classical feedback and as such the question is whether
it is subject to some of the classical error-versus-sensitivity
limitations. Classically, such limitations refer to a tracking
error |OUT〉 − |Ψ(t)〉 and its sensitivity to uncertainties,
but in the quantum context, the error is made smaller by
considering the wave function modulo its phase factor. This
paper investigates the impact of such global phase factor on
the log-sensitivity of the error and points to a relaxation of
the traditional conflict.

This paper follows in the footsteps of [7] with some signif-
icant differences, though. In [5], the logarithmic sensitivity
was defined as d(1−p)

dJ
1

1−p , where p = F(tf )2 is the probabil-
ity of successful transfer and 1−p interpreted as the “error,”
whereas in the present paper, the log-sensitivity is defined
as d(1−F)

dJ
1

1−F . This latter relates to the projective version
of the tracking error and departs more from classicality
than the former logarithmic sensitivity. Moreover, in [5], the
probability was averaged over a time window, while here the
fidelity is instantaneous. All data is from the database [10].

1Sometimes the fidelity is defined as |〈OUT|Ψ(tf )〉|2.



A. Notation

Throughout the paper, we consider three feedback con-
figurations: the CLASSICAL configuration of Fig. 1, the
QUANT UM configuration of Fig. 2 with the global phase
factor shown in the shaded areas, and the semi-classical
configuration of Fig. 2 but with the global phase factors
removed. The relevant quantities are as follows:
• L(s), Ŝ(s), T(s) := I− Ŝ(s): classical (Fig. 1) loop ma-

trix, sensitivity and complementary sensitivity matrices,
resp.

• L(s), Ŝ(s), T (s) = I − S(s): projective loop ma-
trix, sensitivity and complementary sensitivity matrices,
resp., with global phase factor (shaded boxes in Fig 2).
Ŝ(s) is defined analytic in <s > 0.

• S(t): inverse Laplace transform of Ŝ(s), vanishing for
t < 0.

• L(s), Ŝ(s), T (s) = I − Ŝ(s): loop matrix, sensitivity
and complementary sensitivity matrices, resp., without
global phase factor (after removal of shaded boxes in
Fig 2). Ŝ(s) is analytic in <s > 0.

• S(t): inverse transform of Ŝ(s) with S(t < 0) = 0.

II. CLASSICAL VERSUS QUANTUM ARCHITECTURE

Laplace domain technique are of limited use in quantum
control as most of the fidelity specification are rather in
the time domain. Nevertheless, as shown in [6], Laplace
techniques are still useful to study steady-state (s ≈ 0)
behavior. Besides, a quick review of the Laplace domain
limitations are necessary to explore the classical-quantum
discrepancies.

A. Classical

The fundamental limitation looked at in the present paper
is the quantum mechanical equivalent, if any, of Ŝ(s) +
T(s) = I , where Ŝ(s) = (I+L(s))−1 is the sensitivity matrix,
L(s) is the loop matrix, and T(s) is the complementary
sensitivity L(s)(I + L(s))−1 of the classical loop shown in
Fig. 1.

Note that the disturbance r̂(s) could be anything and does
not support the notion of selectivity, that is, when r̂(s) is
restricted to be a terminal target as shown in Fig. 2, nor
does Fig. 1 support the initial conditon |IN〉 of Fig. 2.

Given the classical tracking error e(t) = r(t) − y(t), we
have ê(s) = Ŝ(s)r̂(s) indicating that Ŝ(s) is the transmission
from the disturbance r̂(s) to the error ê(s). T(s) on the other
hand is related to the log-sensitivity of Ŝ(s) to errors dL(s)
in the loop matrix. Precisely,

Ŝ−1(s)dŜ(s) = −((dL(s))L−1(s))T(s).

Ŝ(s) + T(s) = I hence quantifies the well known conflict
between achieving simultaneously small tracking error and
small log-sensitivity of tracking error to uncertainties, disre-
garding selectivity.

If dL is structured to represent an uncertainty on a param-
eter, say J , then the above is rewritten as

d ln Ŝ(s)

d ln J
= −d ln L(s)

d ln J
T(s), (3)
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Fig. 1: Classical single-degree-of-freedom loop

where d ln Ŝ = Ŝ−1(dŜ) and d ln L = (dL)L−1. In either
case, it is observed that T(s) is related to the log-sensitivity
of Ŝ(s).

B. Phase factor and complex projective space CPN−1

In the quantum control problem of moving the system
from one quantum state to another one, there is no tracking
error to be minimized, but a fidelity F(tf ) = |〈OUT|Ψ(tf )〉|
to be maximized relative to D. However, the maximization
of the fidelity can be related to minimization of a tracking
error understood in some projective sense.

Theorem 1: The optimal controller achieving the maxi-
mum fidelity

max
D
|〈OUT|Ψ(tf )〉|

is the same as the controller achieving

min
D

(
min
φ
‖ |OUT〉 − eφ |Ψ(tf )〉 ‖

)
, (4)

where φ is a global phase factor with the minimum achieved
for

φ∗(tf ) = −∠〈OUT|Ψ(tf )〉, eφ
∗(tf ) =

〈OUT|Ψ(tf )〉†

|〈OUT|Ψ(tf )〉|
.

(5)
Proof: Clearly,

‖ |OUT〉 − eφ |Ψ〉 ‖2 = 2− 2<
(
〈OUT|Ψ〉eφ

)
.

Moreover,

<
(
〈OUT|Ψ〉eφ

)
≤ |〈OUT|Ψ〉|,

with the equality achieved when φ makes 〈OUT|Ψ〉eφ real
and positive, that is, φ∗ = −∠〈OUT|Ψ〉. It follows that

‖ |OUT〉 − eφ |Ψ〉 ‖2 ≥ 2− 2|〈OUT|Ψ〉|,

and

min
φ
‖ |OUT〉 − eφ |Ψ〉 ‖2 = 2− 2|〈OUT|Ψ〉|.

Finally, upon minimizing the above over all D’s, we obtain

min
φ,D
‖ |OUT〉 − eφ |Ψ〉 ‖2 = 2− 2 max

D
|〈OUT|Ψ〉|,

and the theorem is proved.



The preceding theorem states that controllers can as
well be optimized (although in a somewhat computationally
clumsy way) on the basis of the projective tracking error

eproj(t) = |OUT〉 − eφ
∗(t) |Ψ(t)〉 (6)

with the already perceived reward that the above connects
with classical concepts.

More formally speaking, since ‖ |Ψ〉 ‖CN = 1 and since
a phase factor exp(−φ) does not fundamentally change
the quantum state, |Ψ〉 lives in S2N−1/S1 = CPN−1,
the complex projective space. Observe that the fidelity
|〈OUT|Ψ(tf )〉| is the cosine of the Fubini-Study metric on
CPN−1. More closely related to (6), observe the following:

Corollary 1: δ(|OUT〉 , |Ψ〉) := minφ ‖ |OUT〉 −
e−φ |Ψ〉 ‖CN is a metric on CPN−1.

Remark 1: The global phase φ∗(t) could be viewed as
an ad hoc trick to think maximum fidelity in terms of δ-
minimum tracking error. However, for it to have its classical
quantum mechanical interpretation, it needs to be constant,
which could be accomplished by limiting it to φ∗(tf ).
However, a time-varying global phase φ∗(t) could have the
quantum mechanical interpretation of change of the zero
energy level. Indeed, a shift of energy level HD → HD + cI
yields a phase factor exp(−ct). From (5), under near perfect
state transfer, it follows that this specific global phase factor
could be associated with a shift c = 〈OUT|HD|IN〉.

�

C. Projective sensitivity

Observing from (2) that |Ψ(t)〉 = e−HDt |IN〉 and defin-
ing the output-input swapping operator

P = |IN〉 〈OUT|

the projective tracking error leads to the concept of projective
sensitivity function S(t),

eproj(t) =
(
I − eφ

?(t)e−HDtP
)

︸ ︷︷ ︸
S(t)

|OUT〉 . (7)

The connection with the classical relationship ê(s) =
Ŝ(s)r̂(s) is obvious, but note the selectivity feature of the
above that the disturbance |OUT〉 is selectively restricted to
be a natural basis of CN . In fact, the selectivity is 2-fold, as
contrary to a classical controller, D is not universal, as
it is selectively optimized for |OUT〉. To connect the above
with the fidelity, observe that

〈OUT|S(t)|OUT〉 = 〈OUT |eproj(t)〉
= 1−

(
〈OUT|e−HDt |IN〉

)
eφ

∗(t)

= 1−F(t), (8)

where the third equality is seen by remembering that φ∗(t) is
chosen so as to make

(
〈OUT|e−HDt |IN〉

)
eφ

∗(t) real and
positive.

Here we are at the crucial point. Even though quantum
transport is usually formulated in terms of fidelity, Eq. (8)
reveals that we could equally argue in terms of the projec-
tive sensitivity function S(t), or more specifically in terms

of the selective projective sensitivity 〈OUT|S(s) |OUT〉.
Moreover, sensitivity of the fidelity can be argued in
terms of the sensitivity of the selective sensitivity function
〈OUT|S(t)|OUT〉.

Fidelity is usually formulated as above in the time-domain;
however, Laplace domain techniques have also been used [6]
but in the very specific context of steady-state behavior
(s ≈ 0). Nevertheless, to better connect with the classical
concepts, usually formulated in the Laplace domain, we
define

êproj(s) =
(
I/s− êφ?(t) ? (sI + HD)−1P

)
︸ ︷︷ ︸

Ŝ(s)

|OUT〉 , (9)

where the widehat notation denotes the unilateral Laplace
transform and ? denotes the Laplace domain convolution

(X̂ ? Ŷ )(s) =
1

2π

∫ c+∞

c−∞
X̂(s− z)Ŷ (z)dz, (10)

where the integration path is a vertical line in the common
z-domain of convergence of X̂(s − z) and Ŷ (z), assuming
such a nonempty intersection exists. Details are relegated to
Appendices A, B, C, and D.

The problem is that Ŝ(s) does not naturally lend itself to
a representation of the form (I +L(s))−1 with the idea that
L(s) factors as P(s)K(s), where P(s) is some plant and
K(s) some controller. Formally, we could define a fictitious
loop matrix L = (I + Ŝ)−1, but it is unlikely that it would
factor as PK. At best, Ŝ(s) can be related to the architecture
shown in Fig. 2, which is certainly not of the single degree of
freedom configuration, but could be interpreted as a 3-degree
of freedom one, notwithstanding the feedbacks involved in
the phase function.

Following the classical path of ideas, we define a fictitious
loop matrix L to reproduce the classical relation Ŝ(s) =
(I + L)−1(s), that is, L(s) = Ŝ−1(s)− I; explicitly

L(s) =
(
I/s− êφ?(t) ? (sI + HD)−1P

)−1
− I.

Using the matrix inversion lemma, the projective loop matrix
can be rewritten as

L(s) =(s− 1)I

+ s2
((

êφ?(t) ? (sI + HD)−1
)−1
− Ps

)−1
P.

D. Classical oscillatory systems

Schrödinger’s equation (2) is, after all, an Ordinary Differ-
ential Equation (ODE) over Cn and should the eigenvalues of
HD come in complex conjugate pairs, it could be interpreted
as a lossless spring mechanical system or a LC oscillatory
circuit. Moreover, “energy landscape” techniques have been
popular in robotics and electromechanical systems [8], [11],
where the energy is shaped so as to put its minimum at
the target by local feedbacks bearing similarity with uk =
−DkΨk. Such classical systems follow the architecture
of Fig. 2—without the global phase factors in the shaded
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Fig. 2: The projective error eproj embedded in a semi-classical 3-degree-of-freedom loop. The top paths (P and 1) are
indeed two additional degrees of freedom relative to the single degree of freedom configuration. The shaded areas refer to
the “global phase factor.” Note that the e±φ

∗
operations have to be interpreted in the time-domain.

areas—with relevant tracking error defined as, reverting to
classical notation,

e(t) =
(
I − e−HDtP

)︸ ︷︷ ︸
S(t)

|OUT〉 , (11)

or taking the unilateral Laplace transform

ê(s) =
(
I/s− (sI + HD)−1P

)︸ ︷︷ ︸
Ŝ(s)

|OUT〉 , (12)

together with the fictitious loop function

L(s) = (s− 1)I + s2 (s(I − P ) + HD)
−1
P.

The importance of this case-study is that comparison
between the two sensitivity matrices Ŝ(s) and Ŝ(s) would
narrow down quantum enhancement, if any, regarding cir-
cumventing the classical limitations. This is essentially what
is addressed in Sec. V-C.

III. SENSITIVITY—LAPLACE DOMAIN

A. Selective sensitivity

Taking the Laplace transform of (8) and using (9) yields

〈OUT|Ŝ(s)|OUT〉 = 1/s− F̂(s).

Taking the log-differential, while remembering that nomi-
nally Jmn = 1, yields

d〈OUT|Ŝ(s)|OUT〉
dJmn

1

〈OUT|Ŝ(s)|OUT〉
(13)

= −

〈
OUT

∣∣∣∣∣dF̂(s)

dJmn

∣∣∣∣∣OUT

〉
1

1/s− F̂(s)
, (14)

where the computations of Ŝ(s) and dŜ(s)/dJmn are ex-
panded upon in Appendices B, C, and D. Such quantities
are numerically explored in Sec. V-C.

B. Motivation for Laplace techniques: Asymptotic results

Here we provide motivation for the sensitivity analysis of
Ŝ(s). We proceed from the explicit expressions for Ŝ(s) and
d̂S(s) of Appendix D and use a generalized Laplace final
value theorem to derive some asymptotic behavior of S(t),
dS(t) as t → ∞. Moreover, in the quest for a quantum
enhancement, we contrast those results with the limiting
behavior of S(t), dS(t) when they do not include the global
phase factor (no shaded boxes in Fig. 2).

Since our systems are not closed-loop stable in the
classical sense, we need a generalized Laplace final value
theorem 2:

Theorem 2: Nonclassical Laplace final value theorem [4,
Th. 2]. Let f̂(s) be the Laplace transform of f(t). If

lim
s→0

∫ ∞
s

f̂(ξ)

ξ
dξ =∞,

then

lim
t→∞

1

t

∫ t

0

f(τ)dτ = lim
s→0

sf̂(s). �

In the following, we highlight the difference between the
two cases: with and without global phase factor (with and
without shaded boxes in Fig. 2) as a way to gauge quantum
effects.

Theorem 3: Regarding the average steady-state error in
the sense of Th. 3, we have

1) With global phase factor:

lim
s↓0
〈OUT|sŜ(s)|OUT〉 = 1−

∑
k

|〈OUT|Πk|IN〉|2.

2Ph. Anderson in his famous localization paper [1] was aware of and
utilized this result, but not with the level of rigor as in [4].



2) Without global phase factor:

lim
s↓0
〈OUT|sŜ(s)|OUT〉 = 1− 〈OUT|IN〉,

=

{
1 for transfer,
0 for localization.

Proof: With global phase factor, we need to chase the
1/s term in (19), which is easily accomplished by setting k =
`. To remove the global phase factor, just remove e†iΠke0
in (19), and remember that

∑
` Π` = I .

Theorem 4: For the differential 〈OUT|sdŜ(s)|OUT〉, we
have

1) With global phase factor:

lim
s↓0
〈OUT|sdŜ(s)|OUT〉 =

{
∞ for transfer,
0 for localization.

2) Without global phase factor and with λk(HD) 6= 0:

lim
s↓0
〈OUT|sdŜ(s)|OUT〉 = 0.

Proof: With global phase factor, for finiteness of
lims↓0 sdŜ(s) we look at the 1/s2 term in (20), which is
found by setting k = ` = m,

2=
∑
k

(
(e†iΠkdHDΠkeo)(e

†
oΠkei)

)
.

Taking the localization case, ei = e0, the above is easily
seen to vanish as Πk and dHD are all Hermitian operators.
Hence, finiteness for localization. For transfer, the above does
not vanish; hence, lims↓0 is unbounded. The result without
global phase factor is easily derived from (12).

C. Comparison with classical, nonselective sensitivity

Because the relationship between L and Ŝ is the same as
that between L̂(s) and S(s), the log-sensitivity of Ŝ(s) with
respect to coupling parameters in L is structurally the same
as (3),

d ln Ŝ(s)

d ln Jmn
= −d lnL(s)

d ln Jmn
T (s), (15)

where T (s) = L(s)(I+L(s))−1. The above comes together
with the obvious relationship

Ŝ(s) + T (s) = I.

The above might be called the quantum mechanical error
versus sensitivity limitation, with the caveat that it does not
support the selectivity of the quantum transport.

Nevertheless, disregarding |IN〉 , |OUT〉 selectivity, we
could look at structured uncertainties and we could claim
a quantum robustness enhancement when

σmax

(
d lnL(s)

d ln Jmn

)
� σmax

(
d lnL(s)

d ln Jmn

)
for the usual σmax or any other matrix-norm for that matter.

Instead of arguing on the sensitivity relative to some
artificially defined loop matrix, we might as well look at
the log-sensitivity relative to physical embedded in HD,

both the physical coupling parameters as well as the control
parameters Dn. Quantum enhancement relative to coupling
and control errors is claimed if

d ln Ŝ(s)

dJmn
� d ln Ŝ(s)

dJmn
.

IV. SENSITIVITY—TIME DOMAIN

The starting point of the time-domain analysis is the
sensitivity of the matrix exponential to variation in the matrix
exponent, as given by the Zassenhaus formula [3]:

exp(−(HD+dHD)t) =

exp(−HDt) exp(−dHDt)

×Π∞p=2 exp(Zp(HD, dHD)(−t)p),

where Zp(·, ·) is a homogeneous Lie polynomial of degree
p, and the decomposition is unique. Note that Zp(HD, dHD)
contains a linear term in dHD, which should be taken into
consideration when computing sensitivity. Explicitly,

e−(HD+dHD)t =e−HDte−dHDte
1
2 [HD,dHD]t2

× e
t3

6 [[HD,dHD],HD]

× e− t4

24 [[[HD,dHD],HD],HD]...

Setting dHD = dJmnSmn, where dJmn is the variation of
the parameter Jmn and Smn the associated structure and
utilizing the above formula with its expansion restricted to
include polynomials up to Z2 yields

de−jHDt

dJmn
≈ e−HDt

(
−Smnt+

1

2
[HD, Smn]t2

)
. (16)

While approximate, this formula has the merit that it reveals
the role of the commutator [HD, Smn].

From (8), the time-domain log-sensitivity is set up as

d(1−F)

dJmn

1

1−F
= −

〈
OUT

∣∣∣ dS(t)dJmn

∣∣∣OUT
〉

〈OUT|S(t)|OUT〉
, (17)

where dS(t)/dJmn is computed from Eqs. (7), (16), and
eφ

∗(t) is evaluated as given by Th. 1. Note that for numerical
computations, Eq. (16) might not be accurate enough, in
which case we have to revert to [13, Eq. 32]. The details
are left out.

V. NUMERICAL RESULTS

A. Jonckheere-Terpstra statistic

The fundamental question is whether the plots of error and
log-sensitivity versus controller are concordant or discordant.
This is a traditional nonparametric rank correlation issue that
started with von Neumann [15], [16], and further developed
by Kendall [9], Jonckheere [5] and Terpstra [14]. Here we
order the controllers by increasing error and assess whether
the log-sensitivity is increasing using the Jonckheere-Terpstra
(JT) test. Such increase would be an anti-classical trend, as
classically one would expect conflict between error and its
log-sensitivity. The JT test partitions the log-sensitivity data



Y into I (here I = 5) bins; it computes the median Ỹi of
each bin, and set the null hypothesis H0 as no trend, viz.,
Ỹ1 = Ỹ2 = ... = ỸI and the alternative hypothesis H1 as
Ỹ1 ≤ Ỹ2 ≤ ... ≤ ỸI , with at least one strict inequality. The
JT statistic is based on the number U of (i < j) ∈ I×I pairs
favorable to a trend (see [7] for details). Under the hypothesis
of large data set, Z = (U − µU )/σU is normally distributed
and the single tailed JT statistic is defined as JT = |Z|.
The JT statistic is computed from the MATLAB JTtrend.m
function 3. The significance level is set at 0.05 and the critical
value is JT0.05 = 1.6.

B. Time-domain

Fig. 3 shows a N = 10, |OUT〉 = |2〉, instantaneous
readout (as opposed to windowed readout as in [5]) case
study with J45 uncertainty, with an error 1−F (as opposed
to 1 − F2 as in [5]). It confirms the anti-classical trend
of concordance between error and log-sensitivity especially
from controller 1 to 200. Such a trend was already observed
in [5], but here it is in a context that relates better to the
“tracking error,” modified with a phase factor to make it
relevant to quantum systems.

controller index
0 500 1000 1500
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10
N=10, |OUT>=|2>, t, J

54
 uncertainty, JT=31.5480

log(sensitivity)
log(logarithmic sensitivity)
log(error)

Fig. 3: Case N = 10, |OUT〉 = |2〉, J45 uncertain, with S(t)
defined by (7)

We now suppress the phase factor eφ
∗

(remove the shaded
boxes in Fig. 2) and obtain Fig. 4.

Comparing Figs. 3 and 4, it is noted that, not surprisingly,
the latter error has significantly increased, because of the
removal of eφ

∗
in (6). Surprisingly, the log-sensitivity has

also increased in the 1:300 range of controllers. More impor-
tantly, the latter log-sensitivity does not show an increasing
trend with the error, confirmed by the JT test that accepts the
H0 hypothesis of no trend. “No trend” in the log-sensitivity
while the error increases is rather classical.

C. s-domain

The Laplace domain approach is useful to investigate
asymptotic behavior, as made precise by Theorem 2. More-
over, it especially makes sense in the localization case

3See https://www.mathworks.com/matlabcentral/fileexchange/22159-
jonckheere-terpstra-test-on-trend
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Fig. 4: Case N = 10, |OUT〉 = |2〉, J45 uncertain, with S(t)
defined by (11)

(|OUT〉 = |IN〉). By symmetry, we set |IN〉 = |1〉. Nu-
merical exploration reveals two cases:

1) The case where the spin to hold the excitation, |IN〉 =
|1〉, has an uncertain coupling strength with its neigh-
bor; by symmetry, the uncertainty is on J12. Represen-
tatives of such case are Figs. 5-6.

2) The case where the uncertain strength Jmn is between
spins not holding the excitation; by symmetry, m,n 6=
1. Representatives of such case are Figs. 7-8.
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Fig. 5: Case N = 11, |OUT〉 = |1〉, J12 uncertainty, Ŝ(s)
defined as in Eq. (9), with phase factor

Common to Cases 1) and 2) is an obvious error/log-
sensitivity trend reversal associated with the removal of the
global phase factor. With the global phase factor of Figs. 5
and 7 one observes an anti-classical concordance between
the error and the log-sensitivity. Without global phase factor,
however, as shown in Figs. 6 and 8, the trend is classical–
discordance between error and log-sensitivity.

Specifically in Case 1), with phase factor, the log-
sensitivity is nearly “flat” at 100%, but the error is very
small; without the phase factor, the trend is completely
reversed; the error is “flat” and the sensitivity is significantly
reduced. In Case 2), the trend reversal is the same, but not
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Fig. 6: Case N = 11, |OUT〉 = |1〉, J12 uncertainty, Ŝ(s)
defined as in Eq. (12), without phase factor
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Fig. 7: Case N = 11, |OUT〉 = |1〉, J34 uncertainty, Ŝ(s)
defined as in Eq. (9), with phase factor

as “brutal” is in Case 1). Nevertheless, with removal of
the phase factor the error increases while the log-sensitivity
decreases.

VI. CONCLUSION

In this paper, we have studied robustness of energy land-
scape control for excitation transport in ring shaped quantum
routers. The fundamental stumbling block in comparing
classical versus quantum robustness is that energy landscape
control does not fit in the paradigm of Fig. 1, which has
been the basic architecture upon which classical error versus
log-sensitivity limitations, e.g., Ŝ(s) + T(s) = I , were built.
While a “fictitious” loop matrix can be defined to force the
architecture of Fig. 1 in landscape control, it does not factor
as the cascade of a controller and an open-loop system. The
closest-to-classical feedback structure to model landscape
control is the one of Fig. 2, where a projective tracking
error has been substituted for the classical tracking error to
accommodate the quantum mechanical global phase factor
shown in the shaded boxes. In this architecture, a quantum
limitation Ŝ(s) + T (s) = I holds, but does not support the
|IN〉/|OUT〉-selectivity of the controller. With the selectivity
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Fig. 8: Case N = 11, |OUT〉 = |2〉, J34 uncertainty, Ŝ(s)
defined as in Eq. (12), without phase factor

in place, the controller escapes the Ŝ(s) + T (s) = I
limitation and shows some anti-classical behavior in the
sense of concordance between error and log-sensitivity.

The real question that is answered here in the affirma-
tive here is whether this anti-classical behavior is quantum
mechanical. The only way to answer such a question is to
remove the quantum mechanical global phase factor from
Fig. 2, which results in a complete reversal of the trends. As
our major result, this demonstrates the quantum mechanical
origin of the anti-classical behavior.

Other ways to gauge the quantum effect, like those sug-
gested in Sec. III-C, will be explored in a further paper.

APPENDIX

A. Closing the path in Eq. (10)

To compute the convolution (10), it is convenient to close
the vertical integration line (c − ∞, c + ∞) by a large
semicircle so as to reduce the integral to residue calculations.
Here we show that the path should be closed in the LHP.
Indeed, remember that the proof of ̂x(t)y(t) = (X̂ ? Ŷ )(s)
proceeds from substituting (1/(2π)

∫ c+∞
c−∞ Ŷ (z)eztdz for

y(t) in ̂x(t)y(t) =
∫∞
0
x(t)y(t)e−stdt, where initially (c −

∞, c + ∞) is in the domain of convergence of Ŷ (s).
Interchanging the order of the integrals further restricts (c−
∞, c+ ∞) to be in the common z-domain of convergence
of X̂(s− z) and Ŷ (z). These operations bring the factor ezt

in the integrand; therefore, the integration of such integrand
along a large semi-circle of radius R in the LHP vanishes as
R→∞.

B. Laplace domain convolution: sensitivity

Many of the sensitivity formulas in the main text involve
s-domain convolution. Here, we outline the basic compu-
tation of such convolution by residue calculations in the
asymptotic case of perfect state transfer. This asymptotic
study is motivated by previous analysis [7] dealing with anti-
classical sensitivity properties of controllers nearly achieving
the upper bound on the fidelity.



In case |〈OUT|Ψ(t)〉| = 1, the convolution êφ∗(t) ? (sI+
HD)−1 reduces to 〈OUT|(sI−HD)−1|IN〉?(sI+HD)−1.
Set ei = |IN〉 and eo = |OUT〉 to simplify the notation; let
{ωk}Nk=1 be the (real) eigenvalues of HD with {Πk}Nk=1 the
set of eigenprojections. With this notation, the convolution
becomes

êφ∗(t) ? (sI + HD)−1

=
̂

e†ie
HDteo ? (sI + HD)−1

= e†i (sI − HD)−1eo ? (sI + HD)−1

=
∑
k`

e†iΠkeo
s− ωk

?
Π`

s+ ω`

=
1

2π

∑
k`

∫ c+∞

c−∞

(
e†iΠkeo

s− z − ωk
Π`

z + ω`

)
dz

=
∑
k`

Res

(
e†iΠkeo

s− z − ωk
Π`

z + ω`
, z = −ω`

)

=
∑
k`

e†iΠkeo
Π`

s+ (ω` − ωk)
.

A few words of explanation: The third equality is just a
matter of the eigendecomposition of the various operators. At
the fourth equality, observe that the domain of convergence
of both Laplace transforms (sI ±HD)−1 is <s > 0, which
implies at the 4th inequality that <(s−z) > 0 and <(z) > 0.
(This secures the vanishing of both inverse Laplace trans-
forms for t < 0 [12, Sec. 5.4.5].) It follows that the path of
integration is a vertical line of real part c ∈ (0,<s) in the
common domain of definition of the two factors [2, Table
11.1]. At the fifth equality, the vertical line (c− ∞, c+ ∞)
is closed with a large semi-circle in the left-half plane, as
justified in Appendix A. The integral therefore equals the
sum of the residues of e†0ΠkeiΠ`/((s− z)− ωk)(z+ ωk))
in {z : <z < c}, which contains the z-poles of 1/(z+ ωk),
but not those of 1/((s− z)− ωk).

C. Laplace-domain convolution: differential of sensitivity

If we elect either to compute directly the sensitivity of
S(s) relative to HD or compute it via L(s), we do need the
sensitivity of the s-domain convolution êφ∗(t)?(sI+HD)−1

relative to HD, with obvious identity

d
(
êφ∗(t) ? (sI + HD)−1

)
(18)

=
(
dêφ∗(t)

)
? (sI + HD)−1 + êφ∗(t) ?

(
d(sI + HD)−1

)
.

First, observe that, in case of perfect state transfer,

dêφ∗(t) = 
∑
k`

e†iΠkdHDΠ`eo
1

(s− ωk)(s− ω`)

and further

d(sI + HD)−1 = −
∑
k`

ΠkdHDΠ`
1

(s+ ωk)(s+ ω`)
.

Therefore, for both convolutions in the sum (18), the culprit
is (∑

k`

Ak`
1

(s∓ ωk)(s∓ ω`)

)
?

(∑
m

Bm
1

s± ωm

)
,

where, for the first convolution,

Ak` = e†iΠkdHDΠ`eo, Bm = Πm, upper signs

and for the second convolution

Ak` = −ΠkdHDΠ`, Bm = e†iΠmeo, lower signs.

To compute the generic convolution, we follow the same
lines as in the preceding subsection:∑

k`

Ak`
(s∓ ωk)(s∓ ω`)

?
∑
m

Bm
s± ωm

=
1

2π

∑
k`m∫ c+∞

c−∞

Ak`
(s− z ∓ ωk)(s− z ∓ ω`)

Bm
(z ± ωm)

dz

=
∑
k`m

Res(
Ak`

(s− z ∓ ωk)(s− z ∓ ω`)
Bm

z ± ωm
, z = ∓ωm

)
=
∑
k,`,m

Ak`Bm
(s+ (∓ωk ± ωm))(s+ (∓ω` ± ωm))

.

D. Explicit expressions for projective S and dS
Putting together the results of Appendices B-C yields

Ŝ =

(
I/s−

∑
k`

(e†iΠkeo)
Π`P

s+ (ω` − ωk)

)
(19)

and

dŜ =

− 
∑
k`m

(e†iΠkdHDΠ`eo)ΠmP

(s+ (ωm − ωk))(s+ (ωm − ω`))

+ 
∑
k`m

ΠkdHDΠ`P (e†iΠmeo)

(s+ (ωk − ωm))(s+ (ω` − ωm))
. (20)
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