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Abstract— We explore the use of policy gradient methods
in reinforcement learning for quantum control via energy
landscape shaping of XX-Heisenberg spin chains in a model
agnostic fashion. Their performance is compared to finding
controllers using gradient-based L-BFGS optimisation with
restarts, with full access to an analytical model. Hamiltonian
noise and coarse-graining of fidelity measurements are con-
sidered. Reinforcement learning is able to tackle challenging,
noisy quantum control problems where L-BFGS optimization
algorithms struggle to perform well. Robustness analysis under
different levels of Hamiltonian noise indicates that controllers
found by reinforcement learning appear to be less affected by
noise than those found with L-BFGS.

I. INTRODUCTION
Finding robust solutions to Hamiltonian control of quan-

tum devices from superconducting qubits to spintronic cir-
cuits to microwave QED to trapped ions [1], [2], [3], [4]
is crucial to achieve high-fidelity operations in quantum
systems that form the building blocks of Noisy Intermediate
Scale era Quantum (NISQ) devices [5]. Although early-stage
devices are expected to be error-prone and limited in size,
they could pave the way to revolutionize computation and
simulation at a fundamental level. They have already proven
to be effective tools in physically simulating molecular
networks [6], [7], [8]. Currently, the challenges for NISQ
devices are: scalability with system size and robustness to
known and unknown uncertainties. For the former, the main
problem lies in the exploration of a parameter space growing
exponentially in the size of the system, which has been
addressed using variational approaches [9], [10] amongst
other work. In this paper we focus on the latter challenge:
optimal control with partial observability in the absence of an
accurate model, a regime that is particularly challenging for
the dominant model-based, open-loop control approaches.

Two frameworks were developed for such problems: dual
control theory initiated by Feldbaum in the 1960s [11]
and reinforcement learning (RL) for optimal control [12].
Both coalesce the control problem to approximate dynamic
programming solved using Bellman’s principle of optimal-
ity [13]. Solvers follow the principle of initially exploring
and learning the unknown model by probing the system,
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and, later, exploiting this information for control. Initially
the control actions taken by the controlling agent are sub-
optimal as it works with a highly uncertain model although
they can still be seen as optimal in the sense of solving
the Bellman equation step-wise based on the acquired infor-
mation. Iterated composition of the solutions achieves near
optimal solutions, eventually.

Our motivation for RL is to find adaptive model-agnostic
ways of performing optimization to solve quantum control
problems. These methods, in principle, promise to have less
overhead compared with functional variation or Pontyragin-
variation-based methods for optimal control which use an
analytical model and have been the focus of over half a
century of fruitful contribution to quantum control, includ-
ing algorithms such as GRAPE [14] and Krotov [15] that
utilise gradient-based optimisation of a model-based target
functional. Limited knowledge about the system and control
Hamiltonians, and interactions with the environment, how-
ever, has a strong effect on the performance of such controls.
Sampling over uncertain parameters combined with gradient-
based optimisation can find robust controls [16]. Robust,
high precision controls have been found by batch optimising
neural network target functionals akin to GRAPE [17].

RL methods are either model-based or model-free, but all
methods can in principle be fully model-agnostic. Model-
based methods involve creation of a model from scratch,
whereas model-free methods skip this step. RL aims to
tackle and optimize the trade-off between exploitation and
exploration that is the hallmark of dual control. Prior work
demonstrated the usefulness of deep RL for quantum optimal
control [18] in its application to synthesis of transmon
gates [19], coherent transport by adiabatic passage through
semi-conductor quantum dots [20], and robust two-qubit
gmon gate synthesis [21].

In this paper we employ RL to find robust quantum
controls with a fully model-agnostic approach using single
shot measurements, which can be collected experimentally.
Instead of passing unitary operators or density matrices to
the RL agent, as considered in previous work, we only
give it access to experimentally observed data and control
parameters [10]. This is in line with real world scenarios
where RL may be deployed in an experimental setting with
high levels of uncertainty, commonly seen in current setups.
We provide a computational resource comparison between
policy-gradient-based RL algorithms to motivate our choice
of PPO (Proximal Policy Optimisation). We also demon-
strate the resilience of RL in finding optimal controllers
to measurement and Hamiltonian noise, where analytical



methods break down or consume too many resources. Of
course analytical model optimization has an advantage over
RL when the model describes the physical system well, as
no exploration is required. Increasing uncertainties in the
model, however, require an RL or exploratory approach.
Moreover, although L-BFGS is more likely to find high-
fidelity controllers, preliminary robustness analysis for the
controllers found by RL suggests that they may be more
robust to noise than those found by L-BFGS.

II. PRELIMINARIES
A. The Control Problem

We consider the problem of controlling a spin-
1/2 system, described by the XX-Heisenberg
spin chain model. Its Hamiltonian is Hspin =∑n
m=1,m 6=n Jmn (XnXm + YnYm) +

∑N
n=1 ∆nZn, where

Xn = Fn(σx) := 1(1) ⊗ · · · ⊗ 1(n−1) ⊗ σ(n)
x ⊗ 1(n+1) · · · ⊗

1(N) is the expanded Pauli X operator σx applied on the
n-th spin in the system; ∆ = {∆n} are external control
parameters; Jmn are the interaction couplings between spin
n and m. Yn, Zn are defined equivalently to Xn for the Pauli
operators σy and σz . We only consider a spin chain with
uniform nearest-neighbour couplings such that Jn,n±1 = 1
(and all other entries are 0), which can be thought of as
a type of quantum wire. The spin network Hamiltonian
Hspin commutes with diagonal operators and therefore the
dynamics can be decomposed into excitation subspaces [22].
Here, we are only concerned with single excitations, i.e.,
only one bit of information can propagate through the
network at a given time, for simplicity. Therefore we have
the single excitation subspace Hamiltonian

~−1Hss :=
∑
m6=n

Jmn|m〉〈n|+
∑
n

∆n|n〉〈n|, (1)

where ~ is the reduced Planck constant and Jmn and ∆n

are measured in rad/sec. The unitary time evolution of the
single bit propagating through the network is given by the
Schrödinger Eq., d

dt |ψ(t)〉 = −i~−1Hss(t)|ψ(t)〉, where
|ψ(t)〉 is the N dimensional spin-state vector. This is solved
by |ψ(t)〉 = exp(−i~−1Hss(t− t0))|ψ(t0)〉 = U∆(t)|ψ(t0)〉.
The suffix ∆ makes the dependence of the unitary on the con-
trol parameters explicit. Consider some target state |ψ∗〉 and
a state propagated by the unitary from an initial state |ψ(t0)〉.
The state propagation performance is given by the fidelity
F(∆, T ) := |〈ψ∗|U∆(T )|ψ(t0)〉|2, measuring how close
the propagated and target states are. The resulting optimal
control problem is the determination of the control parame-
ters ∆, T that, e.g., represent the action of applied external
magnetic fields, s.t. ∆∗, T ∗ = arg max∆,T F(∆, T ). We
specifically consider transitions between one-hot encoding
state vectors (canonical Euclidean basis vectors), consistent
with a single bit propagating through the network.

The most common paradigm for quantum control is dy-
namic [23], [24], i.e., assuming time-dependent controls,
∆n(t), the implementation of which typically requires the
ability to rapidly modulate or switch controllers imple-
mented by physical fields (e.g. lasers or magnetic fields).

An alternative to dynamic control is time-invariant control,
i.e., time-independent control parameters ∆n [25]. This is
analogous to shaping the potential landscape to facilitate the
flow of information from an initial state to the target state.
For example, information encoded in electron or nuclear
spins in quantum dots whose potential can be controlled
by varying voltages applied to surface control electrodes,
creating a potential landscape. The static control problem
has fewer parameters, and so is in some sense simpler.
Moreover, previous work found evidence concerning good
robustness properties of the static controls [26]. They may
also be simpler to implement experimentally as we do not
need to modulate control fields, or could be part of a more
complex dynamic control scheme. However, the optimisation
landscape is challenging [25], and there is no guarantee that
the controllers found are robust with respect to uncertainties
in the system and interactions with the environment.

B. Reinforcement Learning Control Paradigm

RL is formulated as a finite Markov decision process
(MDP): given an initial state S, a next state S ′ can be
achieved that carries with it some reward R by performing
some action A. State transitions are assumed to be Marko-
vian and probabilistic and captured by the dynamics model
P (S ′,R|S,A), indicating the probability of going from S
to S ′ with the action A, gaining R. A trainable policy
function π(A|S) is a non-parametric probability distribution
of executing action A given state S . An RL agent follows
π, interacts with an environment E and associates a state
transition Y : S A−→ S ′ with a reward function R(Y ). A
state-action value function Q(S,A) or the value function
V (S) = maxaQ(S, a) is learnt via the feedback loop
interaction of π with E . The environment can be noisy and
highly stochastic and yet through the high learning poten-
tial of differentiable neural nets as function approximators,
a near-optimal π or Q can be learnt [27]. Learning Q,
for example, involves approximately solving the Bellman
optimality equation iteratively, as an update rule, at every
timestep k,

Qk(s, a) := Eπ

[ ∞∑
k=0

γkRτ+k+1|Sτ = s,Aτ = a

]
(2)

≡
∑
s′,r

P (s′, r|s, a)
[
r + γmax

a′
Qk−1(s′, a′)

]
where γ is some future discounting factor and s′, a′, r are the
next state, next action and reward. Qk is also the expectation
over different policy functions π of the total discounted
rewards obtained from the current timestep onwards.

General theorems for policy and Q (or value) functions
guarantee iterated policy improvement [27]. This involves
computing a new policy, e.g., π′(s) = arg maxa′ Q(s, a′) for
actions a′ drawn from some old policy π. A model is thus
not needed for approximately solving the Bellman equation
as we can directly optimize over the policy by successively
computing better policies (e.g. greedily) to yield an optimal
Q function Q∗(s, a) = maxπ Q(s, π(s)). For continuous



state and action spaces, this approach does not work well.
For such high dimensional spaces, we optimize over the
policy by making use of the gradient of some expected
cumulative performance distribution in terms of the gradient
of a differentiable policy πθ. Here, πθ is represented by a
linear two-layer neural network with θ nonparametrically
denoting its trainable weights and biases. We assume a
similar nonparametric neural network form for Q and/or the
value function. Many policy gradient algorithms are based
on this idea [27]. Using backpropagation [28] to update θ in
the direction of the policy gradient, we improve the policy
πθ. By approximately solving the Bellman Eq. (2) iteratively
for finite steps, we evaluate how well it does. Improvement
and evaluation are repeated until a convergence criterion is
met that we state below.

For our control problem, we define the model agnostic
MDP: for learning timestep τ , let Sτ := {∆τ−1, tτ−1}
and Aτ := {δ∆τ−1, δtτ−1} be an action changing Sτ by
the given values. The reward is Rτ := F(|ψτ−1〉, |ψ∗〉)
where tτ−1 = T is the time for which the Hamiltonian is
evolved. The readout time tτ−1 with the ∆τ−1 are the control
parameters for π to change such that the reward is improved.
Here tτ−1 is the physical readout time, a control parameter,
and τ denotes the algorithmic iteration timestep. Note that
this means π is a control landscape exploration strategy
with the aim to find control parameters that achieve the
physical state transition from |ψ(t0)〉 to |ψ∗〉 that maximizes
F(∆, T ). So the goal, rather than the path to get there, is
important, even if of course a shorter path makes finding
the goal more efficient. We construct an environment E
that a differentiable policy πθ can interact with to obtain
(Sτ ,Aτ ,Rτ ). The state vector satisfies Sτ = Sτ mod Slimit
and we set the the limit Slimit to be ±10 for ∆τ−1 and 30
for tτ−1 to ensure that the control parameters are physical
and realisable in experiments. A reward threshold, e.g. 0.99,
is set as a convergence criterion yielding a single solution
vector S∗τ effectively reducing the problem to optimal time-
independent Hamiltonian searching. The RL optimization
procedure is run for some number of epochs until the reward
threshold is achieved. Each epoch consists of a fixed number
of timesteps of exploring the landscape from an initial
random position. The policy parameters θ and the Q function
are updated via backpropagation every epoch.

The utility of the fact that RL assumes nothing about the
analytical form of the model is expected to be useful if the
environment E is stochastic. To test this hypothesis, we con-
sider two noise models: (1) directly augmenting Hss with a
structured perturbation P ∼ N (0, σ2

noise) where P is a matrix
of the same form as Hss, i.e. tridiagonal, with normally
distributed random values with variance σ2

noise and mean 0.
This simulates noisy or tunably inaccurate physics, e.g. due
to leakage of spin couplings. (2) coarse-graining the fidelity
Rτ to simulate single-shot or inaccurate measurements by
replacing it with R̃τ ∼ Bin(M,Rτ ), drawn from a binomial
distribution where M is the number of measurements made
and Rτ , the true fidelity, is the binomial probability and R̃τ
represents the average single shot measurements to estimate

the fidelity probabilities. In this work, the choice of the noise
models is motivated purely by generality and simplicity to
study control in a learning framework. In the absence of
a concrete physical system, we assume all parameters are
equally uncertain. For both (1) and (2), correlated noise of
a random functional form that actually take into account the
physical characteristics of the quantum architecture is also
possible and is worth exploring in the context of a particular
physical system. Dephasing and decoherence errors that are
characteristic of quantum processes are possible to explore
under the Sudarshan-Lindbladian evolution of the density
matrix [29] and left as future work.

We only consider leakage within the nearest neighbour
spins. Another possible source of noise could be leakage to
the next nearest neighbours due to cross-couplings between
spins in transmon systems or finite laser beam sizes in cold
atom or ion systems. For the purposes of this work, however,
we neglect next-nearest neighbor coupling as it is negligible
or can typically be mitigated in practical systems. We have
also made the actions Aτ noisy by perturbing the diagonal
of Hss, but we could have also coarse-grained the actions to
account for the finite resolution of the magnetic or laser field
that actually implements the controls in a real experiment.

C. Policy Gradient Reinforcement Learning Algorithms

We try a number of policy gradient RL algorithms to
empirically evaluate which one is most suitable for our
static control problem: trust region policy optimization
(TRPO) [30], proximal policy optimization (PPO) [31], deep
deterministic policy gradient optimization (DDPG) [32], twin
policy delayed DDPG (TD3) [33] and REINFORCE [27].

REINFORCE is a pure policy-based algorithm that applies
a stochastic gradient ascent update to the policy parameters
θ ← θ + ∇Vπθ

(S0) for some initial state S0. The value
function gradient is computed using the policy gradient
theorem as Eπ

[∑∞
k=0 γ

kRτ+k+1∇πθ/πθ
]

via Monte Carlo
sampling over trajectories following π.

The others are actor-critic algorithms with an acting policy
critiqued by Qπθ

or Vπθ
. The actor-critic methods make use

of a replay buffer to store MDP transitions of the form
(Sτ ,Sτ+1,Aτ ,Rτ ) and update Qπθ

or Vπθ
following the

Bellman update Eq. (2) by random sampling batches of
{S ′,S,R}. TD3 and DDPG make use of the deep deter-
ministic policy gradient for θ updates [34] and TRPO and
PPO use a variant of the natural policy gradient [35]. TD3
uses two Q functions and backpropagated updates are in
the direction of least change while DDPG employs a vanilla
combination of Q and a deterministic policy function jittered
with correlated exploration noise. Note that there is no
objective constraint on the policy that makes sure it does not
vary wildly during parameter updates for different episodes.
PPO and TRPO improve upon this by using a KL-divergence
constraint between the new and old policy to make sure its
variation is constrained during each update. TRPO uses a
trust region method [36] to compute the Hessian of the KL-
divergence with a backtracking line search [37] to update the
parameters of the policy. PPO is simpler and uses clipped



variation bounds on the KL-divergence that is used directly
in the parameter updates of the policy.

III. RESULTS

A. Cost of Reinforcement Learning Algorithms

We first analyse the cost of the policy gradient algorithms
from Section II-C. The costs are expressed as the number of
environment E calls, corresponding to estimating the fidelity
via single-shot measurements, for a run that successfully
terminates at a fidelity threshold. This links performance to
experimental costs and makes different algorithms compara-
ble without resorting to timing or iteration counts.

We choose to study a noisy transition |0〉 → |2〉 for
chains of length N = 3, . . . , 7. We use 100 single-shot
fidelity measurements to estimate the fidelity of a controller
and a Hamiltonian perturbation noise of σnoise = 0.05. The
“perceived” fidelity is the stochastic fidelity produced by the
noisy environment, as observed from noisy measurements.
We compare it to the “true” fidelity of the controller under
ideal conditions without noise. A perceived fidelity threshold
of 0.99 is set as termination criterion. Fig. 1 shows the
median performance of DDPG, PPO and TD3 over 50 runs.
In terms of environment calls, DDPG performs significantly
worse compared to PPO and TD3, but it is more difficult to
decide between the latter two.

TRPO and REINFORCE were excluded from the study
as sufficient statistics could not be obtained. Their behaviour
was highly variable and inconsistent due to a lack of success-
ful termination which prevented further analysis. For REIN-
FORCE, we suspect that this was because of the absence of
a replay buffer to sample a sufficient variation of transitions
and a value/Q function that maps actions to expected rewards
to ground policy parameter updates. Similarly, TRPO, while
successful in achieving fidelities > 0.99 on complicated
transitions such as |0〉 → |3〉 for N = 7, was algorithmically
complex (e.g. the Hessian computation for the KL constraint)
and took much longer than the rest.

B. Robustness of Reinforcement Learning Controllers

The robustness of the controllers found by RL in Sec-
tion III-A remains unclear and serves as a further criterion to
choose a suitable RL algorithm. We conduct a Monte Carlo
robustness analysis (MCRA) using variable Hamiltonian
perturbation noise σnoise of the 50 controllers computed for
each chain length for all three algorithms. For each controller
Sτ found, we perturb the Hamiltonian Hss using noise
of the same triagonal form with mean 0 and the variance
σ

(i)
noise = 0.1k/9, k = 0, . . . , 9. We then evaluate the true

fidelities F of the controller Sτ for each level of perturbation
without any additional noise. We repeat this ten times for all
50 controllers and combine the results into a single fidelity
distribution. This allows us to judge the expected fidelity of
the controllers found by the algorithm.

The distributions are represented non-parametrically as 1D
box-plots as shown in Fig. 2 (the other cases are similar, but
are omitted due to space limitations). This figure highlights
that some fidelity distributions are heavy tailed with many

Fig. 1. Top: Cost comparison between PPO, TD3 and DDPG for |0〉 to |2〉
for chains of length N = 3, . . . , 7 with 100 single shot measurements and
σnoise = 0.05. The algorithms were run 50 times and the median E calls
are plotted with the interquartile range. A perceived fidelity threshold of
0.99 was set as the termination criterion. Bottom plot shows true fidelities.

Fig. 2. Robustness analysis for PPO, TD3 and DDPG for |0〉 to |2〉 for the
50 controllers found in Section III-A for chains of length N = 4 (left) and 5
(right). Ten levels of perturbation noise σnoise = 0, . . . , 0.1 are considered
for each controller which is evaluated ten times to yield 500 points per
box-plotted fidelity distribution.

outliers, meaning there is significant variation of fidelity
between some controllers under perturbation. DDPG con-
trollers, despite making more function calls, were the least
robust when it came to preserving the interquartile width of
the performance distribution. For PPO vs. TD3, there are
cases where TD3 is better than PPO’s and vice versa. How-
ever, PPO’s performance was more consistent compared with
TD3’s. TD3, similar to REINFORCE and TRPO, showed
a high variation in successful termination, getting stuck
indefinitely at local minima for some problems, and there
were gaps in the collected statistics due to timeouts. So we
were only able to collect statistics for some N for some of
the cases in Section III-A without rerunning multiple times.
On balance, we find that PPO performs most consistently
compared to the other RL algorithms for multiple repetitions
for different spin transitions. Therefore, we decided to focus
on PPO for the comparison with gradient-based optimisation.

C. Cost of PPO vs. L-BFGS

Even though PPO is not conclusively better from these
results, we chose PPO as the single algorithm for comparison



with gradient-based optimization methods as we found it (1)
faster for data collection to get enough statistics from mul-
tiple training runs and (2) sufficient to empirically represent
the class of policy gradient algorithms for our problem. TD3
and DDPG might also be suitable for the study but were not
pursued chiefly due to time constraints.

A first step to compare PPO with gradient-based opti-
misation is to analyse the costs in terms of number of E
calls (see Section III-A) under the noiseless dynamics of
the ideal model. For gradient-based optimisation, we use L-
BFGS with restarts, which performed well on the studied
control problem in earlier work [25].

Fig. 3 shows how function calls scale with the length
of the spin chain, N = 3, . . . , 10, for a transition |0〉 to
|2〉 for PPO, L-BFGS and randomly guessing controllers.
The randomly guessed controllers are used to benchmark
potential deviations in the computational difficulty of the
problem. We stop once a fidelity threshold of 0.99 is crossed.
The spin chain transition is computationally similar for all
N as it depends largely on the relative distance between
the spins, the control and time constraints, which are kept
constant for all the problems we study. There is an initial
jump from N = 3 after which all algorithms manifest a quite
flat increase in the number of function calls as the length of
the chain increases. This is likely because transitions in the 3-
chain are easier to achieve as simple Rabi oscillations which
are generally trap free, and due to the existence of analytical
solutions for this case which are absent for longer chains.

It is not surprising to observe that for an accurate model
L-BFGS is mostly two orders of magnitude better than PPO.
PPO has to consume most of the calls to build up an internal
representation of the model before it can start optimizing.
Adding small stochastic noise to the Hamiltonian should
degrade the performance of L-BFGS considerably in terms
of the number of function calls. To analyze this, we relax
the termination constraint on fidelity to 0.98 and consider
only perturbations to Hss without single shot measurement
noise. Single-shot measurement or perturbation noise renders
L-BFGS incapable of estimating fidelities over 0.99 without
making many millions of function calls (hence the reduction
to 0.98). Fig. 4 demonstrates an approximately exponential
rise in E calls for L-BFGS as the strength of the perturba-
tion σnoise is increased from 0 to 0.1. Clearly Hamiltonian
perturbations deteriorate the performance of L-BFGS, while
PPO keeps performing on a similar level than without noise.

Large fluctuations for PPO at certain noise levels likely
imply that it is unable to find robust solutions there. The
fluctuations may be linked to the noise level and the existence
of an optimal noise level at which highly robust solutions can
be found. More work, however, is needed to test this idea.

Single shot measurement noise considered in Section III-
A has not been employed here, as this would have made the
problem even harder for L-BFGS as it has not been designed
for noisy optimisation. Overall these results are likely due to
high sensitivity of the optimization descent step of L-BFGS
to small perturbations in the low rank Hessian components.
This causes the number of iterations to steeply increase. Note

Fig. 3. Comparision between L-BFGS, PPO and randomly guessing
controllers for |0〉 to |2〉 for chains of length N = 3 to N = 10 without
noise. The algorithms were run 50 times and the median E calls are plotted
with the interquartile range. A threshold of F = 0.99 is set for termination.

Fig. 4. Number of E calls comparison between L-BFGS and PPO for |0〉 to
|2〉 for a chain of length N = 4 as a function of Hamiltonian perturbation
noise σnoise with a termination fidelity threshold of 0.98. The algorithms
were run 50 times and median E calls are plotted with interquartile range.

that E calls go down for PPO from around 105 to around 104

in Fig. 3, and we observe a similar effect in Fig. 1.

D. Robustness of PPO and L-BFGS Controllers

We conduct an MCRA (see Section III-B) to compare
robustness of 100 controllers found by L-BFGS under ideal
conditions and model-free PPO under low Hamiltonian per-
turbation noise. There are two cases worth considering:
(1) Robustness of PPO controllers found at different levels
of Hamiltonian perturbation; (2) The robustness of PPO
controllers w.r.t. Hamiltonian perturbation found at a par-
ticular noise level. Both cases are compared to 100 L-BFGS
controllers for each transition using the ideal model without
noise. The termination condition, in all cases, is F ≥ 0.99.

For (1), we consider transitions to the middle and end for
N = 4, 5, as shown in Fig. 5. We use PPO controllers trained
with Hamiltonian perturbation noise σnoise that corresponds
to the noise level on the x axis from 0.01 to 0.1. We find,
as expected, that the width of the fidelity distribution for
L-BFGS controllers slowly increases as σnoise is increased
from 0 to 0.1. The expected fidelity is further dropping



Fig. 5. Comparison of 100 L-BFGS controllers computed without noise
and 100 PPO controllers trained under Hamiltonian perturbation noise σnoise
for transitions to the middle and end of chains of length N = 4, 5.

from being concentrated around F = 0.99 to a very flat
width and increasingly heavier tail, down to F = 0. For
PPO controllers, however, we observe that at certain noise
levels, e.g., σnoise = 0.01, 0.04, 0.07, the controllers found
for all problems have narrow distributions compared with
L-BFGS. At other noise levels, e.g., σnoise = 0.08, 0.1
for N = 5, |0〉 to |2〉, they have wider distributions for
some problem, but also narrow distributions for others, e.g.,
σnoise = 0.08, 0.1 for N = 4, |0〉 to |2〉. We conjecture that
added structured perturbations may have a smoothing effect
on the optimization landscape which would result in either
filtration or creation of “barriers” near optima in some cases.

For (2), we consider in addition to the cases of (1), also
transitions to the middle for N = 6, 7. Here the PPO
controllers have been computed for low Hamiltonian per-
turbation noise σnoise = 0.01. Both the L-BFGS controllers
and the PPO controllers become worse with increasing noise
levels. However, the PPO controllers drop off slower, except
in the case of N = 6, |0〉 to |3〉. This suggests that overall
PPO is more likely to find robust controllers.

To investigate this further, the performance of a well-
performing PPO and L-BFGS controller for the N = 5, |0〉
to |4〉 transition is compared. For each algorithm, we select
the controller with the the highest median fidelity across the
ten noise levels to account for the heavy tail nature of the
performance distribution. The Hamiltonian is perturbed as
Hss + δP where P is the perturbation direction and δ its
strength. P is sampled uniformly on a 9D Euclidean sphere,
created by the five perturbation for ∆n and a further four
for the coupling strengths. The fidelity was computed along
these directions for δ from −0.1 to 0.1. The density of the
curves is estimated at specific perturbation strengths and

Fig. 6. Comparison of controllers found by L-BFGS without noise and
PPO trained under low Hamiltonian perturbation noise σnoise = 0.01 and
perfect measurements. We consider transitions to the middle and end of
chains of length N = 4, 5 and to the middle for N = 6, 7.

plotted (see Fig. 7). The PPO controller is clearly not at
a fidelity maximum, so some perturbations have a chance to
improve the fidelity. The L-BFGS controller is at a fidelity
maximum, which means that most perturbation directions,
including those on the couplings which are not control
parameters, reduce the fidelity. Similar behaviour has been
observed for other controllers.

IV. DISCUSSION AND CONCLUSION

Our main finding is that policy gradient RL methods allow
nonparametric constructions of optimization models even
under highly noisy conditions as seen in Section III-A where
pure model-based methods perform poorly as seen in Sec-
tion III-C. We have quantified costs in terms of the number
of function or environment calls. In the absence of noise, RL
performance is lower bounded by model-based optimisation
and upper bounded by pure random guessing. This implies
that a nonparametric model is being constructed. The cost of
model construction is relatively bounded by random guessing
for RL under noisy conditions. However, the number of calls
is still high. Model-based RL or Bayesian methods could be
explored to reduce the reliance on information acquisition.



Fig. 7. Robustness comparison of a well performing PPO (top) and L-BFGS
(bottom) controller for N = 5, |0〉 to |4〉. (a) and (c) show 1, 000 fidelity
curves, sampled along different Hamiltonian perturbation directions; (b) and
(d) show density distributions of these curves at the perturbation strengths.

In Section III-B, a Monte Carlo robustness analysis and
consistency of PPO for variations of the energy landscape
control problem is used to motivate our choice of PPO
for comparison with L-BFGS with restarts to understand
robustness of controllers found by RL. We demonstrate that
RL controllers found under low Hamiltonian perturbation
noise levels are typically more robust compared with those
found by L-BFGS but there is variation within the quality
of their robustness that needs to be explored more as a
function of their clustering and correlation of locations in
the optimization landscape. It appears that in some cases
RL finds controllers that may not be optimal for the ideal
model, but perform robustly at high fidelity under noisy
conditions. This suggests that Hamiltonian noise in partic-
ular can improve robustness of some controllers. RL is a
promising avenue for feedback adaptive control with less
overhead compared with variational methods and is arguably
comparatively better with uncertainties. However, a careful
construction of the control problem in an RL paradigm is
needed before its application.
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