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Abstract— A novel method to quantify robust perfor-
mance is formulated for situations where structured param-
eter variations and initial state errors rather than extrane-
ous noise are the main performance limiting factors. Param-
eter uncertainty is ubiquitous in classical control, as well
as in quantum control where initial state preparation errors
are prevalent. The central mathematical object is the error
dynamics, the difference between nominal and perturbed
dynamics, driven by the unperturbed or perturbed state,
rather than an artificially imposed noise. The unperturbed
versus perturbed dichotomy has the interpretation of the
relative error dynamics scaled by either the unperturbed or
perturbed dynamics. The unperturbed-driven error formula-
tion follows the conventional lines of robust performance,
but has the unique feature of decoupling the effect of
the physically meaningful uncertainties from some artificial
noise. However, the case of perturbed-driven error dynam-
ics is a significant departure from conventional robustness
in that it offers the possibility to side-step structured sin-
gular value computation. Applications to a lightly damped
mechanical system and a slowly dephasing quantum sys-
tem demonstrate the usefulness of the concepts across
a broad range of systems. Finally, a fixed point algorithm
specifically developed for quantum systems with state tran-
sitions depending in a nonlinear fashion on uncertainties is
proposed as the substitute for classical µ.

Index Terms— Uncertain systems, robust control, H-
infinity control, quantum control.

I. INTRODUCTION

Robust control problems are conveniently formulated as
parametrically uncertain dynamics driven by extraneous noise
where performance is assessed by the noise to output-to-be-
controlled transmission. This raises the question whether the
performance is limited by physically present noise, or whether
noise is just a convenient way to deal with uncertainties
in the dynamics governing the system. In addition, other
potential sources of error such as in the initial state, not
commonly considered in classical robustness, are relevant
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for certain applications. This particularly applies to quantum
control, where, e.g., the fidelity of quantum state transfer is
degraded by initial state preparation errors [3]. We propose
a novel robust performance formulation that is independent
of extraneous noise and incorporates initial state errors quite
naturally.

The formulation is based on the error dynamics, the dif-
ference between the perturbed dynamics and the unperturbed
dynamics. Here, perturbed is meant to denote the dynam-
ics resulting from parameters deviating from their nominal,
unperturbed values in a structured way as formalized in
the structured singular value, or µ, analysis [25]. The error
dynamics can be scaled relative to either (a) the unperturbed
dynamics or (b) the perturbed dynamics. We develop and
explore both paradigms. While (a) may be the most natural
choice as the unperturbed dynamics is assumed to be known,
scaling the error relative to the real perturbed dynamics can
be advantageous in certain settings such as adaptive closed-
loop control. Moreover, the latter is computationally simpli-
fied and sometimes offers less conservative results than the
unperturbed case, but it deviates from the classical robust
performance [25]. We illustrate the general unperturbed versus
perturbed dichotomy on a benchmark mechanical example,
and then specialize it to a robust quantum control problem [13]
that motivates the alternative fixed point approach to µ com-
putations.

The paper is organized as follows. In Sec. II two formula-
tions of the error dynamics relative to the perturbed and un-
perturbed system dynamics are presented. Robust performance
with respect to the dynamics of the unperturbed system is
developed in Sec. III, starting with the most common case
where no initial state preparation error and no uncertainty
in the observation are present, and then adding these effects
as additional performance limiting effects. In Sec. IV the
performance is analyzed relative to the perturbed dynamics.
In Sec. V we apply the results to a simple mechanical
system. Finally, in Sec. VI we consider a quantum mechanical
example.

II. RELATIVE ERROR DYNAMICS

A. General formulation

We start with a system described by a model without
uncertainties. The system dynamics resulting from the model
are referred to as the unperturbed system dynamics. The
dynamics of the real system, which deviates from the model
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dynamics, is referred to as the perturbed system dynamics.
Formulating the dynamics in terms of the controllable state-
space representations, where ru(t) is the state of the unper-
turbed system (following nominal model dynamics), rp(t) is
the state of the perturbed system, and n denotes external noise,
we assume:

d
dtru = Aru +Bn, ru(0) = ru,0,

yu = Curu;
(1a)

d
dtrp = (A+ δS)rp +Bn, rp(0) = rp,0,

yp = Cprp.
(1b)

The multivariable controllable canonical form freezes the B-
matrix, so that the uncertainties are lumped into A and
C. The uncertainty in A is assumed to be structured with
structure S and magnitude δ, while the uncertainty on C is
left unstructured for now. A slight difficulty with the utilization
of a controllable canonical form is that the same uncertain pa-
rameter could appear in both A and C; this will be dealt with
in Sec. III-B. State or output feedback to achieve specifications
are assumed to be embedded in A. In other words, Eqs. (1a)
and (1b) represent the closed-loop system in its unperturbed
and perturbed forms, resp. Extraneous noise n has been added
for generality. The output error e(t) := Cprp −Curu admits
two different, but equivalent, state-space realizations, both of
which have state z(t) := rp(t)− ru(t):

d
dtz = (A+ δS)z + δSwu, z(0) = z0,

e = Cpz + (Cp −Cu)wu;
(2a)

d
dtz = Az + δSwp, z(0) = z0,

e = Cuz + (Cp −Cu)wp.
(2b)

The difference between the two models is in the driving
terms: wu := ru for the unperturbed error dynamics (2a) and
wp := rp for the perturbed error dynamics (2b). This entails
different sources of potential instabilities: in the unperturbed
formulation of Eq. (2a), assuming wu ∈ L2, the instability is
in the free dynamics A+ δS; while in the perturbed case of
Eq. (2b) the instability is in the input term wp which need not
be in L2. Note that the noise term Bn has disappeared, but
that the two models are subject to initial error z(0).

The state-space error dynamics gives the transfer matrices

T u
e,wu

(s, δ) := (Cp −Cu) +Cp(sI −A− δS)−1δS, (3a)

T p
e,wp

(s, δ) := (Cp −Cu) +Cu(sI −A)−1δS, (3b)

where we have adopted the universal notation of Ty,x to
denote the transfer matrix from x̂ to ŷ, and x̂(s) denotes the
Laplace transform of x(t). Application of the matrix inversion
lemma reveals that T u is the transfer function for the error
scaled relative to the unperturbed dynamics, while T p is scaled
relative to the perturbed dynamics, as easily seen from

T u
e,wu

(s, δ) =
[
Cp(sI −A− δS)−1 −Cu(sI −A)−1

]
·
[
(sI −A)−1

]−1
, (4a)

T p
e,wp

(s, δ) =
[
Cp(sI −A− δS)−1 −Cu(sI −A)−1

]
·
[
(sI −A− δS)−1

]−1
. (4b)

Moreover, Eqs. (4a) and (4b) reveal that the two models
differ by a frequency correction factor:

T p
e,wp

(s, δ) = T u
e,wu

(s, δ)
(
(sI −A)−1(sI −A− δS)

)
.
(5)

Remark 1: It is important to distinguish two different in-
terpretations of “unperturbed vs. perturbed.” On the one hand,
it could indicate whether the physical ru,p-dynamics are in
their nominal or physically perturbed state and this distinction
will be made precise by a subscript as in wu,p. On the other
hand, it could also refer to the error model, which could be
driven by the perturbed or the unperturbed dynamics, and will
be specified by a superscript as in T u, T p.

Remark 2: Another dichotomy is the “absolute vs. relative”
perturbation. In the above formulation, δ could be either
an absolute or a relative magnitude; the difference resides
in the structure matrix S. While classically [2], [16] the
sensitivity matrix relates the closed-loop perturbation to the
open-loop perturbation in their relative values, whether relative
or absolute perturbations ought to be considered depends on
the context. For example, if the nominal parameter is 0, as is
the case for the detuning parameter in our quantum control
example, only the absolute perturbation makes sense; the
same applies to the quantum initial state preparation error,
the nominal value of which is 0 as well.

B. Main contributions of the paper
In this subsection, we briefly outline the key points ad-

dressed by this manuscript.
1) Departure from classical robust performance: The

main contribution is that the robust performance is car-
ried on Eqs. (4a), (4b), rather than on Eq. (1b), as
usual. To put it another way, classical robust perfor-
mance bounds ∥Typ,n(s, δ)∥∞ whereas here we bound
∥T u,p

yp−yu,wu,p
(s, δ)∥∞. The latter still requires some µ-

computations, but with some caveats, especially in the per-
turbed case that departs from the classical µ. With the fixed-
point computation of µ that applies to nonlinear rather than
affine perturbations, the breakup from classical structured
singular value is complete.

2) “Noiseless” approach: ∥T u,p
yp−yu,wu,p

(s, δ)∥∞ allows the
objective assessment of the effect of the uncertainties, rather
than their effect on the transmission of some arbitrarily
inputted noise n. Both the unperturbed and perturbed for-
mulations are driven by physically objective driving terms:
the states of the unperturbed and the perturbed dynamics,
resp. Should some additive noise n be physically justifiable,
then the same approach decouples the effect of the noise and
allows performance to be assessed solely as a consequence of
uncertain parameters.

3) Perturbed versus unperturbed scaling: Expansion with
respect to the unperturbed state (case a) makes sense as we are
expressing the scaled deviation of the dynamics (as captured
by the error transfer function) in terms of something we
know. Expansion with respect to the perturbed state (case b),
however, is also interesting in that we are expressing how
much the dynamics of the system deviates from the presumed
dynamics in terms of the actual state of the system. This
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is a more relevant formulation if we can probe the actual
dynamics of the system experimentally. For a historical review
of this unperturbed vs. perturbed scaling dichotomy see [16].
For oscillatory systems, such as lightly damped space struc-
tures [11], [12], or weakly decoherent quantum systems [6],
[7], the unperturbed error dynamics has the advantage that the
frequency sweep can be limited to the known eigenfrequencies
of A. The perturbed error dynamics still requires the classical
frequency sweep because the eigenfrequencies of A+ δS are
imprecisely known.

III. ROBUST PERFORMANCE IN THE UNPERTURBED
FORMULATION

This section proceeds from Eq. (2a) with an unperturbed
driving term ŵu. We begin with the simplified case of zero
initial state error, where parameter errors are lumped into A.
From there, we progressively build up to more complicated
situations by adding initial state errors, uncertainties in C,
and various combination of uncertainties.

A. Zero initial condition error

Elementary matrix manipulation reveals that the transfer
matrix T u

e,wu
in the formulation of Eq. (3a) is obtained from[

v̂
ê(s)

]
=

[
Φ(s)−1S Φ(s)−1S

Cp Cp −Cu

]
︸ ︷︷ ︸

Ge,wu (s)

[
η̂

ŵu(s)

]
, (6)

with Φ(s) = sI − A and feedback η̂ = (δI)v̂. With this
feedback, we compute ∥T u

e,wu
(s, δ)∥ via a fictitious feedback

ŵu = ∆f ê, with ∆f a complex fully populated matrix.
Specifically, a simple singular value argument shows that

∥T u
e,wu

(s, δ)∥ = 1/min{∥∆f∥ : det(I−T u
e,wu

(s, δ)∆f ) = 0}.

To compute maxδ ∥T u
e,wu

(s, δ)∥, subject to closed-loop sta-
bility, the two feedbacks are combined as[

η̂
ŵu

]
=

[
δI 0
0 ∆f

]
︸ ︷︷ ︸

∆(δ,∆f )

[
v̂
ê

]
, (7)

where ∆ defines the structure D, i.e., the set of all block-
diagonal matrices with the top left hand corner a real scalar
matrix and the bottom left hand corner a fully populated
complex matrix. It is readily verified that

det(I −Ge,wu
(s)∆(δ,∆f )) =

det(I −Φ−1Sδ) det(I − T u
e,wu

(s, δ)∆f ),
(8)

where the first factor relates to the closed-loop stability, as
det(I − Φ−1Sδ) = det(Φ−1) det(sI − A − Sδ). With this
material, the robust performance theorem [25, Th. 10.8] reads

Theorem 1: If Φ(s) is invertible, then ∥T u
e,wu

(s, δ)∥ ≤
µD(Ge,wu(s)),∀ δ < 1/µD(Ge,wu(s)), where

µD(Ge,wu
(s)) =

1

min∆∈D{∥∆∥ : det(I −Ge,wu
(s)∆) = 0}

is the structured singular value specific to D = {∆(δ,∆f )}.

1) Extensions: The above is a generic result that can easily
be extended to more complicated uncertainty patterns. Given
a transfer matrix Te,wg (s, δg) from a generalized disturbance
to some error, subject to a generalized structured uncertainty
of magnitude δg , the difficulty is to find a matrix Gg and
a structured feedback ∆g , such that wrapping the structured
feedback η̂g = ∆gv̂g around[

v̂g

ê

]
= Gg

[
η̂g

ŵg

]
,

reproduces Te,wg
(s, δg). In the subsections that follow, we

derive Gg and ∆g and bound ∥Te,wg (s, δg)∥ without repeat-
ing the argument of Th. 1 with the objective of bounding
Te,wg

(s, δg) with

µD(Gg(s)) =

[
min
∆∈D

{∥∆∥ : det(I −Gg∆) = 0}
]−1

,

where D = {block-diag(∆g,∆f )}.

B. Zero initial error and uncertain output matrix C

The preceding framework can be extended to account for
uncertainty in the observations structured as

Cp −Cu = δcSc. (9)

Substitute δcSc for Cp−Cu and Cu+δcSc for Cp in Eq. (6);
then pull δc out of the same equation via the feedback[

η̂2

η̂3

]
= δcI

[
v̂2

v̂3

]
(10)

wrapped around
v̂1

v̂2

v̂3

ê

 =


Φ−1S 0 0 Φ−1S

I 0 0 0
0 0 0 I
Cu Sc Sc 0


︸ ︷︷ ︸

Gc
e,ŵu


η̂1

η̂2

η̂3

ŵu

 . (11)

Eqs. (10) and (11) together (after eliminating v̂2, v̂3 and η̂2, η̂3

using Eq. (10)) reproduce Eq. (6), with the feedback η̂1 = δv̂1

playing the same role as η̂ = (δI)v̂. Therefore, Eqs. (10)
and (11) reproduce T u

e,wu
(s, δ, δc) in the same manner as

Eq. (6) with η̂ = (δI)v̂ reproduces Tu
e,wu

(s, δ).
To put it another way, from Eq. (6), observe that η̂ = ẑ and

ê = Cuη̂ + Scδcη̂ + Scδcŵu.

To remove δc, we create a copy v̂2 of η̂1 = ẑ, feed it through
δc to obtain η̂2 = δcẑ, and also create a copy v̂3 of ŵu, feed
it through δc, to obtain η̂3 = δcŵu. With η̂2, η̂3, the above
becomes

ê = Cuη̂1 + Scη̂2 + Scη̂3;

that is, Eq. (11).
The overall feedback structure that defines the structure D

for µD is
η̂1

η̂2

η̂3

ŵu

 =


δI 0 0 0
0 δcI 0 0
0 0 δcI 0
0 0 0 ∆f


︸ ︷︷ ︸

∆(δ,δc,δc,∆f )


v̂1

v̂2

v̂3

ê

 . (12)
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We have the following
Theorem 2: ∥Te,wu(s, δ, δc)∥ ≤ µD(G

c
e,ŵu

(s)), for δ, δc <
[µD(G

c
e,ŵu

(s))]−1, with D = {∆(δ, δc, δc,∆f )}.
Remark 3: If the same uncertain parameter appears in both

A and C, the formulation remains valid subject to a mild
modification. If S denotes the structure of the uncertainty in A
and Sc the structure in C, all that needs to be done is to equate
δ and δc and the overall feedback becomes ∆(δ, δ, δ,∆f ).

C. Effect of initial state preparation error
We further extend the framework to explicitly consider the

effect of initial state preparation errors. Taking the Laplace
transform of Eq. (2a) yields

(sI −A− δS)ẑ(s) = δSŵu(s) + z(0), (13a)
ê(s) = Cpẑ(s) + (Cp −Cu)ŵu(s). (13b)

To proceed, we look at how Eq. (6) should be augmented to
incorporate an initial state error z(0). Recall that the crucial
point of Eq. (6) is that η̂ is the ẑ response to ŵu. Here, η̂1 is
the ẑ response to ŵu. In the case of initial state error, we need
to construct the ẑ response to z(0). The extended version of
Eq. (6),
v̂1

v̂2

v̂3

ê

 =


Φ−1S 0 0 0 Φ−1S

0 Φ−1S 0 Φ−1 0
0 Φ−1S 0 Φ−1 0
Cp 0 Cp 0 Cp −Cu


︸ ︷︷ ︸

G


η̂1

η̂2

η̂3

z(0)
ŵu


(14)

under the extended feedback structure[
η̂1

η̂2

]
=

[
δI 0
0 δI

] [
v̂1

v̂2

]
,

precisely constructs the ẑ response to z(0) as v̂2. The problem
is that v̂2 is at the output while it should be at the input to
contribute to ê. Putting v̂2 at the input is accomplished by
creating a copy of v̂2, say v̂3, and feeding it back to the input
via η̂3 = Iv̂3. To recover the classical robust performance
formulation, this feedback needs to be absorbed in the G-
matrix. This is equivalent to eliminating v̂3 = η̂3, which is
done by observing that v̂3 = η̂3 = Φ−1Sη̂2 + Φ−1z(0).
Putting this into Eq. (14) yieldsv̂1

v̂2

ê

 =

 Φ−1S 0 0 Φ−1S
0 Φ−1S Φ−1 0
Cp CpΦ

−1S CpΦ
−1 Cp −Cu


︸ ︷︷ ︸

Ge,(z(0),wu)


η̂1

η̂2

z(0)
ŵu

 .

(15)
The overall feedback structure wrapped around Ge,(z(0),wu)

is 
η̂1

η̂2

z(0)
ŵu

 =

δI 0 0
0 δI 0
0 0 ∆f


︸ ︷︷ ︸

∆(δ,δ,∆f )

v̂1

v̂2

ê

 , (16)

itself defining the structure D. We have the following
Theorem 3: ∥T u

e,(z(0),wu)
(s, δ)∥ ≤ µD(Ge,(z(0),wu)(s)),

for δ < 1/µD(Ge,(z(0),wu)(s)) with D = {∆(δ, δ,∆f )}.

D. Effect of initial state preparation error with uncertain C

Finally, we combine the effects of uncertain dynamics,
initial state preparation error and uncertain observations, en-
forcing the structure of Eq. (9) in Eq. (14). As before η̂1 is the
ẑ response to ŵu and v̂2 the ẑ response to z(0). The signal v̂2

needs to be brought to the input, which is done via a copy v̂3

of v̂2 and the feedback η̂3 = Iv̂3. Now, η̂3 is the ẑ response
to z(0). Substituting Cu+δcSc for Cp and δcSc for Cp−Cu

reveals the need to generate signals δcẑ = δcη̂1 + δcη̂3 and
δcŵp at the input to reconstruct ê. Such signals are easily
generated by additional δc-feedbacks from a copy v̂4 of η̂1,
a copy v̂5 of ŵu, a copy v̂6 of η̂3 to η̂4, η̂5, η̂6, resp. This
yields

v̂1

v̂2

v̂3

v̂4

v̂5

v̂6

ê


=



X 0 0 0 0 0 0 X
0 X 0 0 0 0 Φ−1 0
0 X 0 0 0 0 Φ−1 0
I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I
0 0 I 0 0 0 0 0
Cu 0 Cu Sc Sc Sc 0 0





η̂1

η̂2

η̂3

η̂4

η̂5

η̂6

z(0)
ŵu


(17)

with X = Φ−1S and the overall structured perturbation
feedback

η̂1

η̂2

η̂4

η̂5

η̂6

 =


δI 0 0 0 0
0 δI 0 0 0
0 0 δcI 0 0
0 0 0 δcI 0
0 0 0 0 δcI



v̂1

v̂2

v̂4

v̂5

v̂6

 .

The feedback η̂3 = Iv̂3 is implemented by elimination of η̂3,
that is, η̂3 = Φ−1Sη̂2 +Φ−1z(0). Injecting the latter in the
above yields

v̂1

v̂2

v̂4

v̂5

v̂6

ê


=


X 0 0 0 0 0 X
0 X 0 0 0 Φ−1 0
I 0 0 0 0 0 0
0 0 0 0 0 0 I
0 X 0 0 0 Φ−1 0
Cu CuX Sc Sc Sc CuΦ

−1 0


︸ ︷︷ ︸

Gc
e,(z(0),wp)



η̂1

η̂2

η̂4

η̂5

η̂6

z(0)
ŵu


(18)

with X = Φ−1S and overall feedback ∆(δ, δ, δc, δc, δc,∆f ).
The latter feedback that defines the structure D is not written
explicitly as it should by now be obvious from Eqs. (7), (12),
(16). Consequently, we get

Theorem 4: Setting D = {∆(δ, δ, δc, δc, δc,∆f )}, we have

∥T u
e,(z(0),wu)

(s, δ, δc)∥ ≤ µD(G
c
e,(z(0),wu)

(s))

for δ < 1/µD(G
c
e,(z(0),wu)

(s)).

IV. ROBUST PERFORMANCE IN THE PERTURBED
FORMULATION

We consider the point of view taken by Eq. (2b) with a
perturbed driving term wp. Taking its Laplace transform yields
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(sI −A)ẑ(s) = δSŵp(s) + z(0), (19a)
ê(s) = Cuẑ(s) + (Cp −Cu)ŵp(s). (19b)

A. Zero initial error

If sI−A is invertible and there is no initial state preparation
error, introducing the structured uncertainty Cp −Cu = δcSc

yields
T p
e,wp

(s, δ, δc) = CuΦ
−1(s)δS + δcSc. (20)

Bounding ∥T p
e,wp

(s, δ)∥ can be trivially although conserva-
tively done by

∥T p
ewp

(s, δ, δc)∥ ≤ ∥
[
CuΦ

−1(s)S Sc

]
∥
√

δ2 + δ2c , (21)

without recourse to the robust performance analysis. The
perturbed case, hence, offers a new approach, circumventing
the structured singular value.

It is, however, of interest to approach the problem in the
robust performance context, observing that T p

e,wp
(s, δ, δc) is

obtained fromv̂1

v̂2

ê

 =

 0 0 I
0 0 I

CuΦ
−1S Sc 0


︸ ︷︷ ︸

Gc
e,wp

 η̂1

η̂2

ŵp

 (22)

after the feedback[
η̂1

η̂2

]
=

[
δI 0
0 δcI

] [
v̂1

v̂2

]
. (23)

With ∆(δ, δc,∆f ) as defining the structure D, we have the
following theorem, which differs from the classical robust
performance of Th. 1:

Theorem 5: ∥T p
e,wp

(jω, δ, δc)∥ ≤ µD(G
c
e,wp

(jω)), for δ

such that wp ∈ L2.
Proof: Observe that det(I − Gc

e,wu
(s)∆) = det(I −

T p
e,wu

(s, δ, δc)∆f ). Enforcing det(I − Gc
e,wu

(ȷω)∆) ̸= 0
therefore bounds T p

e,wu
(jω, δ, δc) but does not enforce robust

stability which is dealt with separately by enforcing wp to be
a square integrable signal.

Observe that the bound of Th. 5 holds for all δ’s, but that
∥T p

e,wp
(jω, δ, δc)∥∞ is a valid operator norm only for wp ∈

L2, hence the restriction on δ.

B. Effect of initial state preparation error

A significant difference between the unperturbed and the
perturbed case is that in the latter the effect of z(0) is
completely decoupled from ŵp, as seen by the transfer matrix

T p
e,(z(0),wp)

(s, δ, δc) =
[
CuΦ

−1(s) CuΦ
−1(s)δS + δcSc

]
.

(24)
Bounding ∥T p

e,(z(0),wp)
(s, δ, δc)∥ is again trivial,

∥T p
e,(z(0),wp)

(s, δ, δc)∥ ≤ ∥CuΦ
−1(s)∥

+ ∥
[
CuΦ

−1(s)S Sc

]
∥
√
δ2 + δ2c ,

(25)

and does not require the robust performance analysis. It, hence,
offers a new approach.

If a robust performance analysis based on structured singu-
lar value analysis is desired, it can be accomplished viav̂1

v̂2

ê

 =

 0 0 0 I
0 0 0 I

CuΦ
−1S Sc CuΦ

−1 0


︸ ︷︷ ︸

Gc
e,(z(0),wp)


η̂1

η̂2

z(0)
ŵp

 (26)

after the same feedback as Eq. (23). With the D structure
defined by ∆(δ, δc,∆f ), we have

Theorem 6: ∥T p
e,(z(0),wu)

(s, δ, δc)∥ ≤ µD(G
c
e,(z(0),ŵu)

(s))

for s = jω and δ such that wp ∈ L2.

V. BENCHMARK MECHANICAL EXAMPLE: DOUBLE
SPRING-MASS-DASHPOT

To illustrate the perturbed vs. unperturbed approach, we
consider a simple system that has been a benchmark problem
for robust control synthesis [24]: the double spring-mass-
dashpot system of [25, Example 4.2], where n1, n2 are the
forces acting on masses m1, m2, resp., and e1, e2 are the
rates of motion of masses m1, m2, resp., relative to the spring
rest positions:

d

dt
ru =

[
Z I
M1 M2

]
ru +

[
Z
I

]
n, (27a)

e =

[
0 0 m−1

1 0
0 0 0 m−1

2

]
ru, (27b)

where Z =

[
0 0
0 0

]
, I =

[
1 0
0 1

]
is the identity matrix, and

M1 =

[
− k1

m1

k1

m2
k1

m1
−k1+k2

m2

]
, M2 =

[
− b1

m1

b1
m2

b1
m1

− b1+b2
m2

]
.

k1, k2 > 0 and b1, b2 > 0 are the stiffness and damping
constants of the springs, where the first spring connects m1

to a fixed point and the second spring connects m1 to m2.
As m1 and m2 appear in both A and C, if the masses are
uncertain, a minor modification of the method of Sec. III-B is
needed, as explained in Remark 3.

In this case-study, Te,n is a mapping from force actuators to
co-located rate sensors, well known to be passive, dissipative
or positive real [11], [15]. Here, co-location means that the
force ni applies to the mass mi and that ei measures the rate of
motion of mi. Passive means that, for ru(0) = 0, there exists
a constant ϵ > 0 such that

∫ T

0
eT (t)n(t) dt > ϵ∥n∥2L2[0,T ],

∀T > 0,∀n ∈ L2[0, T ]. For such a system, any feedback n =
−De = −DCru, where D = DT > 0, preserves closed-loop
stability, similar to a bias-field-mediated feedback in quantum
spintronic systems, which also preserves stability [7].

This “positive real” design [11], [15] has been widely
applied to space structures with the caveat that for distributed
parameter systems with vibration eigenfrequencies ωk→∞ →
∞, it is difficult to maintain co-location of the sensors and
actuators. Indeed, if ε is the distance between the actuating and
the sensing points, there exists a k such that ε ∈ [λk/2, λk],
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(a) Uncertain stiffness k1 (b) Uncertain stiffness k2

(c) Uncertain damping b1 (d) Stiffness k1 uncertainty and sensor-actuator misalignment (Sc)

(e) Combination of stiffness k1 uncertainty and initial error z(0) (f) Stiffness k1 uncertainty, initial error z(0) and Sc uncertainty C

Fig. 1: Upper and lower bounds on the structured singular value µ for unperturbed and perturbed formulations for different
combinations of uncertainties for the spring-mass dashpot system with m1 = 3,m2 = 1, k1 = k2 = 1, b1 = b2 = 0.1.
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where λk = 2πc/ωk is the wavelength of the vibration mode
ωk and c is the propagation speed of the elastic disruption.
In this situation, the feedback from the sensing point to the
actuating point is no longer negative, but positive. Hence, it
destabilizes the vibration mode ωk. In the present setup of
Eq. (27), a co-location error could be modeled as the structured
perturbation

Sc =

[
0 0 0 m−1

2

0 0 m−1
1 0

]
, (28)

meaning that e1 blends the rates of motion of m1 and m2.
Positive realness also has a circuit theory formulation, where

n is the voltage and e the current of a passive n-port [1].
Such circuit models have been used to simulate quantum
phenomena [4], in particular four-dimensional topological
insulators [23]. Co-location in this context means that the
voltage is measured at the same port at which the current
is injected.

A. Uncertain stiffness or damping
We first consider a relative uncertainty in the stiffness k1

modeled as k1(1+ δ). The unperturbed µu is computed using
Th. 1; the perturbed µp is computed using Th. 5 after removal
of the second row and column of Gc

e,wp
as defined by Eq. (22),

as δc = 0. The results, illustrated in Fig. 1a, reveal two
regimes: µp(ȷω) > µu(ȷω) around the resonant frequencies
and the reverse inequality µp(ȷω) < µu(ȷω) away from the
resonances. To explain this phenomenon, consider

det(I −Gu∆) =det(I − Φ−1δS)×
det(I − T p(I − Φ−1δS)−1∆f ), (29a)

det(I −Gp∆) =det(I − T p∆f ), (29b)

which is obtained by direct matrix manipulations and replacing
T u by its expression derived from Eq. (5). At the exact un-
perturbed resonance, ∥T p∥ reaches its maximum, while T u =
T p(I−Φ−1δS)−1 is damped by (I−Φ−1δS)−1 since Φ−1

also achieves its maximum at the resonant eigefrequencies.
Therefore, at exact resonance, ∥T u∥ < ∥T p∥. Denoting by
∆u

f , ∆p
f the ∆f , for which the determinant in Eq. (29a) and

Eq. (29b), resp., vanishes, we have ∥∆u
f∥ > ∥∆p

f∥, while |δ|,
the relative error on the stiffness, is bounded by 1 to preserve
closed-loop stability. Hence µu = 1/∥∆u

f∥ < µp = 1/∥∆p
f∥,

as shown by Figs. 1a, 1b at the exact resonant frequency.
Away from both the exact and the perturbed resonances, and
under the assumption that both ∥T u∥ and ∥T p∥ are sufficiently
damped (precisely < 1), δ becomes the deciding factor of µ
in the sense that µu = 1/min∆ max{∥∆f∥, |δ|} = |δ| = 1
for the unperturbed case. For the perturbed case, since δ is
not involved in stability, µp = 1/min∆ max{∥∆f∥, |δ|} =
∥T p∥ < 1. Hence, under sufficient damping far from the
resonance, µu > µp, again shown by Figs. 1a, 1b.

With regard to the damping parameters, the linear damping
model is an approximation of an essentially nonlinear stress-
strain hysteresis in the spring material. The results of uncertain
damping b1(1+δ) for the same numerical example in Eq. (27)
using Theorems 1, 5 are shown in Fig. 1c. Observe that the
upper bounds on the unperturbed and perturbed µ reach their

ω µp(iω) δmax(s) = µ−1(s) ∥T p(s, δmax, 0)∥
S1 0.389 3.2502 0.3077 3.2502

1.4791 2.2981 0.4351 2.2981
S2 0.389 3.4448 0.2903 3.4448

1.4791 2.0611 0.4852 2.0611
S3 0.389 1.0278 0.973 1.0278

1.4791 0.7267 1.276 0.7267
S4 0.3890 1.0893 0.918 1.0893

1.4791 0.6518 1.5340 0.6518

TABLE I: Comparison of µ(s) for the perturbed case vs
∥T p

e,(z(0),wp)
(s, δ, δc)∥ calculated according to Eq. (25) with

δ = µ(s)−1, δc = 0, s = iω for structured perturbations S1

to S4 corresponding to perturbation of the stiffness constants
k1, k2 and damping rates b1, b2, respectively.

maxima at the same frequency µ̄p(0.79) = µ̄u(0.79) = 0.65
and µ̄p(2.2) = µ̄u(2.2) = 1.3. This is not surprising, as
uncertainty in the damping does not change the resonant
frequency.

B. Sensor-actuator misalignment and initial state errors
In the presence of sensor mis-alignment, µ is computed

by appealing to Th. 2, Eq. (11) in the unperturbed case, and
Th. 5, Eq. (22) in the perturbed case. The results are shown in
Fig. 1d. As before the unperturbed and perturbed cases yield
close results at the resonant frequencies that, here, are shifted
relative to the stiffness k1 uncertainty case.

Keeping k1 uncertain but adding an initial state error z(0)
instead of a collocation error, as in Th. 3 of Sec. III-C for
the unperturbed case and Th. 6 of Sec. IV-B for the perturbed
case, the unperturbed µ is computed from Eq. (15) after setting
Cp = C and Cp−Cu = 0. The perturbed µ is computed from
Eq. (26), after removal of the second row and second column
of Gc

e,(z(0),wp)
. The results in Fig. 1e show again consistency

between the unperturbed and perturbed cases. It is also worth
noting that the µ has increased compared with the simplest
case of k1 uncertainty, as a result of the initial state error.

The combined effect of uncertainties in k1, z(0) and Sc (for
the same model system) are shown in Fig. 1f. The unperturbed
case is dealt with by Th. 4 and the perturbed case by Th. 6.

C. Comparison of µ and direct bounds
In the perturbed case Eq. (25) provides explicit bounds on

the norm of the transfer function, which we can compare to
the bounds obtained from µ-analysis. Table I shows that the
explicit bounds on ∥T p

e,(z(0),wp)
(s, δ, δc)∥ for δ = 1/µp in the

absence of initial state and co-location errors are in excellent
agreement with the upper bounds obtained for µp for different
structured perturbations.

VI. APPLICATION TO CONTROLLING QUANTUM SYSTEMS

Another enlightening application is control of quantum
systems. Coherent quantum systems are open-loop purely
oscillatory, and neither coherent open-loop controls nor phys-
ically relevant structured uncertainties like J-coupling errors
can change the closed-loop oscillatory situation [6], [7]. For
open quantum systems, decoherence acts as a stabilizing
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controller [18], but there are still challenges in applying
conventional structured singular value analysis. For example,
constants of motion, such as the unit-trace constraint for
density operators describing quantum states, create a pole at
0 in Φ−1(s) in the real Bloch representation of the dynamics
commonly used to describe open quantum systems. However,
as noted in Sec II, since the unperturbed error dynamics is
driven by the unperturbed dynamics, the frequency sweep
could be limited to the resonant frequencies of A, which
are by definition nonvanishing; hence the (possibly multiple)
closed-loop pole at 0 is avoided. The perturbed formulation
is theoretically more challenging, since the frequency sweep
should include the uncertain resonant frequencies of A+ δS,
and passing over ω = 0 cannot be ruled out. If, while nu-
merically exploring µD(ω → 0), it appears that the maximum
could be at ω = 0, with the difficulty that Φ−1(0) fails to
exist, then the formal procedure developed in [20] should be
followed. Essentially, Φ−1(s) should be replaced by Φ#(s),
where # denotes a specialized pseudo-inverse close in spirit
to, but different from, the Moore-Penrose pseudo-inverse. This
specialized pseudo-inverse applied to the construction of µD
cures the lack of continuity at s = 0 and moreover for s ̸= 0
coincides with the µD derived from Φ−1(s). Note that in [10],
this case has been approached heuristically by damping the
closed-loop systems as A− ϵI and then allowing ϵ ↓ 0.

A. Bias field control of coupled qubit Rabi oscillations

As a concrete example, consider a simple system of two
qubits under XX-coupling of strength J , restricted to the single
excitation subspace spanned by the states |L⟩ = |↑↓⟩ and
|R⟩ = |↓↑⟩, which correspond to excitation of the left and
right qubit, respectively. It is instructive to consider the two-
qubit problem, which is analytically solvable, but the model
can be extended to chains of more than two qubits and more
complex networks. While the latter networks are generally
not amenable to analytic solutions, numerical optimization
suggests that high fidelities and good transfer times can be
achieved by non-zero optimal biases, and that transfer fidelities
may be robust to uncertainties in system parameters under
certain conditions [8], [17].

B. Dynamics

For two qubits the coherent dynamics in the single-
excitation subspace can be modeled by the Hamiltonian

H = ℏ
[
D1 J
J D2

]
,

where ℏ is the reduced Planck constant and ℏJ and ℏDk are
exchange coupling and onsite potential energies, respectively.
We assume that the local onsite potentials can be controlled
via local electric or magnetic fields that shift the energy levels
of the qubit, e.g., via Stark or Zeeman shifts, respectively,
i.e., D1 and D2 serve as controls. To include decoherence,
the state of the system is described by the density operator ρ,
a Hermitian operator with Tr(ρ) = 1, which evolves as

d
dtρ = − ı

ℏ [H, ρ] + γL[V ]ρ, (30)

where L[V ] is a typical Lindbladian,

L[V ]ρ = V ρV † − 1
2 (V

†V ρ+ ρV †V ). (31)

To model typical decoherence, which acts as dephasing in the
Hamiltonian basis, we choose V to be a Hermitian operator
that commutes with the Hamiltonian, [H,V ] = 0. We take

V =
1

2Jeff

[
−∆ 2J
2J ∆

]
.

where ∆ := D2−D1 is the detuning and Jeff =
√
∆2 + 4J2.

∆/J is dimensionless, ℏ∆ is the difference between the energy
levels of the left and right qubit and γ is the decoherence rate.

The dynamics can be reformulated in a way similar to the
state space formulation classically used in robustness analysis
using the Bloch equation formulation [5], [14], [21], [22], here
rewritten in line with Eqs. (1a) and (1b),

d
dtru = (AH +AL)︸ ︷︷ ︸

A

ru +Bn, (32a)

d
dtrp = (AH +AL + δS)︸ ︷︷ ︸

A+δS

ru +Bn. (32b)

This formulation is obtained by expanding the density operator
for the quantum state in terms of the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
.

(33)
For a two-qubit system it is customary to use the expansion

ρ = 1
2 (r1σx + r2σy + r3σz + I) (34)

with regard to the unnormalized Pauli matrices rather than
an orthonormal basis for the Hermitian operator on the
Hilbert space as this ensures that pure states, characterized
by Tr(ρ2) = 1, are mapped to points [r1, r2, r3]

T on the
unit sphere in R3. Due to trace conservation, the coefficient
r4 is constant, and, with our choice of basis, r4 = 1.
Therefore, it makes sense to define the reduced state vector
ru = [r1, r2, r3]

T ∈ R3. It can be shown by direct calculation
that the corresponding dynamical generators are explicitly

AH =

 0 ∆ 0
−∆ 0 −2J
0 2J 0

 , AL =
−γ

J2
eff

 ∆2 0 2∆J
0 J2

eff 0
2∆J 0 4J2

 .

The matrix A has rank 2 with a pole at 0 for any ∆, J and γ.
The oscillatory eigenvalues are λ(AH + AL) = −γ ± ıJeff .
This structural stability of the eigenvalues obviates the need
to consider possible change of multiplicities, as considered
in [20].

The excitation in the coupled qubit system undergoes coher-
ent oscillations between the left and right qubit, ρL = |L⟩ ⟨L|
and ρR = |R⟩ ⟨R|, corresponding to rL = [0, 0, 1]T and rR =
[0, 0,−1]T , for the unperturbed and perturbed cases. Starting
with an excitation of the left qubit, ρ(0) = ρL, we measure the
excitation transfer to the right qubit as a function of time by
the overlap Fu,p(t) = Tr[ρRρu,p(t)], where ρu,p denotes the
unperturbed or perturbed density [9]. For J , ∆ and γ fixed and
no noise (and the affine term can be shown to be zero), the evo-
lution is given by ru(t) = exp(tA)ru(0), where exp denotes
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(a) Transfer fidelity oscillations (b) Transfer fidelity and time vs detuning

Fig. 2: Transfer fidelity vs. time and maximum transfer fidelity and minimum transfer time as a function of detuning ∆ for
quantum example.

the matrix exponential. Setting ru,p(t) = (x(t), y(t), z(t))Tu,p,
this shows that Fu,p(t) =

1
2 [1 + rTRru,p(t)] =

1
2 [1− zu,p(t)],

and we can explicitly evaluate the matrix exponential to obtain
an analytic formula for the transfer fidelity in the unperturbed
case,

Fu(t) =
2J2

J2
eff

[
1− e−tγ cos(Jefft)

]
. (35)

Eq. (35) shows that the fidelity undergoes damped oscilla-
tions as illustrated in Fig. 2(a). The first maximum is achieved
for cos(Jefft) = −1, i.e., a transfer time tf = π/Jeff . The
corresponding fidelity is

Fu(tf ) =
2J2

J2
eff

[1 + e−tfγ ]. (36)

Considering γ ≥ 0, the maximum fidelity is Fu,max(tf ) =
4J2

J2
eff

, achieved for γ = 0. Recalling the definition for Jeff =
√
∆2 + 4J2, we further see that the absolute maximum of

1 is achieved for ∆ = 0 and Jeff = 2J . There is a trade-
off between the maximum transfer fidelity and the transfer
time, however, as tf = π/Jeff implies that the transfer time
decreases with increasing ∆. This offers some advantage in
terms of increased transfer fidelity, as illustrated in Fig. 2(b),
which shows that both the total fidelity and minimal transfer
time decrease with increasing detuning ∆. In most practical
cases, however, when full state transfer is desired, the speedup
due to nonzero ∆ is minor compared to the fidelity loss.
Additionally, while the fidelity starts at a lower value when
decoherence is present, in this case it decreases more slowly
with increasing detuning due to the decreased transfer time.

C. Classical structured singular value analysis

The dynamical generator depends on three core parameters
∆, J , and γ, which are often not known precisely. To assess
the robustness of observed fidelity oscillations with regard
to these parameter uncertainties, we can define structured
perturbations. The dependence on γ is linear and thus directly

amenable to structured singular value analysis. In what fol-
lows, we reserve the symbol δ for general perturbations, and
δ(ℓ) with the subscript in parentheses for perturbations on the
parameter ℓ = ∆, γ, J .

The infidelity, either unperturbed or perturbed, is defined
as 1 − Fu,p(t) = 1

2 [1 + zu,p(t)] =
1
2 [0, 0, 1]ru,p + 1

2 , which
requires an unusual affine term. The infidelity error, on the
other hand, defined as

e = (1−Fp)− (1−Fu) = Fu −Fp = Cuz

with Cu = 1
2 [0, 0, 1] and z = rp − ru, does not require the

affine term. Consistently with Eqs. (2a) and (2b), the infidelity
error e has two formulations: unperturbed and perturbed.

Considering an uncertainty γ(1 + δ(γ)) on the decoherence
rate, the structure of the perturbation is S = γAL. Numerical
results for ∆ = 0, J = 1 and γ = 0.01, shown in Fig. 3 sug-
gest good coincidence between the unperturbed and perturbed
analyses but there are differences. In the unperturbed case the
graph suggests µu

∞ = 1.276 > 1; hence, ∥T u∥∞ < 1.272 for
|δ| < 1/1.276 = 0.78 < 1. The restriction |δ| < 1 is consistent
with γp = γ(1+δ) > 0, that is, positive perturbed decoherence
rate, and hence robust closed-loop stability. Closer inspection
of the upper bound for µp suggests ∥T p∥∞ ≤ µp

∞ ≈ 0.5946 <
1 for ω = 2. This bound is tighter than µu, but as already noted
µp does not secure closed-loop stability so that the bound
∥T p∥∞ ≤ 0.5946 is only valid for |δ| < 1.

D. Beyond structured singular value: fixed-point iteration
The dependence of A on ∆ and J is nonlinear, which poses

a challenge for structured singular value analysis. This illus-
trates its limitations and why new tools are needed, especially
for quantum control problems, where parameters typically
enter in a nonlinear fashion in the Bloch A-matrix. In [19],
a fixed-point approach is proposed in lieu of the structured
singular value. In essence the perturbation is unstructured
and written as Ap(δ) − A rather than Sδ as in Eqs. (1a)–
(1b). In the unperturbed formulation case, ∥T u

e,wu
(δ)∥∞ ≤ µ,
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∀δ < 1/µ, where the strict inequality is required to enforce
strict closed-loop stability. Interchanging the role of µ and δ
yields ∥T u

e,wu
(δ)∥∞ < 1/δ, leading to the tightening of the

inequality by defining

δmax = sup
{
δ ≥ 0 : ∥T u

e,wu
(δ)∥∞ < 1/δ

}
. (37)

Whether the equality ∥T u
e,wu

(δmax)∥∞ = 1/δmax could be
achieved depends on whether the limiting factor is closed-
loop stability or the transmission norm. In quantum problems
as those considered here, the uncertain parameters do not
affect stability, and hence the limiting factor is the transmission
norm. In such cases, equality prevails, and δmax is a fixed point
of δ 7→ 1/∥T u

e,wu
(δ)∥∞. Note that for the solution to Eq. (37)

to be a fixed point, the reverse inequality ∥T u
e,wu

(δ)∥∞ > 1/δ
must hold ∀δ > δmax. If there are many such fixed points,
the minimum one should be selected. Note that this approach
identifies the positive bound; the negative bound δmin < 0
can be identified in a similar way via the fixed point of
δ 7→ −1/∥T u

e,wu
(δ)∥∞.

In the unperturbed and perturbed cases, the fixed point can
be computed by graphing ∥T u

e,wu
(δ)∥∞ and 1/δ vs. δ and

locating the intersection point of the two plots. More formally,
under some circumstances, the contraction mapping theorem
can be invoked leading to convergence of the recursion δk+1 =
1/∥T u

e,wu
(δk)∥∞ to the fixed point. Contraction mapping

requires existence of a contraction ratio ζ ∈ (0, 1) such that

|δk+2 − δk+1| < ζ|δk+1 − δk|.

That is, simplifying the notation to avoid the clutter,∣∣∣∣∣∣ 1∥∥∥T (
1

∥T (δ)∥

)∥∥∥ − 1

∥T (δ)∥

∣∣∣∣∣∣ < ζ

∣∣∣∣ 1

∥T (δ)∥
− δ

∣∣∣∣ .
From there, it is easily verified that, for m > n,

|δm − δn| <
ζm − ζn−1

ζ − 1
|δ1 − δ0|.

In other words, {δk}∞k=0 is a Cauchy sequence and, hence,
converges.

1) Decoherence rate uncertainty: Since the case of an un-
certain decoherence rate γ is the only one where the uncertain
parameter enters linearly into the Bloch equation and can be
safely computed with classical µ, we will use that case as
yardstick to gauge how well the fixed point approach works.
Taking ∆ = 0, J = 1, and γ = 0.01 as before yields
µu = 0.277 at δmax = 3.6 and µu = 1.282 at δmin = −0.78
as shown in Fig. 6(c), consistent with the upper bound for µu

∞
obtained from the conventional µ-analysis and Fig. 3.

2) Detuning and J-coupling uncertainty: The advantage of
the fixed-point iteration approach is that it can applied to
assess the effect of uncertainty in the detuning ∆ or J-coupling
although these parameters appear non-linearly in the dynamics.
Figs. 4 and 5 show the perturbed and unperturbed transfer
functions and µ for uncertainty in ∆ and J , respectively,
expanded around (∆, J, γ) = (0, 1, 0.01). Although there
are differences between the transfer functions relative to the
unperturbed and perturbed state, both transfer functions have
almost the same norm for a wide range of δ and give the

Fig. 3: Upper (ub) and lower (lb) bounds on unperturbed
and perturbed µ’s for two qubits under decoherence rate
uncertainty (system parameters ∆ = 0, J = 1, γ = 0.01).

∆ = ∆0 + δ(∆) J = J0 + δ(J) γ = γ0(1 + δ(γ))
δmin δmax δmin δmax δmin δmax

T u -0.200 0.200 -0.1194 0.1194 -0.7832 3.6114
T p -0.200 0.200 -0.1189 0.1189 -1.6818 1.6818
T u -0.3452 0.3452 -0.3759 0.3759 -0.7832 3.5925
T p -0.6315 0.6315 -0.3760 0.3760 -1.6815 1.6815

TABLE II: δmin and δmax obtained by fixed point iteration
for perturbations of ∆, J and γ for our quantum example.
The nominal (unperturbed) values are ∆0 = 0, J0 = 1 and
γ0 = 0.01 for rows one and two; ∆0 = 0, J0 = 1 and γ0 = 0.1
for rows three and four.

same δmin and δmax, as illustrated in Table II. However, the
critical frequencies of T u and T p are different, especially for
perturbation of J , as expected. Comparing the µ plots suggests
that µ∞ = δ−1

max is larger for J-coupling uncertainty, which
suggests that the system is more sensitive to perturbation of
J than ∆. The µ∞ values for uncertainty in ∆ and J are also
much larger than µ∞ for γ uncertainty, suggesting that the
system is far less affected by uncertainty in the decoherence
rates. In practice, this analysis is useful for understanding
where the fundamental limitations of real systems lie and
where extra care must be placed when designing a quantum
system.

E. Quantum vs. mechanical systems
As already said, a limitation to passivity-control of lightly

damped oscillatory mechanical systems is the co-location
error between point of application of actuators and point of
rate recording. Quantum systems also involve co-location at
their core. In the single-particle Hamiltonian H = 1

2ωqσz ,
the Pauli operator σz indicates that the qubit is subject to
a magnetic field along the z-axis and measurements with
possible outcomes spin up or down are relative to exactly
the same magnetic field. Spin chains involve co-location
errors, referred to as bias spillage [10] along the chain axis,
conceptually similar to co-location error in space structures. A
highly focused magnetic field meant to address a single spin
always entails an error between the bias field and the spin it is
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(a) Unperturbed Transfer function (b) Perturbed Transfer function (c) µ vs δ

Fig. 4: Transfer function relative to unperturbed and perturbed state and µ for uncertainty in ∆ = ∆0 + δ(∆) with ∆0 = 0,
J = 1, γ = 0.01. The intersection point of δ(∆) = µ(δ(∆)) determines δ(∆),max and µ(∆),∞.

(a) Unperturbed transfer function (b) Perturbed transfer function (c) µ vs δ

Fig. 5: Transfer function relative to unperturbed and perturbed state and µ for uncertainty in J = J0 + δ(J) with J0 = 1,
∆ = 0, γ = 0.01. The intersection point of δ(J) = µ(δ(J)) determines δ(J),max and µ(J),∞.

(a) Unperturbed transfer function (b) Perturbed transfer function (c) µ vs δ

Fig. 6: Transfer function relative to unperturbed and perturbed state and µ for uncertainty in γ = γ0 + δ(γ) with γ0 = 0.01,
J = 1, ∆ = 0. The intersection point of δ(γ) = µ(δ(γ)) determines δ(γ),max and µ(γ),∞.

supposed to address; a caveat that is well known in passivity
control of distributed parameter space structures [15].

VII. CONCLUSION

The key point of this paper is that robust performance
under structured uncertainties in both classical and quantum
systems can be assessed independently of additive noise,
which sometimes is physically legitimate but too often solely
motivated by a textbook solution to assessing robust perfor-
mance. If noise is legitimate, then the proposed approach has
the advantage of homing in on the effect of the uncertain
parameters independently of the noise.

Suppression of the noise is accomplished by removing the
unperturbed dynamics from the perturbed dynamics leading to
two different but equivalent error systems: one driven by the
unperturbed dynamics, the other by the perturbed dynamics.
From a design point of view, the unperturbed forcing term
calls into question the relevance of the worst case, or H∞,
approach since the driving term is perfectly known, possibly
resuscitating the old geometric disturbance decoupling prob-
lem. On the other hand, for the perturbed driven model, the
H∞ approach might still, in spirit, be appropriate since the
disturbance is imprecisely known, yet not totally unknown.
These design questions are left for further research.

Also left for further research is the development of a genuine
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Brouwer fixed point substitute for the µ-function mandated by
nonlinear uncertainties. All that has been done in this paper is
to indicate how the fixed point solution could be implemented
in the simple case of one uncertainty. Extension to multiple
structured uncertainties calls for new mathematical control
challenges.
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