
Finding and Characterising Robust Quantum Controls

Irtaza Khalid, Cardiff University, khalidma@cardiff.ac.uk
Carrie Weidner, Aarhus University,cweidner@phys.au.dk
S.G. Schirmer, Swansea University, lw1660@gmail.com

Edmond Jonckheere, USC, jonckhee@usc.edu
Frank C. Langbein, Cardiff University, frank@langbein.org

Topic(s)
[“cross-cutting technologies”, “quantum computing”, “quantum simulation”,“quantum communication”]

Background
Quantum control (QC) provides methods to steer the dynamics of a quantum device, e.g., in order to
implement quantum gates, prepare quantum states or transfer information. Most quantum control
algorithms follow an open-loop control design, optimising a fidelity target function using a device
model in simulation [1]. Some approaches replace the simulation with the real device [2,3] but most
focus on achieving very high fidelity operations. In quantum computing and communication, given
sufficiently high accuracy, experimentally and in simulation, quantum error correction schemes can
then ensure reliable operation, if one has sufficient physical qubits. More generally, robust operations
are important for quantum technologies as a whole.

Current promising scalable quantum computing architectures (e.g. transmons, trapped atoms or ions)
are noisy and subject to a range of uncertainties that are expensive to include in the control simulation
models, and even harder to optimise for to achieve high accuracies experimentally. These effects can
be somewhat mitigated via the use of algorithms that can cope with noisy models [3], reinforcement
learning approaches [4,5], and optimization in the actual experimental system [6,7]. These also
include manually engineering Hamiltonians to account for small linear perturbations and achieve
“noise cancellation”, or numerically optimizing for metrics assuming some form of the noise.
Examples of the former approach include treating the qubit phase as a topological winding number to
engineer a two-level analytic driver with noise-cancellation capability [8] or expanding a perturbation
to first order to engineer composite single qubit pulses [9].

QC, unlike its classical counterpart, generally lacks explicit concepts of robustness of the controller,
i.e., the ability of the system to achieve high fidelity operations under uncertain dynamics and state
preparation errors. If considered at all, robustness is typically explored via Monte Carlo (MC)
simulations for certain device uncertainties or experiments [10, 11]. Among the analytical approaches,
the quantum control landscape has been extensively studied using techniques such as spectral
analysis of the Hessian of the fidelity functional with respect to control parameters [12]. In this context,
robustness is related to the flatness of the landscape, characterized by the negative and zero
eigenvalues of the Hessian. However, none of these approaches are entirely satisfactory, nor do they
fully capture robustness the way classical control does. Unfortunately, the setting for most of classical
robust control of linear, time-invariant systems stabilized by feedback, and robustness measures
based on signal processing filter functions and frequency-domain sensitivity analyses, is not well
suited to many QC problems [13].

Novel tools and approaches for robust quantum control and related fundamental limitations are
therefore needed. In addition to uncertainties in the control parameters, a wider range of uncertainties
in the system have to be considered. New measures to quantify robustness and new quantum control
approaches capable of explicitly finding robust controls are needed.
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Presentation
We present results of our recent efforts in
addressing these questions. A new robustness
measure that combines fidelity and its variance
under uncertain system dynamics and initial state
preparation error, based on the Wasserstein
distance [14], is introduced. It is used to assess the
robustness of controllers computed with different
algorithms, including gradient-based control
algorithms, designed for optimising ideal, perfectly
known system dynamics, and reinforcement
learning approaches that aim to optimise system
dynamics without any prior knowledge of the
system. Exploiting the degree of freedom afforded
by the existence of many optima in the QC
problems, we explore the control space to identify a
large number of candidate solutions, which are
then assessed with regard to robustness
properties. The approach can be applied to a wide
range of QC problems, including dynamic open
loop control, but we specifically apply it to study
information transfer in spin-1/2 rings and chains
subject to energy-landscape control. While such systems are in general not (fully) controllable,
previous work has shown that solutions can nevertheless be found easily [15]. Moreover, such
controls can be mathematically modelled as feedback control laws that do not only show similar
robustness properties relative to conventional direct feedback systems but exhibit these at optimal
performance (globally maximal fidelity) of the operation [16].

To measure robustness, we consider various sources of errors, especially uncertainties modelled by
structured perturbations to the Hamiltonian where is the strength and the structure thatδ𝑆 δ 𝑆
indicates the parameters of the Hamiltonian affected by the perturbation [17]. The uncertainty is
described by two probability distributions for and . Specifically, we use a simple noise modelδ 𝑆
structure where the local potential and nearest neighbour couplings in the Hamiltonian are all𝑆,

equally uncertain. is given by a Gaussian . MC simulations (or experiments) generate aδ 𝑁(0, 𝜎2)
probability distribution for the fidelity . Based on ideas from probabilistic optimal transport, we𝑃

δ,𝑆
(𝑓) 𝑓

propose a robustness measure, the (first-order) Wasserstein distance between and the𝑃
δ,𝑆
(𝑓)

perfectly robust distribution, a Dirac delta function at . It measures, both, fidelity and variance𝑓 = 1
under uncertainty, and imposes a metric on the controller space. Robustness of a controller is
computed purely statistically using synthetic MC sampling of the Hamiltonian space according to the
distributions for and .δ 𝑆

We consider the control problem in the single excitation subspace of spin chains and rings to evaluate
the viability of the robustness metric. Results indicate the utility of our robustness measure and
consistency with other easily computable measures like worst-case fidelity, standard deviation, above
x-fidelity-threshold percentage. We further study the robustness of controllers found under various
noise levels with L-BFGS and reinforcement learning. Fig. 1 shows that while L-BFGS finds high
accuracy controllers under perfect, no-noise conditions, our work indicates that these are not very
robust, as their fidelity and robustness quickly drop as noise is added. Controllers found with RL are
comparably more robust as noise increases and it seems that there is an optimal noise level at which



particularly robust controllers can be found; in the plot this is indicated by the green curve
where the robustness measure is most slowly increasing as a function of the noise.(σ

𝑡𝑟𝑎𝑖𝑛
= 0. 02)
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