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Realistic Noise Simulation Boosts
Deep Learning Performance for

MRS Metabolite Quantification

Deep learning models for MRS metabolite quantification are highly sensi-
tive to the realism of training data. Given the challenge of obtaining in
vivo ground-truth metabolite concentrations, training and validation
rely on simulations and phantom data. Using a Y-shaped autoencoder
model, this study investigated the impact of varying metabolite basis sets
and noise models in these simulations. While basis variations had lim-
ited effect, we found that training the autoencoder with realistic noise
models estimated from experimental data (Generalized Gaussian: GG)
significantly improved quantification accuracy on phantom spectra
compared to simpler additive Gaussian noise (ADC). This emphasises that
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accurate noise simulation is crucial for improving the transferability of c

simulation-trained models and developing more accurate and robust deep
learning quantification methods for MRS.
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Figure 1: Comparison of quantification performance across different training datasets

for different phantom sequences (E1-E14) and metabolites using the one-tailed Wilcoxon
signed-rank test (WSD: Wasserstein Distance; AMAE: Mean Absolute Error Difference).

1. Introduction

Deep learning (DL) offers promising improve-
ments in metabolite quantification for magnetic
resonance spectroscopy (MRS) [1]. However, its
performance often struggles to improve upon tra-
ditional approaches such as LCModel [2], espe-
cially in real-world settings [3]. This reliance
on simulated training data stems from the high
cost of acquisition, scarcity of ground-truth
data, and challenges in obtaining reliable in
vivo measurements. However, models trained
solely on simulations often perform poorly on
phantom or in vivo spectra, highlighting a gen-
eralisation gap caused by discrepancies between
simulated and experimental data (Fig. 3).

This study investigates how simulation real-
ism impacts the transferability and accuracy
of a state-of-the-art Y-shaped autoencoder
model [4] (Fig. 2), designed specifically for
quantification of metabolites in MEGAPRESS
spectra, when evaluated on experimental phan-
tom data [5]. We focus on two key contributors to
simulation realism:

e variability in metabolite basis sets (multi-model
incorporating simulated variations in chemical
shifts and J-couplings vs. single fixed model)

ethe realism of added noise (estimated GG vs.
simple ADC).

Our analysis illustrates the influence of these
training data characteristics on DL quantification
performance on phantom spectra.

Figure 2: The Y-shaped dense autoencoder model architecture.
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Figure 3: GABA phantom vs. simulated spectra at 4, 6, and 8 mmol/L.
Each panel shows a different concentration
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Figure 4: Performance comparison on phantom spectra between mod-
els trained on simulation (single-ADC, single-GG) datasets (red dashed
box indicates performance on simulated validation data). LCModel per-
formance is included for comparison.

2. Methods

Spectral Simulation. Basis sets were generated
using FID-A [6] for MEGAPRESS edit-on/off spec-
tra. Simulated spectra were constructed by lin-
early combining basis spectra, weighted by rela-
tive concentrations sampled uniformly in [0, 1] us-
ing Sobol low-discrepancy sequences (10° spectra
per dataset). Variations included:

e Noise Models:

— ADC: Simple additive Gaussian noise applied in
the time domain, with manually tuned vari-
ance to match phantom SNR levels.

—GG: Generalized Gaussian noise added in the
frequency domain, parameters estimated from
phantom noise using MCMC fitting [7].

e Basis Variations:

—Single: fixed, single basis set for all spectra.

—~Multi: randomly selected basis set from pool
generated with varied chemical shifts and J-
couplings based on models from literature.

Dataset Variants. Combining basis variability
and noise models yielded 4 training datasets:
single—-ADC, single-GG, multi-ADC, multi-GG.
Model Architecture & Training. A parameter-
ized Y-shaped dense autoencoder [4] was used.
Architecture parameters were optimized using
Bayesian hyperparameter search. The model was
trained separately on 4 datasets and evaluated on
phantom spectra.

3. Results

Evaluation Metrics. Normalised
Wasserstein Distance (WSD >1 indicates
significant  distributional difference)
was used to assess distributional dif-
ferences between models trained under
different data. One-tailed Wilcoxon
signed-rank tests were applied to paired
absolute errors (|prediction — ground
truth|) for each phantom experiment to
determine directional performance dif-
ferences. Heatmap annotations indicate
statistically significant comparisons be-
tween models (‘=" denotes no significant
difference, Fig. 1).

Summary. Models trained on single-
basis data with generalized Gaussian
(GG) noise exhibited lower errors com-
pared to those trained with additive
Gaussian (ADC) noise, particularly
for Glutamine (Gln) and Creatine (Cr)
(Fig. 1). Training on multi-basis datasets
did not yield significant improvements
over single-basis training data. Impor-
tantly, models trained with single-basis
data and realistic GG noise outperformed
or matched LCModel for key metabo-
lite: GABA (Fig. 4), demonstrating their
potential.

4. Conclusion

Overall, modeling realistic GG noise had a greater
impact on performance than basis variability.
Future work could further enhance accuracy by
refining single-basis simulations to better repli-
cate experimental spectra.

References

[1] van de Sande, DMJ, Merkofer, JP, Amirrajab, S, et al.: A review of machine learning applications for the
proton MR spectroscopy workflow. Magnetic Resonance in Medicine 90(4), 1253-1270 (2023)

[2] Provencher, SW: Estimation of metabolite concentrations from localized in vivo proton NMR spectra.

Magnetic Resonance in Medicine 30(6), 672-679 (1993)

[3] Rizzo, R, Dziadosz, M, Kyathanahally, SP, et al.: Quantification of MR spectra by deep learning in an
idealized setting: [...]. Magnetic Resonance in Medicine 89(5), 1707-1727 (2024)

[4] Ma, Z, Karakus, O, Schermer, SM, Langbein, FC: Metabolite quantification from edited magnetic res-

onance spectra with deep learning. Preprint (2024). https://mrs.qyber.dev/paper-mrsnet-autoencoder

[5] Shermer, SM, Jenkins, C, Chandler, M, Langbein, FC: Magnetic resonance spectroscopy data for GABA
quantification using MEGAPRESS pulse sequence. [EEE Data Port (2019). DOI: 10.21227/ak1d-3s20

[6] Near, J, Simpson, R, Jezzard, P, et al.: FID-A—Advanced MR spectroscopy processing and simulation.

Github, Version 1.2 (2018). https://github.com/CIC-methods/FID-A/tree/V1.2

[7] Karakus, O, Kuruoglu, EE, Altinkaya, MA: Beyond trans-dimensional RTJMCMC with a case study in
impulsive data modeling. Signal Processing 153, 396-410 (2018)



