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Realistic Noise Simulation Boosts
Deep Learning Performance for
MRS Metabolite Quantification
Deep learning models for MRS metabolite quantification are highly sensi-
tive to the realism of training data. Given the challenge of obtaining in
vivo ground-truth metabolite concentrations, training and validation
rely on simulations and phantom data. Using a Y-shaped autoencoder
model, this study investigated the impact of varying metabolite basis sets
and noise models in these simulations. While basis variations had lim-
ited effect, we found that training the autoencoder with realistic noise
models estimated from experimental data (Generalized Gaussian: GG)
significantly improved quantification accuracy on phantom spectra
compared to simpler additive Gaussian noise (ADC). This emphasises that
accurate noise simulation is crucial for improving the transferability of
simulation-trained models and developing more accurate and robust deep
learning quantification methods for MRS.

Figure 1: Comparison of quantification performance across different training datasets
for different phantom sequences (E1-E14) and metabolites using the one-tailed Wilcoxon
signed-rank test (WSD: Wasserstein Distance; ∆MAE: Mean Absolute Error Difference).

1. Introduction
Deep learning (DL) offers promising improve-
ments in metabolite quantification for magnetic
resonance spectroscopy (MRS) [1]. However, its
performance often struggles to improve upon tra-
ditional approaches such as LCModel [2], espe-
cially in real-world settings [3]. This reliance
on simulated training data stems from the high
cost of acquisition, scarcity of ground-truth
data, and challenges in obtaining reliable in
vivo measurements. However, models trained
solely on simulations often perform poorly on
phantom or in vivo spectra, highlighting a gen-
eralisation gap caused by discrepancies between
simulated and experimental data (Fig. 3).
This study investigates how simulation real-

ism impacts the transferability and accuracy
of a state-of-the-art Y-shaped autoencoder
model [4] (Fig. 2), designed specifically for
quantification of metabolites in MEGAPRESS
spectra, when evaluated on experimental phan-
tom data [5]. We focus on two key contributors to
simulation realism:

• variability in metabolite basis sets (multi-model
incorporating simulated variations in chemical
shifts and J-couplings vs. single fixed model)

• the realism of added noise (estimated GG vs.
simple ADC).

Our analysis illustrates the influence of these
training data characteristics on DL quantification
performance on phantom spectra.

Figure 2: The Y-shaped dense autoencoder model architecture.

Figure 3: GABA phantom vs. simulated spectra at 4, 6, and 8 mmol/L.
Each panel shows a different concentration

Figure 4: Performance comparison on phantom spectra between mod-
els trained on simulation (single-ADC, single-GG) datasets (red dashed
box indicates performance on simulated validation data). LCModel per-
formance is included for comparison.

2. Methods
Spectral Simulation. Basis sets were generated
using FID-A [6] for MEGAPRESS edit-on/off spec-
tra. Simulated spectra were constructed by lin-
early combining basis spectra, weighted by rela-
tive concentrations sampled uniformly in [0, 1] us-
ing Sobol low-discrepancy sequences (105 spectra
per dataset). Variations included:
• Noise Models:

– ADC: Simple additive Gaussian noise applied in
the time domain, with manually tuned vari-
ance to match phantom SNR levels.

– GG: Generalized Gaussian noise added in the
frequency domain, parameters estimated from
phantom noise using MCMC fitting [7].

• Basis Variations:
– Single: fixed, single basis set for all spectra.
– Multi: randomly selected basis set from pool

generated with varied chemical shifts and J-
couplings based on models from literature.

Dataset Variants. Combining basis variability
and noise models yielded 4 training datasets:
single-ADC, single-GG, multi-ADC, multi-GG.
Model Architecture & Training. A parameter-
ized Y-shaped dense autoencoder [4] was used.
Architecture parameters were optimized using
Bayesian hyperparameter search. The model was
trained separately on 4 datasets and evaluated on
phantom spectra.

3. Results
Evaluation Metrics. Normalised
Wasserstein Distance (WSD >1 indicates
significant distributional difference)
was used to assess distributional dif-
ferences between models trained under
different data. One-tailed Wilcoxon
signed-rank tests were applied to paired
absolute errors (|prediction − ground
truth|) for each phantom experiment to
determine directional performance dif-
ferences. Heatmap annotations indicate
statistically significant comparisons be-
tween models (‘=’ denotes no significant
difference, Fig. 1).
Summary. Models trained on single-
basis data with generalized Gaussian
(GG) noise exhibited lower errors com-
pared to those trained with additive
Gaussian (ADC) noise, particularly
for Glutamine (Gln) and Creatine (Cr)
(Fig. 1). Training on multi-basis datasets
did not yield significant improvements
over single-basis training data. Impor-
tantly, models trained with single-basis
data and realistic GG noise outperformed
or matched LCModel for key metabo-
lite: GABA (Fig. 4), demonstrating their
potential.

4. Conclusion
Overall, modeling realistic GG noise had a greater
impact on performance than basis variability.
Future work could further enhance accuracy by
refining single-basis simulations to better repli-
cate experimental spectra.
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