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Abstract. Manual labelling of pathology reports is a costly bottleneck
for medical data analysis. We propose diverse unanimous ensembles, in-
tegrating Large Language Models (LLMs) like GPT-4o with comple-
mentary model architectures, for high-confidence automatic labelling of
pathology reports, particularly addressing the challenge of labelled train-
ing data scarcity. This consensus method yields high precision on an
automatically identifiable subset while simultaneously flagging ambigu-
ous cases requiring expert review. Applying this to the public TCGA-
Reports dataset, a GPT-4o and DistilBERT ensemble achieved 95.5% ac-
curacy on the 45.5% subset representing a 23.1 percentage point increase
over the baseline DistilBERT’s overall accuracy on the full dataset. This
demonstrates potential for cost-effective data annotation by automati-
cally labelling high-confidence subsets, thereby reserving human effort
for ambiguous cases.

Keywords: Automated Labelling · Ensemble Learning · Large Lan-
guage Models (LLMs) · Natural Language Processing (NLP) · Machine
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1 Introduction

Large volumes of unlabelled data exist in many real-world domains, but acquir-
ing labels is often prohibitively expensive or impractical. This is particularly
prevalent in healthcare, wherein detailed records and reports, such as pathology
reports, are created and stored over decades. Obtaining structured labels from
these free-text reports requires manual annotation by medical professionals. This
task is complicated by the fact that the data is often incomplete, messy, unstan-
dardized, aimed at humans, and reporting practices may have changed over time.
Consequently, manual labelling by domain experts represents a significant bot-
tleneck due to its high cost and time requirements. Unfortunately, this means
that large amounts of data are functionally inaccessible for analysis due to the
lack of appropriate labels.
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The potential value of these large data sources has created a demand for
machine learning methods that can achieve high accuracy with low amounts
of training data to mitigate the labelling bottleneck. This, in turn, has raised
questions on the viability of weakly supervised approaches in low-data regimes
to aid in automated classification. While machine learning models can achieve
reasonable performance, obtaining high prediction confidence often desired for
clinical applications or reliable downstream analysis remains a significant hurdle.
Common techniques used in such scenarios include fine-tuned, pre-trained lan-
guage models like BERT [6,20] and LLM-assisted labelling [29]. Unfortunately,
whilst such methods often work well when the data is clean and relatively stan-
dardized, their performance often diminishes when faced with the complexities
of real-world clinical texts, such as heterogeneity, incompleteness, and evolving
standards. Achieving the high levels of accuracy required for reliable subsequent
analysis remains a challenge with these methods alone, especially under severe
data scarcity.

To address this, we propose using machine learning ensembles–techniques
combining multiple models for a final prediction—aiming for the improved ac-
curacy, robustness, and generalization they typically offer over single models.
Specifically, we propose heterogeneous unanimous voting ensembles, leveraging
the broad knowledge of pre-trained LLMs (GPT-4o) with models adapted specif-
ically to the task (DistilBERT [25], Dense Neural Networks (DNNs), and Sup-
port Vector Machines (SVMs) [5]). This has been less explored for automatically
classifying reports when trained from a small set of manually labelled data.

Unanimous ensembles operate on a principle of high confidence through con-
sensus: they only produce a label for a given sample if all constituent models
agree on the prediction. While this means the ensemble abstains from labelling
samples where there is disagreement, it allows for potentially very high accu-
racy on the subset of samples it does label. Such a trade-off is desirable when
large amounts of unlabelled data are available, as automatically labelling even
a smaller portion of the dataset accurately gives access to a high-confidence la-
belled dataset. Such datasets tend to be more useful for real-world applications,
and depending on the size and accuracy of the automatically labelled subset,
these may be used for subsequent machine learning, analysis, and data mining.

To show that our technique has potential for real-world application, we test
it on the TCGA-Reports dataset [14], a publicly available dataset consisting of
9, 523 labelled pathology reports from The Cancer Genome Atlas. This dataset
is challenging for machine learning approaches for several reasons:

– Label scarcity: many labels appear less than ten times in the entire dataset;
– High cardinality: the number of distinct labels is large;
– Data heterogeneity: the reports are messy, not rigidly following a specific

standardisation.

We limit ourselves to only using 500 randomly sampled reports as training data.
This represents a realistic constraint reflecting the practical limitations of manual
labelling by medical professionals.
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Our experiments using unanimous ensembles containing GPT-4o on this task
demonstrate their effectiveness. In isolation, a DistilBERT model achieves an
average accuracy of 72.4% on the full test set of this dataset, while a unanimous
ensemble of GPT-4o and DistilBERT achieves an accuracy of 95.5% on the
subset of reports where both models agree (constituting 45.5% of the test data,
as detailed in Section 4). Crucially, while DistilBERT evaluated only on this
specific subset also achieves 95.5% accuracy, its overall performance is much
lower. The value of the unanimous ensemble lies in its ability to identify this
high-certainty subset automatically, without prior knowledge of which samples
are ‘easy’ or ‘hard’ for a given model.

Knowing where the models in an ensemble agree also means we know where
they disagree. Conversely, where the ensemble disagrees and so abstains, high-
lights samples that are challenging for the constituent models. These abstained
samples are candidates for manual review, allowing human experts to focus their
efforts effectively. The ability to differentiate between high-confidence automated
predictions and uncertain cases requiring review is exceptionally useful, espe-
cially in the medical context. This represents an easily understandable metric
for prediction reliability, arguably more interpretable than confidence values or
prediction probabilities from individual models, which can be difficult to inter-
pret without statistical expertise.

Finally, it is noteworthy that the inclusion of GPT-4o does not just boost the
accuracy of DistilBERT–GPT-4o ensembles, but also tends to improve the per-
formance of other ensembles in which it is included. To show this, we ran a series
of experiments wherein we tested a collection of different unanimous ensembles
on the aforementioned medical labelling task (see Section 4). We hypothesise
this is due to the distinct knowledge encoded within GPT-4o’s extensive pre-
training, complementing the knowledge learned by models fine-tuned or trained
solely on the limited task-specific data.

2 Background

2.1 The TCGA-Reports Dataset

The TCGA-Reports dataset comprises 9, 523 anonymized pathology reports orig-
inally sourced from The Cancer Genome Atlas (TCGA) database. Kefeli et
al. [14] extracted these reports, processed them into a more accessible format
using optical character recognition (OCR) on the PDF files and custom post-
processing, and performed a proof-of-principle cancer-type classification exper-
iment. These reports have a variety of labels attached, namely: age, ethnicity,
gender, primary diagnosis, primary site, disease type, patient ID, project ID,
project name, and report ID. Many of these labels can be dependent on each
other such as the primary diagnosis and disease type. The challenge posed by this
dataset is to accurately predict the labels associated with each free-text report.
In this paper, we focus on classifying the reports based on the ‘primary diag-
nosis’ label with 128 classes. The original work [14] considered proof-of-concept
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cancer-type classification with 32 classes over the full dataset, achieving an av-
erage test-set AU-ROC (area under receiver-operating characteristic curve) of
0.992 and AU-PRC (area under precision-recall curve) of 0.90.

2.2 Labelling Text Data with Limited Training Data

Many of the approaches associated with labelling text data with limited train-
ing data focus on expanding the available training data. Traditionally, a com-
mon technique for labelling textual data with highly limited train data is active
learning [22]. However, such approaches can be brittle and dependent on model
structure [12]. Other techniques typically used in such situations include distant
supervised learning [24], which is reliant on having other relevant datasets avail-
able. Data augmentation [31] is a further technique, but generating high-quality
and diverse augmented or synthetic data is notoriously difficult for text data, par-
ticularly in specialized domains like medicine where preserving clinical meaning
is crucial. Leveraging clinician expertise to develop string-matching algorithms
for AI labeling has been explored [7], but these methods may struggle with
the variability and ambiguity of clinical language. It is worth noting that even
with small training sets, clinical NLP systems often perform well [13,19,26,28],
and achieve diminishing returns from being provided additional data rapidly. As
such, data augmentation techniques may not always be necessary for labelling
clinical text.

2.3 Language Models for Labelling Data

Before the wider introduction of LLMs, BERT [6] represented the state of the
art for a large range of NLP tasks. BERT is a pre-trained transformer-based
model designed to excel at a variety of NLP tasks. It was soon discovered that
BERT could be fine-tuned with relatively little data to achieve high accuracy
on new NLP tasks [20]. However, as seen in this paper, fine-tuning BERT may
not always result in sufficiently high accuracy on NLP tasks, especially when
training data is limited or domain-specific challenges are significant [9].

Subsequently, LLMs emerged, offering capabilities suited to low-data scenar-
ios where models like BERT may struggle. By leveraging zero-shot and few-shot
learning [4], LLMs demonstrate effective and efficient text data labelling, often
achieving high agreement with human annotations [10]. This success has driven
their use for labelling tasks, including medical report annotation [2,11].

The usage of ensembles that contain LLMs has also been explored. Ensembles
of multiple LLMs have shown increased performance on various tasks, including
medical NLP focussed tasks [32]. However, the use of heterogeneous ensembles
containing LLMs in conjunction with another type of model, such as BERT or
SVMs, for medicine-related tasks is limited. Outside of medicine, such diverse
ensembles have been used for complex NLP tasks such as detecting AI-generated
text [8] and attribute value extraction [32]. More recent papers suggest that
repeated search with LLMs can also be used to get better responses over a range
of tasks [3]. Our work builds on these ideas by exploring unanimous ensembles of
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diverse model types, including an LLM, specifically for high-confidence labelling
in a low-data medical context.

3 Method

This section details the methodology employed to achieve high-confidence la-
belling of pathology reports using limited data. The general approach involves
training four distinct classifiers (SVM, DNN, DistilBERT, and predictions from
GPT-4o), chosen for their diverse architectures, and combining them using a
unanimous ensemble. The ensembling technique employed is unanimous ensem-
bling, a consensus-based approach, wherein a final prediction is returned if and
only if all constituent models in the ensemble agree on the predicted label. If dis-
agreement occurs for a sample, the ensemble abstains. Whilst abstention means
it is unlikely the entire dataset is labelled, there are key advantages in high-
confidence scenarios:

– High Precision: By requiring consensus, a very high accuracy is often
achieved on the subset of reports for which the ensemble makes predictions.

– Uncertainty Identification: As the accuracy of the unanimous ensemble
predictions is expected to be very high, samples for which there is no unan-
imous agreement are effectively flagged as ambiguous or challenging cases,
requiring expert review.

We employ unanimous ensembling, rather than strategies like majority voting
(see Appendix A.5), because our primary goal is maximizing precision on the
labelled subset, accepting abstention on ambiguous cases, to generate labels
suitable for high-confidence applications.

In order to test the effectiveness of our ensemble approach, we seek to predict
the ‘primary diagnosis’ tag in the TCGA-Reports dataset [14] with 128 classes.
The primary diagnosis is the specific cancer type or condition that the patient in
the report is being treated for. This label was chosen for its clinical relevance and
as a challenging multi-class classification task suitable for evaluating methods
under label scarcity.

To train the models, we randomly shuffled the TCGA-Reports using a set
seed, and then selected the first 500 reports as the training set, and the last 1, 000
reports as the held-out test set (see Appendix A.2 for results with smaller train-
ing sets). To train a dense neural network (DNN) and a support vector machine
(SVM), the reports were then embedded using the pre-trained BioMistral-7B
model [18] to generate suitable vector representations associated with the pri-
mary diagnosis label. Each embedding vector was of size 4096.

The SVM model used a linear kernel with regularisation C = 1 (the de-
fault for sklearn [23]). The DNN consists of three layers with ReLu activation
of sizes 2056, 1028, and 512 respectively. Dropout with a rate of 0.3 was added
after each layer [27], a commonly used value to prevent overfitting. The neu-
ral network model used categorical cross-entropy loss and was optimized using
ADAM [15], with learning rate 0.001 (the default for TensorFlow [1]). The DNN
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was trained with a batch size of 8 over 50 epochs. We fine-tuned DistilBERT on
the aforementioned 500 training set reports. DistilBERT has its own tokenizer
and embedding layer, processing the text reports directly. In situations where
the reports were too long for DistilBERT’s context, the reports were truncated
to the first 512 characters. DistilBERT was fine-tuned for 30 epochs with a batch
size of 16, using the AdamW optimiser [21] with a learning rate of 2× 10−5 (the
default learning rate). The best model at the end was loaded for use in making
predictions, based on the model’s accuracy on the training data. We conducted
additional experiments on all model’s performance over a range of train data
sizes and over a range of epochs. We found that performance increased with
both the number of epochs and the number of train examples, but diminish-
ing returns were rapidly reached (see Appendix A.2). Appendix A.3 analyses
the performance of different BERT models, justifying the choice of DistilBERT.
Appendix A.4 explores alternative machine learning approaches, justifying the
choice of the SVM model.

DistilBERT was trained and ran using the Transformers package, version
4.41.2. The DNN was trained and ran on tensorflow-keras version 2.18.0. All
other models were trained and ran on sklearn version 1.2.2.

To obtain the LLM predictions, we used GPT-4o-2024-05-13 (referred to as
GPT-4o) in a zero-shot inference mode based on a prompt. To ensure determin-
istic outputs, a temperature of 0.01 and a top-p of 0.0 are used. Both, top-p
and temperature, control how much randomness is in the LLM’s answers, with
values closer to 0 being less random. The maximum token output was set to
1, 500 tokens to allow for complete responses where one token is approximately
4 characters. The specific prompt used to instruct GPT-4o for the classification
task is provided in Appendix A.1.

4 Results

This section focuses on the results of our experiments evaluating individual mod-
els and unanimous ensembles. At a high level, the results indicate that unani-
mous ensembles consistently outperformed individual models in terms of accu-
racy when evaluated on the subsets where they made predictions. Furthermore,
unanimous ensembles containing GPT-4o generally performed better than those
which did not.

Table 1 show the performance metrics of all models considered. To enhance
readability, we have given each model a one letter tag (D for DistilBERT, G
for GPT-4o, N for the DNN, S the SVM). We denote unanimous ensembles by
combining the model tags (e.g., GD is the unanimous ensemble between GPT-4o
and DistilBERT). Each model was trained five times on different training and
test sets (see Section 4.1).

Figure 1 and Table 1 illustrate a clear performance boost from including
GPT-4o in a unanimous ensemble, with the top seven performing entries (the
highest accuracy on prediction subset) all containing GPT-4o. A notable jump
in average accuracy exists between DNS (85.0%, the best-performing ensemble
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Table 1. Accuracy comparison of models and ensembles when trained on 500 samples
(except for GPT-4o, which was not trained). D is DistilBERT, G is GPT-4o, N is the
DNN, S is the SVM (see Section 3). Np is the portion of the dataset on which predictions
have been made. Ap is the average prediction accuracy, and σp is the standard deviation
over five runs. In the case of the ensembles, the accuracy and standard deviation is the
ensemble’s accuracy and standard deviation on only the portion of the dataset where
predictions were made. The individual model accuracies and standard deviations are
on the entire test dataset, and given to 3 significant figures.

Model/ensemble Np Ap σp

DGNS 197 96.8% 0.00943

DGS 260 96.7% 0.0101

DGN 223 96.1% 0.0129

DG 455 95.5% 0.00562

GNS 213 94.7% 0.0173

GN 249 93.5% 0.0181

GS 288 93.1% 0.0145

Model/ensemble Np Ap σp

DNS 346 85.0% 0.0146

DN 347 83.2% 0.0204

DS 480 82.2% 0.0187

D 1,000 72.4% 0.0120

G 1,000 60.0% 0.00741

NS 550 56.8% 0.0102

S 1,000 42.5% 0.0187

N 1,000 36.9% 0.0448

without GPT-4o) and GS (93.1%, the lowest performing ensemble containing
GPT-4o), of 8.1 percentage points in subset accuracy. Additionally, we see a
large boost in average accuracy between D (the top performing model) and DS
(the second worst performing unanimous ensemble) of 9.8 percentage points.
Whilst unanimous ensembles with more than two models (i.e. DNS) do perform
better in general than unanimous ensembles with only two models (i.e. DS) the
difference is often small, and not statistically significant.

The results also highlight the trade-off between accuracy and coverage. For
example, the two-model ensemble DG achieves similar accuracy (95.5%) to the
four-model ensemble DGNS (96.8%) whilst covering over 45.5% of the dataset
(Np = 455), compared to the less than 20% (Np = 197) covered by DGNS. Cru-
cially, the DG ensemble’s 95.5% accuracy on this automatically identified subset
significantly surpasses the baseline DistilBERT’s overall accuracy of 72.4% across
the entire test set, demonstrating the practical gain in prediction reliability.
As noted previously, the ensemble’s key advantage is automatically identifying
a high-confidence subset, unlike simply evaluating the baseline on this subset
post-hoc.

4.1 Significance of Using an LLM in Unanimous Ensembles

To enable robust statistical comparison to investigate the effect of including
GPT-4o in an ensemble, we created five different train/test splits. Each split
was generated by randomly selecting 500 train reports and 1, 000 test reports
from the full TCGA-Reports dataset after a global shuffle (using different seeds
for each split). We trained the SVM, DNN, and DistilBERT models anew on each
of the five train sets (see Section 3). We then made and recorded predictions from
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Fig. 1. Accuracy comparison of models and ensembles (trained on 500 samples except
for GPT-4o, which was not trained). D is DistilBERT, G is GPT-4o, N is the DNN, S
is the SVM (see Section 3). In the case of the ensembles, the accuracy is the ensem-
ble’s accuracy on only the portion of the dataset where predictions were made. The
individual model accuracies are on the entire test dataset. The y-axis represents subset
accuracy for ensembles, overall accuracy for individual models. The green error bars
show standard error across five runs for each entry.

each of the four base models (D, G, N, S) on each of the five corresponding test
sets (note that GPT-4o was not fine-tuned).

Using these predictions, every possible unanimous ensemble was constructed.
We recorded the accuracy achieved (on the subset of agreement for ensembles,
and overall for individual models) on each of the five test sets for each model/en-
semble resulting in 15 result sets (for four individual models and eleven unani-
mous ensembles)

Pairwise Mann-Whitney U Test. Due to the small sample size (n = 5 runs),
standard tests for normality lack reliability. Consequently, we could not assume
the accuracy data followed a normal distribution, leading us to employ non-
parametric statistical tests. Specifically, we aimed to determine if unanimous
ensembles including GPT-4o (of size greater than one) exhibited significantly
higher accuracy compared to models/ensembles lacking GPT-4o (of size greater
than one). To this end, we performed a series of pairwise, one-sided Mann-
Whitney U tests. Each test compared the distribution of accuracy scores (from
the 5 runs) for an ensemble containing GPT-4o against the distribution for
a model/ensemble without GPT-4o. The null hypothesis (H0) stated that the
distributions were identical, while the alternative hypothesis (H1) stated that
the accuracy distribution for the ensemble containing GPT-4o was stochastically
greater than the comparison distribution. Table 2 presents the resulting p-values.
Notably, the U-statistic was 0.0 for every test, reflecting complete separation
between the accuracy values of the compared groups given the sample size.

Linear Mixed Effects Model. To further investigate the effect of including
GPT-4o while accounting for repeated measurements across different ensemble
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Table 2. Results (p-values) of our Mann-Whitney U tests. D is DistilBERT, G is GPT-
4o, N is the DNN, S is the SVM (see Section 3). Unanimous ensembles are denoted by
combining the letter abbreviations, e.g., DG is the unanimous ensemble of DistilBERT
and GPT-4o. In each test, we checked to see if the column model/ensembles average
is less than the row model/ensemble. All p-values are given to 3 significant figures.
The similar values result from the small groups and observing perfect or near perfect
separation, with U = 0 for every single test performed. The values of 0.00596 come
from situations where there were ties in the dataset.

N S NS G D DS DN DNS
GS 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397

GN 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397

GNS 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397

DG 0.00596 0.00596 0.00596 0.00596 0.00596 0.00596 0.00596 0.00596

DGN 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397

DGS 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397

DGNS 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397 0.00397

types, we employed a linear mixed effects (LME) model (using statsmodels ver-
sion 0.14.4). This accounts for the nested data we are using, however, also makes
normality assumptions about the random effects. Accuracy was modelled with
the presence/absence of GPT-4o (‘Group’) as a fixed effect and ensemble identity
(N, S, NS, etc.) as a random effect, structured as

Accuracy ∼ Group + Ensemble.

A significant fixed effect was found for Group (p = 0.00002215 < 0.0001), sup-
porting that including GPT-4o significantly influences ensemble accuracy.

5 Discussion and Conclusions

Our usage of unanimous ensembles for high-confidence text classification with
limited labelled data prioritizes reliability and complements full-dataset classi-
fication methods [14] by focusing on maximizing confidence rather than cover-
age. The unanimous ensembles including GPT-4o automatically identify subsets
where very high accuracy (93.1%−96.8%) is achieved, providing high-trust labels
essential in certain contexts. For instance, the DistilBERT–GPT-4o combination
(DG), performed particularly well, achieving high accuracy (95.5%) whilst still
making predictions on a substantial portion (45.5%) of the data.

The enhanced performance of LLM-containing ensembles likely arises from
model diversity. LLMs (like GPT-4o) draw on vast pre-training data, while mod-
els like DistilBERT are adapted specifically to the small (500-sample) training
set. This difference in training suggests distinct knowledge and error profiles.
This could explain why the DistilBERT–GPT-4o ensemble (DG, 95.5%) sig-
nificantly outperforms the DistilBERT–Dense Neural Network ensemble (DN,
83.2%) by about 12 percentage points. The dense neural network, trained on
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embeddings from the same limited data, likely shares similar representations
and correlated errors with DistilBERT, limiting the ensemble gain compared to
the more diverse DistilBERT–GPT-4o combination.

While promising, this study has limitations. Our evaluation uses a single
dataset (TCGA-Reports) and task (‘primary diagnosis’), and the high confidence
achieved via unanimity comes at the cost of reduced data coverage. Furthermore,
the best results depend on access to powerful LLMs like GPT-4o.

These findings highlight the potential of using diverse unanimous ensembles,
particularly those including large pre-trained models, to generate high-confidence
labels for subsets of large datasets, thereby optimizing the use of expert resources
for annotating only the ambiguous cases. Future work could explore automated
selection of optimal ensemble members and adaptive confidence thresholds.

Acknowledgments. We acknowledge the support of the Supercomputing Wales
project, which is part-funded by the European Regional Development Fund
(ERDF) via Welsh Government and Advanced Research Computing at Cardiff
Division. We would also like to acknowledge Piero Gerbino and Yahia Kubrani
who both provided input during the creation of the LLM prompts for GPT-4o.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

A Appendix

A.1 Creating the LLM Prompt

This section details our LLM prompt design, incorporating techniques shown
to improve LLM accuracy. We initiated the prompt with role-play (“You are
a radiographer”) to enhance reasoning and answer quality [17]. Afterwards, we
break down the specific task we want the LLM to perform as well as how we
want the LLM to perform it in great detail, which is believed to increase the
likelihood of the LLM giving a prompt close to what is desired.

We then ask the LLM to provide its reasoning, which leverages principles
similar to Chain-of-Thought (CoT) prompting and Zero-shot-CoT, where elicit-
ing step-by-step reasoning or justification before the final answer has improved
performance on complex tasks [16,30,33]. We ask the LLM to provide the label
predictions within square brackets at the end of the response, which is done to
make it easier to locate the LLM prediction afterwards. To ensure use of correct
TCGA-Reports labels/formats and prevent custom ones, the full label list was
supplied. The prompt concludes by detailing information the model should pri-
oritize, seeking further accuracy improvements. The full prompt follows:
“You are a radiographer. Your task is to identify tumor types from genomic re-
ports. Analyze the provided report and determine the correct tumor type using
one of the labels from the list below. A tumor type refers to the classification of
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Fig. 2. Comparing model accuracy vs.
number of training examples. GPT-4o
was not fine-tuned nor trained.

Fig. 3. Comparing model accuracy
of different BERT-based models over
training epochs.

a tumor based on the characteristics of the cells from which it originates. The
presence of mucinous characteristics takes precedence for classification purposes.
Provide your reasoning and end your response with the appropriate label in the
format [label] with enclosing square brackets. Use only one of the following la-
bels:
{INSERT LIST OF 128 COMMA-SEPARATED [LABELS]; OMITTED FOR BREVITY}
Highlight Key Information: Clearly separate and highlight key sections of the
report such as Clinical Diagnosis, Specimens Submitted, Diagnosis, and Gross
Description. Break Down Diagnosis Details: Break down the diagnosis into sim-
pler points to make it easier to identify the type of tumor. Link Findings to
Primary Diagnosis: Explicitly link the findings (e.g., type of carcinoma, size,
grade) to the potential disease categories provided. Pay attention to features
that specifically capture tumors with histological similarities to synovial tissue.”

A.2 Analysing Performance for Different Amounts of Training Data

Since practical applications rarely have fixed training set sizes like 500, we in-
vestigated how model performance scales, especially with less data. Figure 2
shows primary diagnosis prediction performance versus training examples. No-
tably, zero-shot GPT-4o outperformed all models except fine-tuned DistilBERT.
Fine-tuning DistilBERT becomes more effective than using GPT-4o beyond ap-
proximately 200 training samples.

A.3 Comparing Different Types of BERT Model

There are many variations of BERT that could have been chosen when con-
ducting our experiments. Here, we explore the usage of three different BERT
models: the standard BERT model, BioBERT which is fine-tuned on biological
information, and DistilBERT which is a smaller BERT model. The results are



12 Thomas Greatrix et al.

Fig. 4. Comparison of model accuracy of
various AI models on primary diagnosis
prediction. RFS: Random Forest Search,
SVM: Support Vector Machine, GNB:
Gaussian Naive Bayes, KNN: K-nearest
neighbours.

Fig. 5. Comparison of model accuracy for
majority voting ensembles trained on 500
samples (GPT-4o was not trained). D: Dis-
tilBERT, G: GPT-4o, N: DNN, S: SVM
(see Section 3). Green error bars show
standard error across five runs.

shown in Figure 3. We note that BERT and DistilBERT have similar perfor-
mance, whilst BioBERT performs worse in general. As DistilBERT is around
40% smaller than BERT and has similar performance, we find it recommendable
for situations with highly limited training data to use DistilBERT over BERT
as it is quicker to train and easier to run than BERT.

A.4 Other Machine Learning Models

We tested Random Forest Search (RFS), K-Nearest Neighbours (KNN), Gaus-
sian Naive Bayes (GNB), and support vector machines (SVMs). During our
experiments we found that SVMs were the best option for predicting the pri-
mary diagnosis from report embeddings, and thus is the one we chose to use
when exploring unanimous ensembles. Figure 4 shows that not only was the
best approach tested, but it was the best by a substantial margin. It is notable
that the KNN model was ran with the number of nearest neighbours, n, equal
to 5. SVM used a linear kernel, and that RFS used the default sklearn options.

The data in Figure 4 was collected by averaging the accuracies of 5 instances
of each model, each with a different random seed, a different set of training data,
and a different set of test data.

A.5 Majority Voting Ensembles

One of the most common types of voting ensemble is the majority voting ensem-
ble. This ensemble allows each model in the ensemble to cast a vote on what it
believes the correct answer to be, and the answer with the most votes is returned
by the ensemble. Whilst we did experiment with this, the ensembles created did
not perform as well as DistilBERT on its own (see Figure 5).
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