Robustness of energy landscape control for spin networks under decoherence


S. Schirmer, E. Jonckheere, S. O’Neil, F. C. Langbein. Robustness of energy landscape control for spin networks under decoherence. Proc. IEEE 57th Annual Conference on Decision and Control (CDC), Miami Beach, FL, pp. 6608-6613, 2018. [DOI:10.1109/CDC.2018.8619179] [arXiv:1808.01256] [PDF]

Nominal Plant with Controller

Quantum spin networks form a generic system to describe a range of quantum devices for quantum information processing and sensing applications. Understanding how to control them is essential to achieve devices with practical functionalities. Energy landscape shaping is a novel control paradigm to achieve selective transfer of excitations in a spin network with surprisingly strong robustness towards uncertainties in the Hamiltonians. Here we study the effect of decoherence, specifically generic pure dephasing, on the robustness of these controllers. Results indicate that while the effectiveness of the controllers is reduced by decoherence, certain controllers remain sufficiently effective, indicating potential to find highly effective controllers without exact knowledge of the decoherence processes.

Cite this page as 'Frank C Langbein, "Robustness of energy landscape control for spin networks under decoherence," Ex Tenebris Scientia, 3rd August 2018, https://langbein.org/cdc2018/ [accessed 22nd December 2024]'.

CC BY-NC-SA 4.0 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.