MatSpinNet


FC Langbein, SG Shermer, S O’Neil, E Jonckheere. MatSpinNet. Code, https://qyber.black/spinnet/code-matspinnet, https://github.com/qyber-black/Code-MatSpinNet. [DOI:10.6084/m9.figshare.21856911]

Matlab code for quantum spin-1/2 networks. It provides code to analyse the geometry of such networks, and some basic quantum control and characterisation code. Details are described in these papers:

  1. F. C. Langbein, S. G. Schirmer, E. Jonckheere. Time optimal information transfer in spintronics networks. Proc. IEEE 54th Annual Conference on Decision and Control (CDC), pp. 6454-6459, Osaka, Japan, December 15-18, 2015. https://langbein.org/langbein2015/.
  2. E. Jonckheere, F. C. Langbein, S. G. Schirmer. Information Transfer Fidelity in Spin Networks and Ring-based Quantum Routers. Quantum Information Processing, 14(12):4761-4785, 2015. https://langbein.org/jonckheere2015/.
  3. S. G. Schirmer, F. C. Langbein. Characterization and Control of Quantum Spin Chains and Rings. In: Proc. 6th Int Symp Communications, Control and Signal Processing (ISCCSP), pp. 615 – 619, May 2014. https://langbein.org/schirmer2014/.
  4. E. Jonckheere, F. C. Langbein, S. Schirmer. Quantum networks: Anti-core of spin chains. Quantum Information Processing. 13(7):1607-1637, 2014. https://langbein.org/jonckheere2014/.
  5. E. Jonckheere, F. C. Langbein, S. G. Schirmer. Curvature of quantum rings. In: Proc. 5th Int Symp Communications Control and Signal Processing (ISCCSP), pp. 1-6, 2012. https://langbein.org/jonckheere2012/.
  6. E Jonckheere, S G Schirmer, F C Langbein. Geometry and Curvature of Spin Networks. IEEE International Conference on Control Applicatons, pp. 786-791, 2011. https://langbein.org/jonckheere2011/.
Cite this page as 'Frank C Langbein, "MatSpinNet," Ex Tenebris Scientia, 16th November 2019, https://langbein.org/matspinnet/ [accessed 21st January 2025]'.

CC BY-NC-SA 4.0 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.