2008: Density-controlled low-discrepancy sampling and meshing of 3D geometric models. The Nuffield Foundation, Undergraduate Research Bursary 35473. F. C. Langbein, K. S. Sullivan. £1,400.
Geometry

Xianfang Sun, Paul L. Rosin, Ralph R. Martin, Frank C. Langbein. Noise in 3D Laser Range Scanner Data. In: Proc. IEEE Conf. Shape Modelling and Applications, IEEE Computer Society, p. 37-45, 2008. [DOI:10.1109/SMI.2008.4547945] [PDF]
Noise in 3D Laser Range Scanner Data
F. C. Langbein, M. Li, R. R. Martin. A Comment on ‘Constructing Regularity Feature Trees for Solid Models’. In: Advances in Geometric Modeling and Processing, Proc. Geometric Modelling and Processing, Springer LNCS, 4975:603, 2008. [DOI:10.1007/978-3-540-79246-8_53] [PDF]
A Comment on ‘Constructing Regularity Feature Trees for Solid Models’

Finlay N. McPherson, Jonathan A. Quinn, Jonathan Corney, Frank C. Langbein, Ralph R. Martin. Uniform Surface Point Sampling for Direct Write Applications.
Uniform Surface Point Sampling for Direct Write Applications

M. Li, F. C. Langbein, R. R. Martin. Detecting Approximate Symmetries of Discrete Point Subsets. Computer-Aided Design, 40(1):76-93, 2008. [DOI:10.1016/j.cad.2007.06.007] [PDF]
Detecting Approximate Symmetries of Discrete Point Subsets
Low-Discrepancy Sampling This is the PhD work of Jonathan Quinn about creating low-discrepancy sampling sequwnces of surfaces utilising space-filling curves. This has been applied to point-based rendering, remeshing and robotic painting (in collaboration with Jonathan Corney and Finlay McPherson). Jonathan’s supervisors are Frank Langbein and Ralph Martin.
Point Sampling
The following software detect approximate regularities for design intent detection. It has been implemented on Linux in C++ (gcc 3.3) and Matlab using OpenCascade 5.2. Software for Approximate Regularity Detection If you use this code please cite one of these publications:
Approximate Regularity Detection
The following software constructs regularity feature trees for design intent detection. It has been implemented on Linux in C++ (gcc 3.3) and Matlab using OpenCascade 5.2. Melon.tar.gz If you use this code please cite one of these publications:
Regularity Feature Tree Construction

S. Liu, R. R. Martin, F. C. Langbein, P. L. Rosin. Segmenting Periodic Reliefs on Triangle Meshes. In: R. R. Martin, M. A. Sabin, J. J. Winkler (eds), Maths of Surfaces XII, Springer LNCS, 4647:290-306, 2007. [DOI: 10.1007/978-3-540-73843-5_18] [PDF]
Segmenting Periodic Reliefs on Triangle Meshes

X.-F. Sun, P. L. Rosin, R. R. Martin, F. C. Langbein. Fast and Effective Feature-Preserving Mesh Denoising. IEEE Trans. Visualization and Computer Graphics, 13(5):925-938, 2007. [DOI:10.1109/TVCG.2007.1065] [PDF]
Fast and Effective Feature-Preserving Mesh Denoising

M. Li, F. C. Langbein, R. R. Martin. Detecting Approximate Incomplete Symmetries in Discrete Point Sets. In: Proc. ACM Symp. Solid and Physical Modeling, pp. 335-340, ACM Siggraph 2007. [DOI:10.1145/1236246.1236294] [PDF]
Detecting Approximate Incomplete Symmetries in Discrete Point Sets

W. Li, R. R. Martin, F. C. Langbein. Generating Smooth Parting Lines for Mold Design for Meshes. In: Proc. ACM Symp. Solid and Physical Modeling, pp. 193-204, ACM Siggraph 2007. [DOI:10.1145/1236246.1236274] [PDF]